用户名: 密码: 验证码:
基于Ag(Ⅰ)-Ag(Ⅰ)相互作用金属配位聚合物和Ⅱ-Ⅵ族半导体发光纳米晶的信号传导和超分子识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半胱氨酸(Cys)在人体内发挥极其重要的作用,且其对映体所扮演的角色亦不同。例如,L-Cys的缺失将导致人体出现AIDS、肝损伤和皮肤损害等严重疾病,而D-Cys则能和细胞内诸多靶标作用并且妨碍细胞生长。尽管目前已有不少Cys的识别方法,但极少研究涉及到Cys对映体识别。因此,发展可靠且高选择性的Cys对映体识别与传感方法对正确认识和理解Cys对映体和相关疾病之间的关系十分重要,是目前一项富有挑战性的研究。传统的光谱学传感研究中颜色或荧光的背景对光谱信号的干拢,成为一个棘手的问题。基于金属-金属相互作用的超分子化学以及金属纳米结构材料研究的良好发展,拟通过特定的相互作用操纵和调控此类弱的非价键作用以期“精明”地控制这些超分子结构材料和金属纳米结构材料,为分子识别与传感研究开辟新的领域。本论文在前述认识的基础上,主要概念性地提出利用并操纵金属.金属相互作用,构建新型的分子识别和传感体系,为解决上述两个问题提供有益的启示。
     论文共分五章,包括如下内容:
     第一章为前言。首先概述了币族金属-金属相互作用,简要介绍了超分子化学中币族金属-金属相互作用的研究及应用,同时探讨了此类弱相互作用在金属纳米结构材料领域中的研究现状和发展前景。最后,综述了Ⅱ-Ⅵ族半导体发光纳米晶(NCs)的基本光物理性质和合成方法。
     第二章介绍了基于Ag(I)和Cys原位形成Ag(I)-Ag(I)相互作用促进的Ag(I)-Cys金属配位聚合物,构建可靠且高选择性Cys对映体识别与传感体系。系统研究了导致该体系产生特征吸收和CD光谱报告信号的原因,认为这些光谱信号系来源于伴随着Ag(I)-Ag(I)相互作用的从Cys到Ag(I)的电荷转移(LMMCT)跃迁。实验发现,pH可调控聚合物骨架上的Ag(I)-Ag(I)相互作用。该pH调控行为不仅起到提高传感体系选择性的作用,而且为Ag(I)-Cys体系中存在Ag(I)-Ag(I)相互作用提供有力支持。本识别体系对Cys对映体的检测限均达到1pM水平;基于摩尔吸光系数值考虑,具有信号放大作用。研究展示了一个概念性的识别新策略,即操纵Ag(I)-Ag(I)相互作用可选择性地识别具有重要意义的目标分子。
     在Ag(I)-Cys和Ag(I)-谷胱甘肽(GSH)体系的研究之基础上,受启于其中金属配位聚合物的超分子结构,概念性地提出并构建了阴离子诱导Ag(I)-GSH金属配位聚合物超分子水凝胶Gel-Sol态转换的体系且成功地用于I~-的识别,具体内容于第三章详述。本例为首次获得的高选择性阴离子响应的超分子水凝胶体系。本超分子水凝胶体系高选择性响应I~-可归因于AgI和AgXs(X=F~-、Cl~-、Br~-、H_2PO_4~-和-SR)的稳定常数间存在较大的差异而导致仅I~-能使Ag(I)-GSH配位聚合物解聚。I~-诱导Gel-Sol态转换所释放的水分子实际上为本体系的“信号报告基团”。本体系不仅可实现可视化识别,且能实施定量分析。与传统的重量法不同的是,所释放的水的重量大约为所引入I~-的660倍,表明本识别体系具有“信号放大”作用。原则上,本策略可以通过设计新型超分子水凝胶以实现“精明”的Gel-Sol态转换而使之拓展至其它体系。
     基于前述对Ag(I)-Cys和Ag(I)-GSH体系的认识,我们进一步对目前备受关注的Ⅱ-Ⅵ族半导体发光NCs开展了下列研究。
     研究了Ⅱ-Ⅵ族半导体发光NCs与电子受体亚甲基蓝(MB)之间发生的光诱导电子转移(PET)过程,旨在发展简单且可靠的策略以构建基于PET机理的Ⅱ-Ⅵ族半导体发光NCs型的分子识别与传感体系。第四章描述了稳态和时间分辨发光实验、热力学能量分析以及电子顺磁共振(EPR)实验,结果支持了激发态NCs到基态MB的PET系NCs发光猝灭原因的结论。双链DNA(ds-DNA)能使NCs-MB体系的发光恢复,这是因为MB籍与DNA双链的嵌入作用和静电作用而脱离NCs的表面,NCs与MB间的PET受到抑制。单链DNA(ss-DNA)亦可使NCs-MB体系的发光恢复,但恢复程度小于ds-DNA的,可能是因为MB与ss-DNA之间仅存在静电作用的缘故。所观察到的发光恢复程度的差异使本体系可用于DNA的选择性识别和传感。此研究为构建新一类的分子识别与传感体系提供了有益的启示,可望拓展至其它类型目标分子。
     第五章叙述了基于对Ag(I)-Cys/GSH体系的研究,使用Cys作为表面配体、水溶液相法合成手性D-/L-Cys-CdS NCs对映体,为进一步认识和理解发光Ⅱ-Ⅵ族半导体手性NCs的手性起源提供实验基础。
Cysteine (Cys) is vital naturally occurringα-amino acid in human body and its twoenantiomers actually play different roles. For example, the deficiency of L-Cys wouldlead to a series of serious diseases including AIDS, liver damage, and skin lesions.However, D-Cys is considered to interfere with many targets inside cells and furtherimpair cell growth. Although numerous recognition methods for L-Cys have beenreported, few involved Cys enantiomeric signaling. In order to understand the linksbetween enantiomeric Cys and related diseases, developing feasible while highlyselective and sensitive enantiomeric discrimination strategies for D- and L-Cys istherefore undoubtedly crucial. Traditional spectrophotometric methods employed assignaling means in molecular recognition and sensing fields often suffer from seriousspectral interferences in colored and/or fluorescent background. Therefore, it alsoremains a challenge to overcome this drawback. Development in supramolecularchemistry and metal nanostructure materials based on metal-metal interactions offer achance to manipulate metallophilicity via a specific interaction event, which wouldnot only allow a smart control of these supramolecular and metal nanostructurematerials, but also open a new field of research in molecular recognition and sensing.Based on these understandings, we intended to manipulate metal-metal interaction toconstruct novel molecular recognition and sensing platforms.
     The dissertation consists of five chapters.
     Chapter 1 introduces in general the coinage metal-metal interaction, reviews anddiscusses the development and applications of the metal-metal interaction insupramolecular chemistry and metal nanostructure materials. Fundamentalphotophysical properties and synthesis ofⅡ-Ⅵgroup semiconductorphotoluminescent nanocrystals are also described.
     Chapter 2 reports an enantiomeric discriminating strategy for Cys based on thein-situ formed Ag(I)-Cys coordination polymers facilitated by argentophilicity. Detailed investigations were conducted to clarify the origin of characteristicabsorption and CD signals. It was shown that these characteristic spectral signalsoriginate from ligand-to-metal charge transfer transition accompanied by metal-metalinteraction (LMMCT). Solution pH was found to be able to modulate themetallophilicity in the polymeric backbone composed of Ag(I)-Cys repeating unit.Such pH switching character not only allows to improve the selectivity of thissignaling strategy, but also offers a strong support of metallophilicity in Ag(I)-Cyspolymers. Limit of detection of this signaling platform for D- or L-Cys was calculatedto be down to 1μM level. On the basis of the molar extinction coefficient, a signalamplification was indicated in this strategy. It is expected that the present system canin principle serve as a signaling platform following the concept of manipulatingmetallophilicity for extended applications.
     Chapter 3 describes a highly selective anion-responsive reversible gel-sol statetransition in a supramolecular hydrogel of Ag(I)-glutathione (GSH) coordinationpolymers. To the best of our knowledge, this is the first example for highly selectiveanion-responsive reversible gel-sol state transition in supramolecular hydrogels. Largedifference of the stability constant of AgI from those of the other AgXs (X= F~-, Cl~-,Br~-, H_2PO_4~- and -SR) is considered responsible for the high selectivity towards I- thatresults in the depolymerization of Ag(I)-GSH supramolecular hydrogels. This allowsfor a visual semiquantitative assay for I~- by naked eyes. The released water moleculesin the gel-sol state transition process actually acted as the signal reporter whichoffered a signal amplification, since the weight of released water is ca. 660 times thatof the introduced I~- in case of 0.5% Ag(I)-GSH hydrogel. This strategy is expected inprinciple to be applicable to other species by following the smart gel-sol statetransition in designed supramolecular hydrogels.
     Ⅱ-Ⅵgroup semiconductor photoluminescent nanocrystals following theunderstanding of Ag(I)-Cys(GSH) systems were then carried out that will bedescribed later.
     Chapter 4 presents a signaling system that operates under the photo-induced electron transfer (PET) mechanism usingⅡ-Ⅵgroup semiconductorphotoluminescent nanocrystals. Steady-state and time-resolved photoluminescent (PL)spectroscopy, thermodynamic energetic analysis, and electron paramagnetic resonance(EPR) experiments support for the PET quenching mechanism that the electrontransfers from conduction band (CB) of excited NCs to the ground state of MB. PL ofNCs could be restored by double stranded DNA (ds-DNA) by inhibiting this electrontransfer process via taking MB away through intercalation into and electrostaticinteractions with the DNA strands. Single stranded DNA (ss-DNA) could also restorethe PL of this nanohybrid but to a lower extent since only electrostatic interactionexists between MB and ss-DNA. This distinct difference therefore allows for aselective sensing of ds-DNA and ss-DNA and for probing DNA hybridization. Thenanohybrid strategy is expected to be of general applicability subject to a suitablechoice of an electron acceptor for theⅡ-Ⅵgroup semiconductor photoluminescentNCs and for interaction with a target species.
     Chapter 5 reports an aqueous phase synthetic route to D- and L-Cys-CdS NCsenantiomers using chiral Cys as a surface ligand based on the investigation ofAg(I)-Cys(GSH). It offers a new entry to understand the origin of optical activity ofⅡ-Ⅵgroup semiconductor chiral NCs.
引文
[1] Ro|¨sch, N.; Go|¨rling, D. -C. A.; Ellis, D. E.; Schmidbaur, H. Aurophilicity as concerted effect: Relativistic MO calculations on carbon-centered gold clusters, Angew. Chem., Int. Ed. 1989, 28, 1357-1359.
    [2] Schmidbaur, H. The fascinating implications of new results in gold chemistry, Gold Bull. 1990, 23, 11-21.
    [3] Schmidbaur, H. The aurophilicity phenomenon: A decade of experimental findings, theoretical concepts and emerging applications, Gold Bull. 2000, 33, 3-10.
    [4] Che, C. -M.; Lai, S. -W. Structural and spectroscopic evidence for weak metal-metal interactions and metal-substrate exciplex formations in d~(10) metal complexes, Coord. Chem. Rev. 2005, 249, 1296-1309.
    [5] Rawashdeh-Omary, M. A.; Omary, M. A.; Patterson, H. H.; Fackler, Jr., J. P. Excited-state interactions for [Au(CN)_2~-]_n and [Ag(CN)_2~-]_n oligomers in solution. Formation of luminescent gold-gold bonded excimers and exciplexes, J. Am. Chem. Soc. 2001, 123, 11237-11247.
    [6] Rawashdeh.-Omary, M. A.; Omary, M. A.; Patterson, H. H. Oligomerization of Au(CN)_2~- and Ag(CN)_2~- ions in solution via ground-state aurophilic and argentophilic bonding, J. Am. Chem. Soc. 2000, 122, 10371-10380.
    [7] Pathaneni, S. S.; Desiraju, G. R. Database analysis of Au...Au interactions, J. Chem. Soc., Dalton, Trans. 1993, 319-322.
    [8] Pyykko|¨, P.; Zhao, Y. Ab initio calculations on the (ClAuPH_3)_2 dimer with relativistic pseudopotential: Is the "Aurophilic Attraction" a correlation effect? Angew. Chem. Int. Ed. 1991, 30, 604-605.
    [9] Pyykko|¨, P. Relativistic effects in structural chemistry, Chem. Rev. 1988, 88, 563-594.
    [10] Schwerdtfeger, P.; Boyd, P. D. W.; Burrell, A. K.; Robinson, W. T.; Taylor, M. J. Relativistic effects in gold chemistry. 3. Gold(I) complexes, Inorg. Chem. 1990, 29, 3593-3607.
    [11] Howard-Lock, H. E. Structures of gold(Ⅰ) and silver(Ⅰ) thiolate complexes of medicinal interest: A review and recent Results, Met. -Based Drugs 1999, 6, 201-209.
    [12] Bayler, A.; Schier, A.; Bowmaker, G. A.; Schmidbaur, H. Gold is smaller than silver. Crystal structures of [bis(trimesitylphosphine)gold(Ⅰ)] and [bis(trimesitylphosphine)silver(Ⅰ)] tetrafluoroborate, J. Am. Chem. Soc. 1996, 118, 7006-7007.
    [13] Ziolo, R. F.; Lipton, S.; Dori, Z. The photoluminescence of phosphine complexes of d~(10) metals, J. Chem. Soc. Chem. Commun, 1970,1124-1125.
    [14] Vogler, A.; Kunkely, H. Photoluminescence of tetrameric copper(Ⅰ) iodide complexes solutions, J. Am. Chem. Soc. 1986,108, 7211-7212.
    [15] King, C.; Wang, J. -C.; Khan, M. N. I.; Fackler, Jr., J. P. Luminescence and metal-metal interactions in binuclear gold(I) compounds, Inorg. Chem. 1989, 28,2145-2149.
    [16] Che, C. -M.; Kwong, H. -L.; Yam, V. W. -W.; Cho, K. -C. Spectroscopic properties and redox chemistry of the phosphorescent excited state of [Au_2(dppm)_2]~(2+)[dppm = bis(diphenylphosphino)methane], J. Chem. Soc. Chem. Commun. 1989, 885-886.
    [17] Irwin, M. J.; Vittal, J. J.; Puddephatt, R. J. Luminescent gold(Ⅰ) acetylides: From model compounds to polymers, Organometallics 1997,16, 3541-3547.
    [18] Yam, V. W. -W.; Lo, K. K. -W. Luminescent polynuclear d~(10) metal complexes, Chem. Soc. Rev. 1999, 28, 323-334.
    [19] Rawashdeh-Omary, M. A.; Omary, M. A.; Fackler Jr., J. P.; Galassi, R.; Pietroni, B. R.; Burini, A. Chemistry and optoelectronic properties of stacked supramolecular entities of trinuclear gold(Ⅰ) complexes sandwiching small organic acids, J. Am. Chem. Soc. 2001,123, 9689-9691.
    [20] White-Morris, R. L.; Olmstead, M. M.; Balch, A. L. Aurophilic interactions in cationic gold complexes with two isocyanide ligands. Polymorphic yellow and colorless forms of [(cyclohexyl isocyanide)2AuI](PF_6) with distinct luminescence, J. Am. Chem. Soc. 2003,125, 1033-1040.
    [21] Fernandez, E. J.; Lopez-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Perez, J.; Laguna, A.; Mohamed, A. A.; Fackler, Jr., J. P. {Tl[Au(C_6Cl_5)_2]}_n: A vapochromic complex, J. Am. Chem. Soc. 2003,125,2022-2023.
    [22] Lee, Y. -A.; Eisenberg, R. Luminescence tribochromism and bright emission in gold(Ⅰ) thiouracilate complexes, J. Am. Chem. Soc. 2003,125, 7778-7779.
    [23]. Yam, V. W. -W.; Lo, K. K. -W.; Fung, W. K. -M.; Wang, C. -R. Design of luminescent polynuclear copper(Ⅰ) and silver(Ⅰ) complexes with chalcogenides and acetylides as the bridging ligands, Coord. Chem. Rev. 1998,171, 17-41.
    [24] Barakat, K. A.; Cundari, T. R.; Omary, M. A. Jahn-Teller distortion in the phosphorescent excited state of three-coordinate Au(Ⅰ) phosphine complexes, J. Am. Chem. Soc. 2003,125, 14228-14229.
    [25] Fu, W. -F.; Chan, K. -C.; Miskowski, V. M.; Che, C. -M. The intrinsic ~3[dσ*pσ] emission of binuclear gold(Ⅰ) complexes with two bridging diphosphane ligands lies in the near UV; Emissions in the visible region are due to exciplexes, Angew. Chem. Int. Ed. 1999, 38, 2783-2785.
    [26] Vickery, J. C; Olmstead, M. M.; Fung, E. Y.; Balch, A. L. Solvent-stimulated luminescence from the supramolecular aggregation of a trinuclear gold(Ⅰ) complex that displays extensive intermolecular Au...Au interactions, Angew. Chem. Int. Ed. 1997,3(5,1179-1181.
    [27] Mansour, M. A.; Connick, W. B.; Lachicotte, R. J.; Gysling, H. J.; Eisenberg, R. Linear chain Au(Ⅰ) dimer compounds as environmental sensors: A luminescent switch for the detection of volatile organic compounds, J. Am. Chem. Soc. 1998, 120, 1329-1330.
    [28] Cariati, E.; Bourassa, J.; Ford, P. C. Luminescence response of the solid state polynuclear copper(Ⅰ) iodide materials [CuI(4-picoline)]_x to volatile organic compounds, Chem. Commun. 1998, 1623-1624.
    [29] Catalano, V. J.; Kar, H. M.; Garnas, J. A highly luminescent tetranuclear silver(Ⅰ) cluster and its ligation-induced core rearrangement, Angew. Chem. Int. Ed. 1999, 38, 1979-1982.
    [30] Dance, I. G.; Fitzpatrick, L. J.; Rae, A. D.; Scudder, M. L. The intertwined double-(-AgSR-).infin.-strand chain structure of crystalline (3-methylpentane-3-thiolato) silver, in relation to (AgSR)_8 molecules in solution, Inorg. Chem. 1983, 22, 3785-3788.
    [31] Bau, R. Crystal structure of the antiarthritic drug gold thiomalate (Myochrysine): A double-helical geometry in the solid state, J. Am. Chem. Soc. 1998, 120, 9380-9381.
    [32] Chui, S. S. -Y.; Chen, R.; Che, C. -M. A chiral[2]catenane precursor of the antiarthritic gold(Ⅰ)drug auranofin, Angew. Chem. 2006, 118, 1651 -1654.
    [33] Yam, V. W. -W.; Li, C. -K.; Chan, C. -L. Proof of potassium ions by luminescence signaling based on weak gold-gold interactions in dinuclear gold(Ⅰ) complexes, Angew. Chem. Int. Ed 1998, 37, 2857-2859.
    [34] Li, C. -K.; Lu, X. -X.; Wong, K. M. -C.; Chan, C. -L.; Zhu, N.; Yam, V. W. -W. Molecular design of luminescence ion probes for various cations based on weak gold(Ⅰ)…gold(Ⅰ) interactions in dinuclear gold(Ⅰ) complexes, Inorg. Chem. 2004, 43, 7421-7430.
    [35] He, X.; Cheng, E. C. -C.; Zhu N.; Yam, V. W. -W. Selective ion probe for Mg~(2+) based on Au(Ⅰ)…Au(Ⅰ) interactions in a tripodal alkynyl gold(Ⅰ) complex with oligoether pendants, Chem. Commun. 2009, 4016-4018.
    [36] Kishimura, A.; Yamashita, T.; Aida, T. Phosphorescent organogels via "Metallophilic" interactions for reversible RGB-color switching, J. Am. Chem. Soc. 2005, 127, 179-183.
    [37] Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(Ⅰ)-thiolate complexes and thiolate-protected gold nanocrystals, J. Am. Chem. Soc. 2005, 127, 5261-5270.
    [38] Lu, X.; Yavuz, M. S.; Tuan, H. -Y.; Korgel, B. A.; Xia, Y. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction, J. Am. Chem. Soc. 2008, 130, 8900-8901.
    [39] Huo, Z.; Tsung, C. -K.; Huang, W.; Zhang, X.; Yang, P. Sub-two nanometer single crystal Au nanowires, Nano Lett. 2008, 8, 2041-2044.
    [40] Viau, G.; Piquemal, J. -Y.; Esparrica, M.; Ung, D.; Chakroune, N.; Warmont. F.; Fievet, F. Formation of assembled silver nanowires by reduction of silver thiolate in polyol/toluene medium, Chem. Commun. 2003, 2216-2217.
    [41] Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D.Structure of a thiol monolayer-protected gold nanoparticle at 1.1 (?) resolution, Science 2007, 318,430-433.
    [42] Whetten, R. L.; Price, R. C. Chemistry: Nano-golden order, Science 2007, 318,407-408.
    [43] Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. Crystal structure of the gold nanoparticle [N(C_8H_(17)_4][Au_(25)(SCH_2CH-2Ph)(18)], J. Am. Chem. Soc. 2008,130, 3754-3755.
    [44] Tracy, J. B.; Kalyuzhny, G.; Crowe, M. C.; Balasubramanian, R.; Choi, J. -P.; Murray, R. W. Poly(ethylene glycol) ligands for high-resolution nanoparticle mass spectrometry, J. Am. Chem. Soc. 2007,129, 6706-6707.
    [45] Shichibu, Y.; Negishi, Y.; Tsukuda, T.; Teranishi, T. Large-scale synthesis of thiolated Au_(25) clusters via ligand exchange reactions of phosphine-stabilized Au_(11) clusters, J. Am. Chem. Soc. 2005,127, 13464-13465.
    [46] Tracy, J. B.; Crowe, M. C.; Parker, J. F.; Hampe, O.; Fields-Zinna, C. A.; Dass, A.; Murray, R. W. Electrospray ionization mass spectrometry of uniform and mixed monolayer nanoparticles: Au_(25)[S(CH_2)_2Ph]_(18) and Au_(25)[S(CH_2)_2Ph]_(18)-x(SR)_x, J. Am. Chem. Soc. 2007,129, 16209-16215.
    [47] Wu, Z.; Suhan, J.; Jin, R. One-pot synthesis of atomically monodisperse, thiol-functionalized Au_(25) nanoclusters, J. Mater. Chem. 2009,19, 622-626.
    [48] Zhu, M.; Aikens, C. M.; Hendrich, M. P.; Gupta, R.; Qian, H.; Schatz, G. C.; Jin, R. Reversible switching of magnetism in thiolate-protected Au_(25) superatoms, J. Am. Chem. Soc. 2009,131, 2490-2492.
    [49] Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. Correlating the crystal structure of a thiol-protected Au_(25) cluster and optical properties, J. Am. Chem. Soc. 2008,130, 5883-5885.
    [50] Qian, H.; Zhu, M.; Andersen, U. N.; Jin, R. Facile, large-scale synthesis of dodecanethiol-stabilized Au_(38) clusters, J. Phys. Chem. A 2009,113, 4281-4284.
    [51] Negishi, Y.; Chaki, N. K.; Shichibu, Y.; Whetten, R. L.; Tsukuda. T. Origin of magic stability of thiolated gold clusters: A case study on Au_(25)(SC-6H_(13)_(18), J. Am. Chem. Soc. 2007,129, 11322-11323.
    [52] Zhu, M.; Eckenhoff, W. T.; Pintauer, T.; Jin, R. Conversion of anionic [Au_(25)(SCH_2CH_2Ph)_(18)]~- cluster to charge neutral cluster via air oxidation, J. Phys. Chem. C 2008,112, 14221-14224.
    [53] Zhu, M.; Aikens, C. M.; Hendrich, M. P.; Gupta, R.; Qian, H.; Schatz, G. C.; Jin, R. Reversible switching of magnetism in thiolate-protected Au-(25) superatoms, J. Am. Chem. Soc. 2009,131, 2490-2492.
    [54] Xie, J.; Zheng, Y.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters, J. Am. Chem. Soc. 2009,131, 888-889.
    [55] El-Sayed, M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 2001, 34, 257-264.
    [56] Daniel, M. -C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 2004,104, 293-346.
    [57] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. 5 2003, 707,668-677.
    [58] Henglein, A. Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev. 1989, 89, 1861-1873.
    [59] Haes, A. J.; Stuart, D. A.; Nie, S.; Van Duyne, R. P. Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms, J. Fluoresc. 2004,14, 355-367.
    [60] Murphy, C. J.; Gole, A. M.; Hunyadi, S. E.; Stone, J. W.; Sisco, P. N.; Alkilany, A.; Kinard, B. E.; Hankins, P. Chemical sensing and imaging with metallic nanorods, Chem. Commun. 2008, 544-557.
    [61] Hostetler, M. J.; Wingate, J. E.; Zhong, C. -J.; Harris, J. E.; Vachet, R. W.; Clark, M. R.; Londono, J. D.; Green, S. J.; Stokes, J. J.; Wignall, G. D.; Glish, G. L.; Porter, M. D.; Evans, N. D.; Murray, R. W. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size, Langmuir 1998, 14, 17-30.
    [62] Njoki, P. N.; Lim, I-I. S.; Mott, D.; Park, H. -Y.; Khan, B.; Mishra, S.; Sujakumar, R.; Luo, J.; Zhong, C. -J. Size correlation of optical and spectroscopic properties for gold nanoparticles, J. Phys. Chem. C 2007, 111, 14664-14669.
    [63] Link, S.; Beeby, A.; FitzGerald, S.; El-Sayed, M. A.; Schaaff, T. G.; Whetten, R. L. Visible to infrared luminescence from a 28-Atom gold cluster, J. Phys. Chem. B 2002, 106, 3410-3415.
    [64] Huang, C. -C.; Yang, Z.; Lee, K. -H.; Chang, H. -T. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(Ⅱ), Angew. Chem. Int. Ed. 2007, 46, 6824-6828.
    [65] Shiang, Y. -C.; Huang, C. -C.; Chang, H. -T. Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose, Chem. Commun. 2009, 3437-3439.
    [66] Huang, C. -C.; Chiang, C. -K.; Lin, Z. -H.; Lee, K. -H.; Chang, H. -T. Bioconjugated gold nanodots and nanoparticles for protein assays based on photoluminescence quenching, Anal. Chem. 2008, 80, 1497-1504.
    [67] Huang, C. -C.; Chen, C. -T.; Shiang, Y. -C.; Lin, Z. -H.; Chang, H. -T. Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of concanavalin A and Escherichia coli, Anal. Chem. 2009, 81,875-882.
    [68] Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S. H.; Banin, U. Efficient near-infrared polymer nanocrystal light-emitting diodes, Science 2002, 295, 1506-1508.
    [69] Coe, S.; Woo, W. -K.; Bawendi, M.; Bulovi(?), V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature 2002, 420, 800-803.
    [70] Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. Optical gain and stimulated emission in nanocrystal quantum dots, Science 2000, 290, 314-317.
    [71] Wang, C.; Wehrenberg, B. L.; Woo, C. Y.; Guyot-Sionnest, P. Light emission and amplification in charged CdSe quantum dots, J. Phys. Chem. B 2004, 108, 9027-9031.
    [72] Nozik, A. J. Quantum dot solar cells, Physica E 2002,14, 115-120.
    [73] Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution, Science 2005, 310,462-465.
    [74] Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics, Science 2005, 307, 538-544.
    [75] Mulder, W. J. M.; Koole, R.; Brandwijk, R. J.; Storm, G; Chin, P. T. K.; Strijkers, G. J.; Mello Donega, C. de; Nicolay, K.; Griffioen, A. W. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe, Nano Lett. 2006, 6, 1-6.
    [76] Costa-Fernandez, J. M.; Pereiro, R.; Sanz-Medel, A. The use of luminescent quantum dots for optical sensing, Trends in Anal. Chem. 2006, 25, 207-218.
    [77] Costa-Fernandez, J. M. Optical sensors based on luminescent quantum dots, Anal. Bioanal. Chem. 2006, 384, 37-40.
    [78] Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys. 1984, 80,4403-4409.
    [79] Brus, L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites,J. Chem. Phys. 1983, 79, 5566-5571.
    [80] Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture, Nano Lett. 2001, 1, 207-211.
    [81] Soloviev, V. N.; Eichhofer, A.; Fenske, D.; Banin, U. Molecular limit of a bulk semiconductor: Size dependence of the "Band Gap" in CdSe cluster molecules, J. Am. Chem. Soc. 2000,122, 2673-2674.
    [82] Dabbousi, B. O.; Rodriguez, V. J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.;Ober, R.; Jensen, K. R; Bawendi, M. G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites, J. Phys. Chem. B 1997,101, 9463-9475.
    [83] Chestnoy, N.; Harris, T. D.; Hull, R.; Brus, L. E. Luminescence and photophysics of CdS Semiconductor Clusters: The nature of the emitting electronic state, J. Phys. Chem. 1986, 90, 3393-3399.
    [84] Henglein, A. Photochemistry of colloidal cadmium sulfide. 2. Effects of adsorbed methyl viologen and of colloidal platinum, J. Phys. Chem. 1982, 86, 2291-2293.
    [85] Rossetti, R.; Nakahara, S.; Brus, L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution,.J. Chem. Phys. 1983, 79, 1086-1088.
    [86] Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. Photochemistry of colloidal semiconductors. 20. surface modification and stability of strong luminescing CdS particles, J. Am. Chem. Soc. 1987,109, 5649-5655.
    [87] Kortan, A. R.; Hull, R.; Opila, R. L.; Bawendi, M. G.; Steigerwald, M. L.; Carroll, P. J.; Brus, L. E. Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media, J. Am. Chem. Soc. 1990, 112, 1327-1332.
    [88] Steigerwald, M. L.; Alivisatos, A. P.; Gibson, J. M.; Harris, T. D.; Kortan, R.; Muller, A. J.; Thayer, A. M.; Duncan, T. M.; Douglass, D. C; Brus, L. E. Surface derivatization and isolation of semiconductor cluster molecules, J. Am. Chem. Soc. 1988,110, 3046-3050.
    [89] Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc. 1993,115, 8706-8715.
    [90] Peng, Z. A.; Peng, X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor, J. Am. Chem. Soc. 2001,123, 183-184.
    [91] Qu, L.; Peng, X. Control of photoluminescence properties of CdSe nanocrystals in growth, J. Am. Chem. Soc. 2002,124, 2049-2055.
    [92] Hines, M. A.; Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals, J. Phys. Chem. 1996,100, 468-471.
    [93] Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility, J. Am .Chem. Soc. 1997,119, 7019-7029.
    [94] Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots, Nano Lett. 2004, 4,11-18.
    [95] Kirchner, C.; Liedl, T.; Kudera, S.; Pellegrino, T.; Javier, A. M.; Gaub, H. E.; Stolzle, S.; Fertig, N.; Parak, W. J. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles, Nano Lett. 2005, 5, 331-338.
    [96] Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels, Science 1998, 281, 2013-2016.
    [97] Chan, W. C. W.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science 1998,281, 2016-2018.
    [98] Qu, L.; Peng, Z. A.; Peng, X. ZnO nanobridges and nanonails, Nano Lett. 2001, 7, 333-337.
    [99] Talapin, D. V.; Rogach, A. L.; Mekis, I.; Haubold, S.; Kornowski, A.; Haase, M.; Weller, H. Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals, Colloids urf. A 2002, 202, 145-154.
    [100] Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein, J. Am. Chem. Soc. 2000,122, 12142-12150.
    [101] Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots, J. Phys. Chem. B 2001,105, 8861- 8871.
    [102] Wu, X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale, F.; Bruchez, M. P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots, Nat. Biotechnol. 2003, 21, 41-46.
    [103] Chemseddine, A.; Weller, H. Highly monodisperse quantum sized CdS particles by size selective precipitation, Ber. Bunsen-Ges. Phys. Chem. 1993, 97, 636-637.
    [104] Vossmeyer, T.; Katsikas, L.; Gienig, M; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmiiller, A.; Weller, H. CdS nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift, J. Phys. Chem. 1994, 98, 7665-7673.
    [105] Rogach, A. L.; Katsikas, L.; Kornowski, A.; Su, D.; Eychm(?)ller, A.; Weller, H. Synthesis and characterization of thiol-stabilized CdTe nanocrystals, Ber. Bunsen-Ges. Phys. Chem. 1996,100, 1772-1778.
    [106] Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychm(?)ller, A.; Welle, H. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes, J. Phys. Chem. B 2002, 106, 7177-7185.
    [107] Rogach, A. L.; Kornowski, A.; Gao, M. Y.; Eychmuller, A.; Weller, H. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals, J. Phys. Chem. B 1999,103, 3065- 3069.
    [108] Cintas, P. Tracing the origins and evolution of chirality and handedness in chemical language, Angew. Chem. Int. Ed. 2007, 46, 4016-4024.
    [109] Sheldon, R. A. Chirotechnology, Dekker: New York 1993.
    [110] Shriver, D. F.; Atkins, P. W.; Langford, C. H. Inorganic Chemistry, 2nd ed.; Oxford University Press: Oxford, 1994.
    [111] Nanda, V.; Andrianarijaona, A.; Narayanan, C. The role of protein homochirality in shaping the energy landscape of folding, Protein Sci. 2007,16, 1667-1675.
    [112] Zhang, J.; Chen, Y.; Chen, R.; Liang, J. Importance of chirality and reduced flexibility of protein side chains: A study with square and tetrahedral lattice models, J. Chem. Phys. 2004,121, 592-603.
    [113] Gerber, D.; Shai, Y. Chirality-independent protein-protein recognition between transmembrane domains in vivo, J. Mol. Biol. 2002, 322, 491-495.
    [114] Toxvaerd, S. Origin of homochirality in biological systems, Int. J. Astrobiology,2005, 4,43-48.
    [115] Seebach, D.; Beck, A. K.; Bierbaum, D. J. The world of β- and γ-peptides comprised of homologated proteinogenic amino acids and other components, Chem. Biodiversity 2004, 1 , 1111-1239.
    [116] Seebach, D.; Hook, D. F.; Gla|¨ttli, A. Helices and other secondary structures of β- and γ-peptides, Biopolymers 2006, 84, 23-37.
    [117] Droge, W.; Holm, E. Role of cysteine and glutathione in HIV infection and other diseases associated with muscle wasting and immunological dysfunction, FASEB J. 1997, 11, 1077-1089.
    [118] Zafarullaha, M.; Li, W. Q.; Sylvester, J.; Ahmad, M. Molecular mechanisms of N -acetylcysteine actions, Cell. Mol. Life Sci. 2003, 60, 6-20.
    [119] Shahrokhian, S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode, Anal. Chem. 2001, 73, 5972-5978.
    [120] Wang, X. F.; Cynader, M. S. Pyruvate released by astrocytes protects neurons from copper-catalyzed cysteine neurotoxicity, J. Neurosci. 2001, 21, 3322-3331.
    [121] Jan(?)ky, R.; Varga, V.; Hermann, A.; Saransaari, P.; Oja, S. S. Mechanisms of L-cysteine neurotoxicity, Neurochem. Res. 2000, 25, 1397-1405.
    [122] Puka-Sundvall, M.; Eriksson, P.; Nilsson, M.; Sandberg, M.; Lehmann, A. Neurotoxicity of cysteine: Interaction with glutamate, Brain Res. 1995, 705, 65-70.
    [123] Goodman, M. T.; McDuffie, K.; Hernandez, B.; Wilkens, L. R.; Selhub, J. Case-control study of plasma folate, homocysteine, vitamin B_(12), and cysteine as markers of cervical dysplasia, Cancer 2000, 89, 376-382.
    [124] Liu, J.; Yeo, H. C.; O|¨vervik-Douki, E.; Hagen, T.; Doniger, S. J.; Chu, D. W.; Brooks, G. A.; Ames, B. N. Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants, J. Appl. Physiol. 2000, 89, 21-28.
    [125] Soutourina, J.; Blanquet, S.; Plateau, P. Role of D-Cysteine desulfhydrase in the adaptation of escherichia coli to D-cysteine, J. Biol. Chem. 2001, 276, 40864-40872.
    [126] Nagasawa, T.; Ishii, T.; Yamada, H. Physiological comparison of D-cysteine desulfhydrase of Escherichia coli with 3-chloro-o-alanine dehydrochlorinase of Pseudomonas putida CR 1-1,Arch. Microbiol. 1988, 149, 413-416.
    [127] Zhang, M.; Yu, M.; Li, F.; Zhu, M.; Li, M.; Gao, Y.; Li, L.; Liu, Z.; Zhang, J.; Zhang, D.; Yi, T.; Huang, C. A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine, J. Am. Chem. Soc. 2007, 129, 10322-10323.
    [128] Lee, K. -S.: Kim, T. -K.; Lee, J. H.; Kim, H. -J.; Hong, J. -I. Fluorescence turn-on probe for homocysteine and cysteine in water, Chem. Commun. 2008, 6173-6175.
    [129] Tanaka, F.; Mase, N.; Barbas Ⅲ, C. F. Determination of cysteine concentration by fluorescence increase: Reaction of cysteine with a fluorogenic aldehyde, Chem. Commun. 2004, 1762-1763.
    [130] Shao, N.; Jin, J. Y.; Cheung, S. M.; Yang, R. H.; Chan, W. H.; Mo, T. A spiropyran-based ensemble for visual recognition and quantification of cysteine and homocysteine at physiological levels, Angew. Chem. Int. Ed. 2006, 45, 4944-4948.
    [131] Wang, W.; Rusin, O.; Xu, X.; Kim, K. K.; Escobedo, J. O.; Fakayode, S. O.;Fletcher, K. A.; Lowry, M.; Schowalter, C. M.; Lawrence, C. M.; Fronczek, F. R.; Warner, I. M.; Strongin, R. M. Detection of homocysteine and cysteine, J. Am. Chem. Soc. 2005,127,15949-15958.
    [132] Wang, W.; Escobedo, J. O.; Lawrence, C. M.; Strongin, R. M. Direct detection of homocysteine, J. Am. Chem. Soc. 2004,126, 3400-3401.
    [133] Rusin, O.; Luce, N. N. St.; Agbaria, R. A.; Escobedo, J. O.; Jiang, S.; Warner, I.M.; Dawan, F. B.; Lian, K.; Strongin, R. M. Visual detection of cysteine and homocysteine, J. Am. Chem. Soc. 2004,126, 438-439.
    [134] Li, S. -H.; Yu, C. -W.; Xu, J. -G. A cyclometalated palladium-azo complex as a differential chromogenic probe for amino acids in aqueous solution, Chem. Commun. 2005, 450-452.
    [135] Kim, T. -K.; Lee, D. -N.; Kim, H. -J. Highly selective fluorescent sensor for homocysteine and cysteine, Tetrahedron Lett. 2008, 49,4879-4881.
    [136] Zhang, D.; Zhang, M.; Liu, Z.; Yu, M.; Li, F.; Yi, T.; Huang, C. Highly selective colorimetric sensor for cysteine and homocysteine based on azo derivatives, Tetrahedron Lett. 2006, 47, 7093-7096.
    [137] Zeng, Y.; Zhang, G.; Zhang, D.; Zhu, D. A dual-function colorimetric chemosensor for thiols and transition metal ions based on ICT mechanism, Tetrahedron Lett. 2008, 49, 7391-7394.
    [138] Zeng, Y.; Zhang, G.; Zhang, D. A selective colorimetric chemosensor for thiols based on intramolecular charge transfer mechanism, Anal. Chim. Acta 2008, 627, 254-257.
    [139] Zhang, X.; Ren, X.; Xu, Q. -H.; Loh, K. P.; Chen, Z. -K. One- and two-photon turn-on fluorescent probe for cysteine and homocysteine with large emission shift, Org. Lett. 2009,11, 1257-1260.
    [140] Lin, W.; Long, L.; Yuan, L.; Cao, Z.; Chen, B.; Tan, W. A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission shift, Org. Lett. 2008, 10, 5577-5580.
    [141] Duan, L.; Xu, Y.; Qian, X.; Wang, F.; Liu, J.; Cheng, T. Highly selective fluorescent chemosensor with red shift for cysteine in buffer solution and its bioimage: Symmetrical naphthalimide aldehyde, Tetrahedron Lett. 2008, 49, 6624-6627.
    [142] Lin, W.; Yuan, L.; Cao, Z.; Feng, Y.; Long, L. A sensitive and selective fluorescent thiol probe in water based on the conjugate 1, 4-addition of thiols to α, β-unsaturated ketones, Chem. Eur. J. 2009,15, 5096-5103.
    [143] Sudeep, P. K.; Joseph, S. T. S.; Thomas, K. G. Selective detection of cysteine and glutathione using gold nanorods, J. Am. Chem. Soc. 2005,127, 6516-6517.
    [144] Lee, J. -S.; Ulmann, P. A.; Han, M. S.; Mirkin, C. A. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine, Nano Lett. 2008, 8, 529-533.
    [145] Shimada. T.; Ookubo, K.; Komuro, N.; Shimizu, T.; Uehara, N. Blue-to-red chromatic sensor composed of gold nanoparticles conjugated with thermoresponsive copolymer for thiol sensing, Langmuir 2007, 23, 11225-1232.
    [146] Lu, C.; Zu, Y. Specific detection of cysteine and homocysteine: recognizing onemethylene difference using fluorosurfactant-capped gold nanoparticles, Chem. Commun. 2007, 3871-3873.
    [147] Shang, L.; Qin, C.; Wang, T.; Wang, M.; Wang, L.; Dong, S. Fluorescent conjugated polymer-stabilized gold nanoparticles for sensitive and selective detection of cysteine, J. Phys. Chem. C 2007, 111, 13414-13417.
    [148] Lu, C.; Zu, Y.; Yam, V. W -W. Specific postcolumn detection method for HPLC assay of homocysteine based on aggregation of fluorosurfactant-capped gold nanoparticles, Anal. Chem. 2007, 79,666-672.
    [149] Shang, L.; Dong, S. Sensitive detection of cysteine based on fluorescent silver clusters, Biosens. Bioelectron. 2009,24,1569-1573.
    [150] Lim, I-I. S.; Mott, D.; Engelhard, M. H.; Pan, Y.; Kamodia, S.; Luo, J.; Njoki, P. N.; Zhou, S.; Wang, L.; Zhong, C. J. Interparticle chiral recognition of enantiomers: a nanoparticle-based regulation strategy, Anal. Chem. 2009, 57, 689-698.
    [151] Kuhnle, A.; Linderoth, T. R.; Hammer, B.; Besenbacher, F. Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunneling microscopy, Nature 2002,475,891-893.
    [152] Bri(?)as, R. P.; Hu, M.; Qian, L.; Lymar, E. S.; Hainfeld, J. F. Gold nanoparticle size controlled by polymeric Au(Ⅰ) thiolate precursor size, J. Am. Chem. Soc. 2008, 130, 975-982.
    [153] Zhu, M.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. Kinetically controlled, high-yield synthesis of Au_(25) clusters, J. Am. Chem. Soc. 2008,130, 1138-1139.
    [154] Corbierre, M. K.; Lennox, R. B. Preparation of thiol-capped gold nanoparticles by chemical reduction of soluble Au(Ⅰ)-thiolates, Chem. Mater. 2005,17, 5691-5696.
    [155] Sandhyarani, N.; Resmi, M. R.; Unnikrishnan, R.; Vidyasagar, K.; Ma, S.;Antony, M P.; Selvam, G. P.; Visalakshi, V.; Chandrakumar, N.; Pandian, K.; Tao, Y.-T.; Pradeep, T. Monolayer-protected cluster superlattices: structural, spectroscopic, calorimetric, and conductivity studies, Chem. Mater. 2000,12, 104-113.
    [156] Zhang, J.; Geddes, C. D.; Lakowicz, J. R. Complexation of polysaccharide and monosaccharide with thiolate boronic acid capped on silver nanoparticle, Anal.Biochem. 2004, 332, 253-260.
    [157] Pradeep, T.; Mitra, S.; Nair, A. S.; Mukhopadhyay, R. Dynamics of alkyl chains in monolayer-protected Au and Ag clusters and silver thiolates: A comprehensive quasielastic neutron scattering investigation, J. Phys. Chem. B 2004, 705, 7012-7020.
    [158] Rosemary, M. J.; Pradeep, T. Solvothermal synthesis of silver nanoparticles from thiolates, J. Colloid Interface Sci. 2003, 268, 81-84.
    [159] Ang, T. P.; Wee, T. S. A.; Chin, W. S. Three-dimensional self-assembled monolayer (3D SAM) of n-alkanethiols on copper nanoclusters, J. Phys. Chem. B 2004,705,11001-11010.
    [160] Yao, H.; Miki, K.; Nishida, N.; Sasaki, A.; Kimura, K. Large optical activity of gold nanocluster enantiomers induced by a pair of optically active penicillamines, J. Am. Chem. Soc. 2005,127, 15536-15543.
    [161] Schaaff, T. G.; Whetten, R. L. Giant gold-glutathione cluster compounds: Intense optical activity in metal-based transitions, J. Phys. Chem. B 2000, 704,2630-2641.
    [162] Gautier, C.; Biirgi, T. Chiral N-isobutyryl-cysteine protected gold nanoparticles: preparation, size selection, and optical activity in the UV-vis and Infrared, J. Am. Chem. Soc. 2006,128, 11079-11087.
    [163] Tamura, M.; Fujihara, H. Chiral bisphosphine BINAP-stabilized gold and palladium nanoparticles with small size and their palladium nanoparticle-catalyzed asymmetric Reaction, J. Am. Chem. Soc. 2003,125, 15742-15743.
    [164] Nishida, N.; Yao, H.; Kimura, K. Chiral functionalization of optically inactive monolayer-protected silver nanoclusters by chiral ligand-exchange reactions, Langmuir 2008, 24, 2759-2766.
    [165] Nishida, N.; Yao, H.; Ueda, T.; Sasaki, A.; Kimura, K. Synthesis and chiroptical study of d/l-penicillamine-capped silver nanoclusters, Chem. Mater. 2007, 19, 2831-2841.
    [166] Gautier, C. Biirgi, T. Chiral gold nanoparticles, ChemPhysChem 2009, 10,483-492.
    [167] Kitaev, V. Chiral nanoscale building blocks-from understanding to applications, J. Mater. Chem. 2008,18, 4745-4749.
    [168] Dance, I. G.; Fisher, K. J.; Banda, R. M. H.; Scudder, M. L. Layered structure of crystalline compounds silver thiolates (AgSR), Inorg. Chem. 1991, 30, 183-187.
    [169] Fijolek, H. G.; Gonzalez-Duarte, P.; Park, S. H.; Suib, S. L.; Natan, M. J. Structure-spectroscopy correlations in silver thiolates: Application to the structure of silver 1,5-pentanedithiolate, Inorg. Chem. 1997, 36, 5299-5305.
    [170] Bensebaa, F.; Ellis, T. H.; Kruus, E.; Voicu, R.; Zhou, Y. Characterization of self-assembled bilayers: Silver-alkanethiolates, Langmuir 1998,14, 6579-6587.
    [171] Andersson, L. -O. Study of some silver-thiol complexes and polymers: Stoichiometry and optical effects, J. Ploym. Sci: PartA-1 1972,10, 1963-1973.
    [172] Tang, K.; Yang, J.; Yang, Q.; Tang, Y. Insertion of CS_2 into Ag-S bonds. Preparations and crystal structures of [{[Ag(SC_6H-2Pr~i_3-2,4,6)]_4·CHCl_3}_n] and its insertion product with CS_2, [{Ag(S-2CSC_6H_2Pr~i_3-2,4,6)}2{Ag(SC_6H_2Pr~i_3-2,4,6)}_6]·8CHCl3, J. Chem. Soc. Dalton Trans. 1989, 2297-2302.
    [173] Jin, X.; Xie, X.; Qian, H.; Tang, K.; Liu, C.; Wang, X.; Gong, Q. Synthesis and crystal structure of a novel decanuclear silver cluster complex [Ag(SC_6H_2Pr~i_3-2,4,6)]_(10)-2CHCl_3-C_2H_5OH, Chem. Commun. 2002, 600-601.
    [174] Habibi, D.; Ghaemi, E.; Parish, R. V.; Pritchard, R. G. A polymeric silver(Ⅰ) thiolate with diverse co-ordination numbers: [{AgSCH_2CH_2NMe_2}_5·0.5H_2O]_n, Polyhedron 1999,18,2977-2979.
    [175] Bensebaa, F.; Zhou, Y.; Deslandes, Y.; Kruus, E.; Ellis, T. H. XPS study of metal-sulfur bonds in metal-alkanethiolate materials, Surf. Sci. 1998, 405, L472-L476.
    [176] Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M. DNA-templated Ag nanocluster formation, J. Am. Chem. Soc. 2004,126, 5207-5212.
    [177] Ritchie, C. M.; Johnsen, K. R.; Kiser, J. R.; Antoku, Y.; Dickson, R. M.; Petty, J. T. Ag nanocluster formation using a cytosine oligonucleotide template, J. Phys. Chem. C 2007, 111, 175-181.
    [178] Zheng, J.; Petty, J. T.; Dickson, R. M. High quantum yield blue emission from water-soluble Au_8 nanodots, J. Am. Chem. Soc. 2003,125, 7780-7781.
    [179] Narayanaswamy, R.; Young, M. A.; Parkhurst, E.; Ouellette, M.; Kerr, M. E.; Ho, D. M.; Elder, R. C.; Bruce, A. E.; Bruce, M. R. M. Synthesis, structure, and electronic spectroscopy of neutral, dinuclear gold(Ⅰ) complexes. Gold(Ⅰ)-gold(Ⅰ) interactions in solution and in the solid state, Inorg. Chem. 1993, 32, 2506-2517.
    [180] Yam, V. W. -W.; Cheng, E. C. -C; Zhou, Z. -Y A highly soluble luminescent decanuclear gold(Ⅰ) complex with a propeller-shaped structure, Angew. Chem. Int. Ed. 2000,39,1683-1685.
    [181] Yam, V. W. -W.; Cheng, E. C. -C.; Cheung, K. -K. A novel high-nuclearity luminescent gold(T)-sulfido complex, Angew. Chem. Int. Ed. 1999, 38, 197-199.
    [182] Yam, V. W. -W.; Chan, C. -L.; Li, C. -K.; Wong, K. M. -C. Molecular design of luminescent dinuclear gold(I) thiolate complexes: From fundamentals to chemosensing, Coord. Chem. Rev. 2001, 216-217, 173-194.
    [183] Guyon, F.; Hameau, A.; Khatyr, A.; Knorr, M.; Amrouche, H.; Fortin, D.; Harvey, P. D.; Strohmann, C.; Ndiaye, A. L.; Huch, V.; Veith, M.; Avarvari, N. Syntheses, structures, and photophysical properties of mono- and dinuclear sulfur-rich gold(Ⅰ) complexes, Inorg. Chem. 2008, 47, 7483-7492.
    [184] Che, C. -M.; Tse, M. -C.; Chan, M. -C. W.; Cheung, K. -K.; Phillips, D. -L.; Leung, K. -H. Spectroscopic evidence for argentophilicity in structurally characterized luminescent binuclear silver(Ⅰ) complexes, J. Am. Chem. Soc. 2000,122,2464-2468.
    [185] Forward, J. M.; Assefa, Z.; Fackler, Jr., J. P. Photoluminescence of gold(Ⅰ) phosphine complexes in aqueous solution, J. Am. Chem. Soc. 1995,117, 9103-9104.
    [186] Jacobsen, D. W. Homocysteine and vitamins in cardiovascular disease, Clin. Chem. 1998, 44,1833-1843.
    [187] Rasmussen, K.; M(?)ller, J. Total homocysteine measurement in clinical practice, Ann. Clin. Biochem. 2000, 37, 627-648.
    [188] Kabir, S. R.; Yokoyama, K.; Mihashi, K.; Kodama, T.; Suzuki, M. Hyper-mobile water is induced around actin filaments, Biophys. J. 2003, 85, 3154-3161.
    [189] Maeda, H. Anion-responsive supramolecular gels, Chem. Eur. J. 2008, 14, 11274-11282.
    [190] Martinez-Manez, R.; Sancenon,F. Fluorogenic and chromogenic chemosensors and reagents for anions, Chem. Rev. 2003,103,4419-4476.
    [191] C. Suksai, T. Tuntulani, Chromogenic Anion Sensors, Chem. Soc. Rev. 2003, 32,192-202.
    [192] Bell, T. W.; Hext, N. M. Supramolecular optical chemosensors for organic analytes, Chem. Soc. Rev. 2004, 33, 589-598.
    [193] Gale, P. A.; Quesada, R. Anion Coordination and anion-templated assembly: Highlights from 2002 to 2004, Coord. Chem. Rev. 2006, 250, 3219-3244.
    [194] Katayev, E. A.; Ustynyuk, Y. A.; Sessler, J. L. Receptors for tetrahedral oxyanions, Coord. Chem. Rev. 2006, 250, 3004-3037.
    [195] Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors, Coord. Chem. Rev. 2006, 250, 3094-3117.
    [196] Gale, P. A.; Garcia-Garrido, S. E. J. Garric, Anion receptors based on organic frameworks: Highlights from 2005 and 2006, Chem. Soc. Rev. 2008, 37, 151-190.
    [197] Rodriguez-Docampo, Z.; Pascu, S. I.; Kubik, S.; Otto, S. Noncovalent interactions within a synthetic receptor can reinforce guest binding, J. Am. Chem. Soc. 2006,725,11206-11210.
    [198] Li, H.; Han, C.; Zhang, L. Synthesis of cadmium selenide quantum dots modified with thiourea type ligands as fluorescent probes for iodide ions, J. Mater. Chem. 2008,18, 4543-4548.
    [199] Kim, H.; Kang, J. Iodide selective fluorescent anion receptor with two methylene bridged bis-imidazolium rings on naphthalene, Tetrahedron Lett. 2005, 46, 5443.5445.
    [200] Singh, N.; Jang, D. O. Benzimidazole-based tripodal receptor: Highly selective fluorescent chemosensor for iodide in aqueous solution, Org. Lett. 2007, 9, 1991-1994.
    [201] Singh, N.; Jung, H. J.; Jang, D. O. Cu(Ⅱ) complex of a flexible tripodal receptor as a highly selective fluorescent probe for iodide, Tetrahedron Lett. 2009, 50,71-74.
    [202] Beer, P. D.; Cooper, J. B. Alkali metal cation cooperative iodide anion recognition by new heteroditopic bis(calix[4]arene) rhenium(Ⅰ) bipyridyl receptor molecules, Chem. Commun. 1998, 129-130.
    [203] Ghosh, K.; Sen, T. Adenine-based urea receptors in fluorescent recognition of iodide, Tetrahedron Lett. 2008, 49, 7204-7208.
    [204] Okamoto, H.; Konishi, H.; Kohno, M.; Satake, K. Fluorescence response of a 4-Trifluoroacetylaminophthalimide to iodide ions upon 254 nm irradiation in MeCN, Org. Lett. 2008,10, 3125-3128.
    [205] Yang, Z.; Liang, G.; Ma, M.; Abbah, A. S.; Lu, W. W.; Xu, B. D-Glucosamine-based supramolecular hydrogels to improve wound healing, Chem. Commun. 2007, 843-845.
    [206] Ulijn, R. V.; Bibi, N.; Jayawarna, V.; Thornton, P. D.; Todd, S. J.; Mart, R. J.; Smith, A. M.; Gough, J. E. Bioresponsive hydrogels, Materialstoday 2007,10,40-48.
    [207] Hendrichson, G. R.; Lyon, L. A. Bioresponsive hydrogels for sensing applications, Soft Matter 2009, 5, 29-35.
    [208] Sangeetha, N. M.; Maitra, U. Supramolecular gels: Functions and uses, Chem. Soc.Rev. 2005,34,821-836.
    [209] Zhou, S. -L.; Matsumoto, S.; Tian, H. -D.; Yamane, H.; Ojida, A.; Kiyonaka, S.; Hamachi, I. pH-Responsive shrinkage/swelling of a supramolecular hydrogel composed of two small amphiphilic molecules, Chem. Eur. J. 2005,11,1130-1136.
    [210] Shome, A.; Debnath, S.; Das, P. K. Head group modulated pH-responsive hydrogel of amino acid-based amphiphiles: Entrapment and release of cytochrome c and Vitamin B_(12), Langmuir 2008, 24,4280-4288.
    [211] Shankar, B. V.; Patnaik, A. A new pH and thermo-responsive chiral hydrogel for stimulated release, J. Phys. Chem. B 2007, 111, 9294-9300.
    [212] Kiyonaka, S.; Sugiyasu, K.; Shinkai, S.; Hamachi, I. First thermally responsive supramolecular polymer based on glycosylated amino acid, J. Am. Chem. Soc. 2002, 124, 10954-10955.
    [213] Hirst, A. R.; Miravet, J. F.; Escuder, B.; Noirez, L.; Castelletto, V.; Hamley, I. W.; Smith, D. K. Self-assembly of two-component gels: Stoichiometric control and component selection, Chem. Eur. J. 2009, 75, 372-379.
    [214] Matsumoto, S.; Yamaguchi, S.; Wada, A.; Matsui, T.; Ikeda, M.; Hamachi, I. Photo-responsive gel droplet as a nano- or pico-litre container comprising a supramolecular hydrogel, Chem. Commun. 2008, 1545-1547.
    [215] Matsumoto, S.; Yamaguchi, S.; Ueno, S.; Komatsu, H.; Ikeda, M.; Ishizuka, K.; Iko, Y.; Tabata, K. V.; Aoki, H.; Ito, S.; Noji, H.; Hamachi, I. Photo Gel-Sol/Sol-Gel transition and its patterning of a supramolecular hydrogel as stimuli-responsive biomaterials, Chem. Eur. J. 2008,14, 3977-3986.
    [216] Deng, W.; Yamaguchi, H.; Takashima, Y.; Harada, A. Construction of chemical-responsive supramolecular hydrogels from guest-modified cyclodextrins, Chem. Asian J. 2008, 3, 687-695;
    [217] Deng, W.; Yamaguchi, H.; Takashima, Y.; Harada, A. A chemical-responsive supramolecular hydrogel from modified cyclodextrins, Angew. Chem. Int. Ed. 2007, 46, 5144-5147.
    [218] Khatua, D.; Maiti, R.; Dey, J. A supramolecular hydrogel that responds to biologically relevant stimuli, Chem. Commun. 2006, 4903-4905.
    [219] Xing, B.; Yu, C. -W.; Chow, K. -H.; Ho, P. -L.; Fu, D.; Xu, B. Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: A potential candidate for biomaterials, J. Am. Chem. Soc. 2002,124, 14846-14847.
    [220] Yuan, W.; Yang, J.; Kopeckova, P.; Kopecek, J. Smart hydrogels containing adenylate kinase: Translating substrate recognition into macroscopic motion, J. Am. Chem. Soc. 2008,130, 15760-15761.
    [221] Yang, Z.; Ho, P. -L.; Liang, G.; Hung K.; Wang, C. Q.; Cao, Y.; Guo, Z.; Xu, B. Using β-Lactamase to trigger supramolecular hydrogelation, J. Am. Chem. Soc. 2007, 129, 266-267.
    [222] Yang, Z.; Xu, B. A simple visual assay based on small molecule hydrogels for detecting inhibitors of enzymes, Chem. Commun. 2004, 2424-2425.
    [223] Zhang, Y.; Gu, H.; Yang, Z.;Xu, B. Supramolecular hydrogels respond to ligand-receptor interaction, J. Am. Chem. Soc. 2003,125, 13680-13681.
    [224] Zhang, Y.; Yang, Z.; Yuan, F.; Gu, H.; Gao, P.; Xu, B. Molecular recognition remolds the self-assembly of hydrogelators and increases the elasticity of the hydrogel by 10~6-Fold, J. Am. Chem. Soc. 2004,126, 15028-15029.
    [225] Yang, Z.; Xu, B. Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules,./ Mater. Chem. 2007,17, 2385-2393.
    [226] Liu, Q.; Wang, Y.; Li, W; Wu, L. Structural characterization and chemical response of a Ag-coordinated supramolecular gel, Langmuir 2007, 23, 8217-8223.
    [227] Yang, H.; Yi, T.; Zhou, Z.; Zhou, Y.; Wu, J.; Xu, M.; Li, F.; Huang, C. Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives, Langmuir 2007, 23, 8224-8230.
    [228] Yamanaka, M.; Nakamura, T.; Nakagawa, T.; Itagaki, H. Reversible sol-gel transition of a tris-urea gelator that responds to chemical stimuli, Tetrahedron Lett. 2007, 48, 8990-8993.
    [229] Stanley, C. E.; Clarke, N.; Anderson, K. M.; Elder, J. A.; Lenthall, J. T.; Steed, J. W. Anion binding inhibition of the formation of a helical organogel, Chem. Commun. 2006, 3199-3201.
    [230] Wang, C.; Zhang, D.; Zhu, D. A chiral low-molecular-weight gelator based on binaphthalene with two urea moieties: Modulation of the CD spectrum after gel formation, Langmuir 2007, 23, 1478-1482.
    [231] Maeda, H.; Haketa, Y.; Nakanishi, T. Aryl-substituted C3-bridged oligopyrroles as anion receptors for formation of supramolecular organogels, J. Am. Chem. Soc. 2007, 129, 13661-13674.
    [232] D(?)oli(?), Z.; Cametti, M.; Cort, A. D.; Mandolini, L.; (?)ini(?), M. Fluoride-responsive organogelator based on oxalamide-derived anthraquinone, Chem. Commun. 2007, 3535-3537.
    [233] Kim, H. -J.; Lee, J. -H.; Lee, M. Stimuli-responsive gels from reversible coordination polymers, Angew. Chem. Int. Ed. 2005, 44, 5810-5814.
    [234] Kim, T. H.; Choi, M. S.; Sohn, B. -H.; Park, S. -Y.; Lyoo, W. S.; Lee, T. S. Gelation-induced fluorescence enhancement of benzoxazole-based organogel and its naked-eye fluoride detection, Chem. Commun. 2008, 2364-2366.
    [235] Webb, J. E. A.; Crossley, M. J.; Turner, P.; Thordarson, P. Pyromellitamide aggregates and their response to anion stimuli, J. Am. Chem. Soc. 2007, 129, 7155-7162.
    [236] Piepenbrock, M. -O. M.; Lloyd, G. O.; Clarke, N.; Steed, J. W. Gelation is crucially dependent on functional group orientation and may be tuned by anion binding, Chem. Commun. 2008, 2644-2646.
    [237] Becker, T.; Goh, C. Y.; Jones, F.; McIldowie, M. J.; Mocerino, M.; Ogden, M. I. Proline-functionalised calix[4]arene: an anion-triggered hydrogelator, Chem. Commun. 2008, 3900-3902.
    [238] Yamaguchi, S.; Yoshimura, I.; Kohira, T.; Tamaru, S.-i.; Hamachi, I. Cooperation between artificial receptors and supramolecular hydrogels for sensing and discriminating phosphate derivatives, J. Am. Chem. Soc. 2005,127, 11835-11841.
    [239] Yoshimura, I.; Miyahara, Y.; Kasagi, N.; Yamane, H.; Ojida, A.; Hamachi, I. Molecular recognition in a supramolecular hydrogel to afford a semi-wet sensor chip, J. Am. Chem. Soc. 2004,126, 12204-12205.
    [240] Wada, A.; Tamaru, S.-i.; Ikeda, M.; Hamachi, I. MCM-enzyme-supramolecular hydrogel hybrid as a fluorescence sensing material for polyanions of biological significance,.J. Am. Chem. Soc. 2009,131, 5321-5330.
    [241] Odriozola, I.; Loinaz, I.; Pomposo, J. A.; Grande, H. J. Gold-glutathione supramolecular hydrogels, J. Mater. Chem. 2007,17, 4843-4845.
    [242] Odriozola, I.; Ormategui, N.; Loinaz, I.; Pomposo, J. A.; Grande, H. J. Coinage metal-glutathione thiolates as a new class of supramolecular hydrogelators, Macromol. Symp. 2008, 266, 96-100.
    [243] Yam, V. W. -W.; Cheng, E. C. -C.; Zhu, N. A novel polynuclear gold-sulfur cube with an unusually large stokes shift, Angew. Chem. Int. Ed. 2001, 40, 1763-1765.
    [244] Hao, L.; Mansour, M. A.; Lachicotte, R. J.; Gysling, H. J.; Eisenberg, R. A gold(Ⅰ) mononuclear complex and its association into binuclear and cluster compounds by hydrogen bonding or metal ion coordination, Inorg. Chem. 2000, 39, 5520-5529.
    [245] Sillen, L. G. Stability constants of metal-ion complexes, section Ⅰ: Inorganic ligands, RSC, London, 1964, p263-339.
    [246] Adams, N. W. H.; Kramer, J. R. Potentiometric determination of silver thiolate formation constants using a Ag_2S electrode, Aquat. Geochem. 1999, 5, 1-11.
    [247] Prasad, P. N. Introduction to biophotonics, Wiley-Interscience, New York, 2003.
    [248] Niemeyer, C. M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science, Angew. Chem. Int. Ed. 2001, 40, 4128-4158.
    [249] Niemeyer, C. M. Functional hybrid devices of proteins and inorganic nanoparticles, Angew. Chem. Int. Ed. 2003, 42, 5796-5800.
    [250] Murphy, C. J. Peer reviewed: Optical sensing with quantum dots, Anal. Chem. 2002, 74, 520A-526A.
    [251] Gao, X.; Nie, S. Molecular profiling of single cells and tissue specimens with quantum dots, Trends Biotechnol. 2003,21, 371-373.
    [252] Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics, Chem. Rev. 2005,105, 1547-1562.
    [253] Goldman, E. R.; Balighian, E. D.; Mattoussi, H.; Kuno, M. K.; Mauro, J. M.;Tran, P. T.; Anderson, G. P. Avidin: A natural bridge for quantum dot-antibody conjugates, J. Am. Chem. Soc. 2002,124, 6378-6382.
    [254] Medintz, I. L.; Clapp, A. R.; Melinger, J. S.; Deschamps, J. R.; Mattoussi, H. A reagentless biosensing assembly based on quantum dot-donor Forster Resonance Energy Transfer, Adv. Mater. 2005,17, 2450-2455.
    [255] Oh, E.; Hong, M. -Y.; Lee, D.; Nam, S. -H.; Yoon, H. C; Kim, H.-S. Inhibition assay of biomolecules based on Fluorescence Resonance Energy Transfer (FRET) between quantum dots and gold nanoparticles, J. Am. Chem. Soc. 2005, 127, 3270-3271.
    [256] Clapp, A. R.; Medintz, I. L.; Fisher, B. R.; Anderson, G. P.; Mattoussi, H. Can luminescent quantum dots be efficient energy acceptors with organic dye donors?, J. Am. Chem. Soc. 2005,127, 1242-1250.
    [257] Snee, P. T.; Somers, R. C; Nair, G.; Zimmer, J. P.; Bawendi, M. G.; Nocera, D. G. A ratiometric CdSe/ZnS nanocrystal pH sensor, J. Am. Chem. Soc. 2006, 128, 13320-13321.
    [258] Chen, C. -Y.; Cheng, C. -T.; Lai, C. -W.; Wu, P. -W.; Wu, K. -C.; Chou, P. -T.; Chou, Y. -H.; Chiu, H. -T. Potassium ion recognition by 15-crown-5 functionalized CdSe/ZnS quantum dots in H_2O, Chem. Commun. 2006, 263-265.
    [259] Tomasulo, M.; Yildiz, I.; Raymo, F. M. pH-Sensitive quantum dots, J. Phys. Chem. 5 2006, 110,3853-3855.
    [260] Shi, L.; Paoli, V. D.; Rosenzweig, N.; Rosenzweig, Z. Synthesis and application of quantum dots FRET-based protease sensors, J. Am. Chem. Soc. 2006, 128, 10378-10379.
    [261] Shi, L.; Rosenzweig, N.; Rosenzweig, Z. Luminescent quantum dots Fluorescence Resonance Energy Transfer-based probes for enzymatic activity and enzyme inhibitors, Anal. Chem. 2007, 79, 208-214.
    [262] Peng, H.; Zhang, L.; Kj(?)llman, T. H. M.; Soeller, C.; Travas-Sejdic, J. DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA, J. Am. Chem. Soc. 2007,129, 3048-3049.
    [263] Tang, B.; Cao, L.; Xu, K.; Zhuo, L.; Ge, J.; Li, Q.; Yu, L. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on Fluorescence Resonance Energy Transfer (FRET) between CdTe quantum dots and Au nanoparticles, Chem. Eur. J. 2008,14, 3637-3644.
    [264] Gill, R.; Willner, I.; Shweky, I.; Banin, U. Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA conjugates: Probing hybridization and DNA cleavage, J. Phys. Chem. 52005,109, 23715-23719.
    [265] Clapp, A. R.; Medintz, I. L.; Mauro, J. M.; Fisher, B. R.; Bawendi, M. G.;Mattoussi, H. Fluorescence Resonance Energy Transfer between quantum dot donors and dye-labeled protein acceptors, J. Am. Chem. Soc. 2004,126, 301-310.
    [266] Yildiz, I.; Tomasulo, M.; Raymo, F. M. A mechanism to signal receptor-substrate interactions with luminescent quantum dots, Proc. Natl. Acad. Sci. U.S. A. 2006,103, 11457-11460.
    [267] Cordes, D. B.; Gamsey, S.; Singaram, B. Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution, Angew. Chem. Int. Ed. 2006, 45, 3829-3832.
    [268] Choi, J. H.; Chen, K. H.; Strano, M. S. Aptamer-capped nanocrystal quantum dots: A new method for label-free protein detection, J. Am. Chem. Soc. 2006, 128, 15584-15585.
    [269] Gill, R.; Freeman, R.; Xu, J. -P.; Willner, I.; Winograd, S.; Shweky, I.; Banin, U. Probing biocatalytic transformations with CdSe-ZnS QDs, J. Am. Chem. Soc. 2006, 128, 15376-15377.
    [270] Clarke, S. J.; Hollmann, C. A.; Zhang, Z.; Suffern, D.; Bradforth, S. E.; Dimitrijevic, N. M.; Minarik, W. G.; Nadeau, J. L. Photophysics of dopamine-modified quantum dots and effects on biological systems, Nat. Mater. 2006,5,409-417.
    [271] Tomasulo, M.; Yildiz, I.; Kaanumalle, S. L.; Raymo, F. M. pH-sensitive ligand for luminescent quantum dots, Lamgmuir 2006, 22, 10284-10290.
    [272] Maurel, V.; Laferriere, M.; Billone, P.; Godin, R.; Scaiano, J. C. Free radical sensor based on CdSe quantum dots with added 4-Amino-2,2,6,6-Tetramethylpiperidine oxide functionality, J. Phys. Chem. B 2006, 110, 16353-16358.
    [273] Raymo, F. M.; Yildiz, I. Luminescent chemosensors based on semiconductor quantum dots, Phys. Chem. Chem. Phys. 2007, 9, 2036-2043.
    [274] Chen, W.; Wang, X.; Tu, X.; Pei, D.; Zhao, Y.; Guo, X. Water-soluble off-on spin-labeled quantum-dots conjugate, Small 2008, 4, 759-764.
    [275] Yuan, J.; Guo, W.; Yang, X.; Wang, E. Anticancer drug-DNA interactions measured using a photoinduced electron-transfer mechanism based on luminescent quantum dots, Anal. Chem. 2009, 81, 362-368.
    [276] Wang, C. J.; Shim, M.; Guyot-Sionnest, P. Electrochromic nanocrystal quantum dots, Science 2001, 291, 2390-2392.
    [277] Kucur, E.; Riegler, J.; Urban, G. A.; Nann, T. Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry, J. Chem. Phys. 2003, 119, 2333-2337.
    [278] Querner, C.; Reiss, P.; Sadki, S.; Zagorska, M.; Pron, A. Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals, Phys. Chem. Chem. Phys. 2005, 7, 3204-3209.
    [279] Soares, D. G.; Andreazza, A. C.; Salvador, M. Sequestering ability of butylated hydroxytoluene, Propyl gallate, resveratrol, and vitamins C and E against ABTS, DPPH, and hydroxyl free radicals in chemical and biological systems, J. Agric. Food Chem. 2003, 51, 1077-1080.
    [280] Zhang, H.; Zhou, Z.; Yang, B.; Gao, M. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles, J. Phys. Chem. B 2003, 107, 8-13.
    [281] He, H.; Qian, H.; Dong, C.; Wang, K.; Ren, J. Single nonblinking CdTe quantum dots synthesized in aqueous thiopropionic acid, Angew. Chem. Int. Ed. 2006, 45, 7588-7591.
    [282] Bao, H.; Gong, Y.; Li, Z.; Gao, M. Enhancement effect of illumination on the pPhotoluminescence of water-soluble CdTe nanocrystals: Toward highly fluorescent CdTe/CdS core-shell structure, Chem. Mater. 2004, 16, 3853-3859.
    [283] Byrne, S. J.; Corr, S. A.; Rakovich, T. Y.; Gun'ko, Y. K.; Rakovich, Y. P.; Donegan, J. F.; Mitchell, S.; Volkov, Y. Optimisation of the synthesis and modification of CdTe quantum dots for enhanced live cell imaging, J. Mater. Chem. 2006, 16, 2896-2902.
    [284] Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater. 2003, 15, 2854-2860.
    [285] Guinier, A. X-Ray diffraction in crystals, imperfect crystals and amorphous bodies, Dover Publication: New York, 1994.
    [286] Rogach, A. L.; Franzl, T.; Klar, T. A.; Feldmann, J.; Gaponik, N.; Lesnyak, V.; Shavel, A.; Eychmu|¨ller, A.; Rakovich, Y. P.; Donegan, J. F. Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-Art, J. Phys. Chem. C 2007, 111, 14628-14637.
    [287] Kamat, P. V. Photoelectrochemistry in particulate systems. 9. Photosensitized reduction in a colloidal titania system using anthracene-9-carboxylate as the sensitizer, J. Phys. Chem. 1989, 93, 859-864.
    [288] Wargnier, R.; Baranov, A. V.; Maslov, V. G.; Stsiapura, V.; Artemyev, M.; Pluot, M.; Sukhanova, A.; Nabiev, I. Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies, Nano. Lett. 2004, 4, 451-457.
    [289] Valeur, B. Molecular Fluorescence (Principles and Applications), Wiley-VCH Publishers, 2002.
    [290] Blackburn, J. L.; Selmarten, D. C.; Ellingson, R. J.; Jones, M.; Micic. O.: Nozik, A. J. Electron and hole transfer from indium phosphide quantum dots, J. Phys. Chem. B 2005, 709,2625-2631.
    [291] Sykora, M.; Petruska, M. A.; Alstrum-Acevedo, J.; Bezel, I.; Meyer, T. J.;Klimov, V. I. Photoinduced charge transfer between CdSe nanocrystal quantum dots and Ru-polypyridine complexes, J. Am. Chem. Soc. 2006,128, 9984-9985.
    [292] Gaponenko, S. V. The characteristics of optics of semiconductors nanometer crystals, Springer, 1998.
    [293] Wuister, S. F.; Donega, C. d. M; Meijerink, A. Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots, J. Phys. Chem. B 2004,108, 17393-17397.
    [294] Tian, Y.; Newton, T.; Kotov, N. A.; Guldi, D. M.; Fendler, J. H. Coupled composite CdS-CdSe and core-shell types of (CdS)CdSe and (CdSe)CdS nanoparticles, J. Phys. Chem. 1996,100, 8927-8939.
    [295] Guldi, D. M.; Rahman, G. M. A.; Sgobba, V.; Kotov, N. A.; Bonifazi, D.; Prato, M. CNT-CdTe versatile donor-acceptor nanohybrids, J. Am. Chem. Soc. 2006, 128, 2315-2323.
    [296] Guldi, D. M.; Zilbermann, I.; Anderson, G.; Kotov, N. A.; Tagmatarchis, N.; Prato, M. Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles, J. Am. Chem. Soc. 2004,126, 14340-14341.
    [297] Zhan, R.; Song, S.; Lin, Y.; Dong, S. Mechanisms of methylene blue electrode processes studied by in situ electron paramagnetic resonance and ultraviolet-visible spectroelectrochemistry, J. Chem. Soc. Faraday Trans. 1990, 86, 3125-3127.
    [298] Impert, O.; Katafias, A.; Kita, P.; Mills, A.; Pietkiewicz-Graczyk, A.; Wrzeszcz,G. Kinetics and mechanism of a fast leuco-Methylene Blue oxidation by copper(Ⅱ)-halide species in acidic aqueous media, J. Chem. Soc. Dalton Trans. 2003, 348-353.
    [299] Chestnoy, N.; Harris, T. D.; Hull, R.; Brus, L. E. Luminescence and photophysics of cadmium sulfide semiconductor clusters: The nature of the emitting electronic state./ Phys. Chem. 1986, 90, 3393-3399.
    [300] Landes, C.; Burda, C.; Braun, M.; EI-Sayed, M. A. Photoluminescence of CdSe nanoparticles in the presence of a hole acceptor: n-butylamine, J. Phys. Chem. B 2001,705,2981-2986.
    [301] Nirmal, M.; Brus, L. Luminescence photophysics in semiconductor nanocrystals, Acc. Chem. Res. 1999, 32,407-414.
    [302] Tuite, E.; Norden, B. Sequence-specific interactions of methylene blue with polynucleotides and DNA: A spectroscopic Study, J. Am. Chem. Soc. 1994, 116, 7548-7556.
    [303] Rohs, R.; Sklenar, H.; Lavery, R.; Roder, B. Methylene blue binding to DNA with alternating GC base sequence: A modeling study, J. Am. Chem. Soc. 2000, 122, 2860-2866.
    [304] Feng, C. -L.; Zhong, X.; Steinhart, M.; Caminade, A. -M.; Majoral, J. -P.; Knoll, W. Graded-bandgap quantum-dot-modified nanotubes: A sensitive biosensor for enhanced detection of DNA hybridization, Adv. Mater. 2007,19, 1933-1936.
    [305] Cui, D.; Pan, B.; Zhang, H.; Gao, F.; Wu, R.; Wang, J.; He, R.; Asahi, T. Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection, Anal. Chem. 2008, 80, 7996-8001.
    [306] Weissbuch, I.; Leiserowitz, L.; Lahav, M. Stochastic "mirror symmetry breaking" via self-assembly, reactivity and amplification of chirality: Relevance to abiotic conditions, Top. Curr. Chem. 2005, 259, 123-165.
    [307] Bonner, W. A. The origin and amplification of biomolecular chirality, Origins Life Evol. Biosphere 1991, 21, 59-90.
    [308] Yao, H.; Miki, K.; Nishida, N.; Sasaki, A.; Kimura, K. Large optical activity of gold nanocluster enantiomers induced by a pair of optically active penicillamines, J. Am. Chem. Soc. 2005,127, 15536-15543.
    [309] Lopez-Lozano, X.; Perez, L. A.; Garzon, I. L. Enantiospecific adsorption of chiral molecules on chiral gold clusters, Phys. Rev. Lett. 2006, 97, 233401-233404.
    [310] Szollosi, G.; Mastalir, A.; Kiraly, Z.; Dekany, I. Preparation of Pt nanoparticles in the presence of a chiral modifier and catalytic applications in chemoselective and asymmetric hydrogenations, J. Mater. Chem. 2005, 75,2464-2469.
    [311] Sivaguru, J.; Poon, T.; Franz, R.; Jockusch, S.; Adam, W.; Turro, N. J. Stereocontrol within confined spaces: Enantioselective photooxidation of enecarbamates inside zeolite supercages, J. Am. Chem. Soc. 2004,126, 10816-10817.
    [312] Nilsson, C.; Nilsson, S. Nanoparticle-based pseudostationary phases in capillary electrochromatography, Electrophoresis 2006, 27, 76-83.
    [313] Torsi, L.; Farinola, G. M.; Marinelli, F.; Tanese, M. C.; Omar, O. H.; Valli, L.;Babudri, F.; Palmisano, F.; Zambonin, P. G.; Naso, F. A sensitivity-enhanced field-effect chiral sensor, Nat. Mater. 2008, 7, 412-417.
    [314] Baev, A.; Samoc, M.; Prasad, P. N.; Krykunov, M; Autschbach, J. A quantum chemical approach to the design of chiral negative index materials, Opt. Express 2007, 75,5730-5741.
    [315] Wei, A. Calixarene-encapsulated nanoparticles: self-assembly into functional nanomaterials, Chem. Commun. 2006, 1581-1591.
    [316] Jeong, K. S.; Kim, Y. S.; Kim, Y. J.; Lee, E.; Yoon, J. H.; Park, W. H.; Park, Y. W.; Jeon, S. -J.; Kim, Z. H.; Kim, J.; Jeong, N. Lanthanitin: A chiral nanoball encapsulating 18 Lanthanum ions by ferritin-Like assembly, Angew. Chem. Int. Ed. 2006,45,8134-8138.
    [317] McFadden, C. F.; Cremer, P. S.; Gellman, A. J. Adsorption of chiral alcohols on "chiral" metal surfaces, Langmuir 1996,12, 2483-2487.
    [318] Barlow, S. M.; Raval, R. Nanoscale insights in the creation and transfer of chirality in amino acid monolayers at defined metal surfaces, Curr. Opin. Colloid Interface Sci. 2008,13, 65-73.
    [319] Schaaff, T. G.; Knight, G.; Shafigullin, M. N.; Borkman, R. F.; Whetten, R. L. Isolation and selected properties of a 10.4 kDa gold: Glutathione cluster compound, J. Phys. Chem. B 1998, 52, 10643-10646.
    [320] Shemer, G.; Krichevski, O.; Markovich, G.; Molotsky, T.; Lubitz, I.; Kotlyar, A. B. Chirality of silver nanoparticles synthesized on DNA, J. Am. Chem. Soc. 2006,128, 11006-11007.
    [321] Moloney, M. P.: Gun'ko, Y. K.; Kelly. J. M. Chiral highly luminescent CdS quantum dots, Chem. Commun. 2007, 3900-3902.
    [322] Elliott, S. D.; Moloney, M. P.; Gun'ko, Y. K. Chiral shells and achiral cores in CdS quantum dots, Nano Lett. 2008, 8, 2452-2457.
    [323] Narayanan, S. S.; Pal, S. K. Aggregated CdS quantum dots: Host of biomolecular ligands, J. Phys. Chem. B 2006,110, 24403-24409.
    [324] Berova, N.; Nakanishi, K.; Woody, R. W. Circular Dichroism-Principles and Applications, Wiley-VCH, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700