用户名: 密码: 验证码:
汽油发动机怠速工况下控制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
怠速工况是发动机的重要工况之一,与发动机的排放水平、能源消耗有密切的关系。怠速工况时,由于汽车空调压缩机、动力转向器、自动变速器等装置的加载是突变的,这些扰动因素打破了发动机原有的稳定性,出现了较大的转速波动,严重时甚至引起熄火现象。因此在满足日益严格的排放法规的前提下,保持发动机在怠速工况运行的稳定性显得尤为重要。
     本文首先根据发动机怠速控制系统的要求,综述了目前发动机怠速工况下的各种控制方法,构建了发动机怠速工况下的控制方案,并且建立了发动机的平均值模型。由于汽油机是量调节控制,所以发动机燃气量的控制主要是通过控制节气门开度调整进气量来实现的。所以电子节气门的控制策略在发动机各个运行模式下的应用对于整个发动机的控制来说是相当重要的。于是针对发动机怠速工况下控制系统的要求,首先对电子节气门体进行建模,采用Backstepping的方法对电子节气门进行了控制;同时针对怠速工况中的燃油经济型问题设计了基于状态观测器的空燃比控制器;然后采用基于LMI的鲁棒控制的方法设计带约束的H_∞怠速控制器,仿真实验证明了该控制器对节气门时域硬约束有很好的控制效果,对参数不确定性具有很强的鲁棒性;接着根据第2章中构建的发动机怠速工况下的控制方案,进行了综合仿真,仿真结果显示在怠速工况下,系统能够很好的控制转速,并且空燃比系数也控制在“1”左右,很好的满足了怠速工况下燃油经济性问题。最后在xPC-Target实时系统上建立了发动机硬件在环仿真实验平台,并在该平台上进一步验证了控制算法的有效性。
Idle speed condition which has close relation to the engine emissions and energy consumption. It is one of the important working condition of engine,and engines operate under this condition lots of the time.During the process of idle speed,air-conditioning compressor,power steering gear and automatic transmission changed suddenly,and these disturbance factors make the working-engine speed fluctuating,instability or even flameout. So in order to meet the demand of the auto emission regulations which become more and more strict today,it is especially important to control the idle speed and keep it stable as far as possible.
     A lot of factors should take into consideration when controlling the idle speed of the engine,such as the uncertain lagging time of the system,the disturbance and the noise of sensors signal measurement,the effect of environment and the parametric variation with aging and frication etc.All these factors increase the instability of engine control.The target of engine idle speed control is composed of:1) keep the Engine speed around a certain value;2)reduce engine fuel consumption;3) avoiding large engine speed deviation even sudden load disturbance emerged;4)required engine air intake within the ability of throttle.
     Firstly,the dissertation introduce many methods to meet the requirements of engine idle speed control.A lot of researchers had taken efforts to fulfill the requirements of ISC. Then an mean value engine model at idle working condition was developed according to the physical model and engine test map data.And the dissertation analyse the uncertainty of the model.Idle speed regulators are nowadays mainly designed by using the throttle opening and the spark advance as control variables.The throttle governs the amount of air supplied by the engine and provides large control authority,but is relatively slow due to the transportation phenomena inside the intake manifold.On the contrary,the spark advance provides a much faster control action,but must be used only in transient conditions and with limited variations to prevent combustion instabilities and engine stall.So firstly,the constitution and working principles of the automotive electronic throttle control system were introduce.An non-linear electronic throttle model is setup in simulink.The general structure of the controllers consists of a Input shaping subsystem and Baekstepping controller that deal with the nonlinearity of the electronic throttle system.Secondly in order to improve the performance of fuel economy,air-fuel ratio control is introduce by state observer.Thirdly,a robust controller based LMI is formulated.The validation by Matlab/Simulink indicated that the controller would greatly reduce the idle speed's change and fluctuation.Finally,a hardware-in-the-loop(HIL) testing platform based on xPC Target is developed.And the controller that introduced here are tested in this platform.The result of simulation shows that the control strategy has been veried experimentally.
     The dissertation mainly consists of five parts:
     Firstly,especially for the four-stroke four-cylinders gasoline engine,the general methods of modeling was discussed.Using the mean value model theory and the basic theory of thermodynamics,an mean-value based gasoline engine model was developed,including dynamic model for intake manifold,static model for throttle body,static model for cylinder air induction,fuel path dynamics,torque production and engine speed dynamics. Using the engine real-time simulation software en-DYNA,some important coefficients in gasoline engine model was determined.The total nonlinear engine model is developed by Matlab/Simulink toolbox.
     Secondly,the constitution and working principles of the automotive electronic throttle control system are introduced.An non-linear electronic throttle model is setup in simulink. The general structure of the controllers consists of a Input shaping subsystem and Backstepping controller that deal with the nonlinearility of the electronic throttle system.By setting up the communication interface between CANoe and Matlab,the CAN nodes embedded automotive electronic throttle simulation system was used.The result of simulation shows that the Backstepping control strategy has been verified experimentally.
     Thirdly,in order to improve the performance of fuel economy,the model based control strategy and algorithm is applied to air-fuel ratio control under steady conditions and transient conditions,which not only can reduce the calibrating work,but also can improve the robustness of the control system.
     Fourthly,basing the developed nonlinear model,a linear engine model was also developed at the engine model's operation point.It was necessary for robust H_∞controller design.For the purpose of controlling idle speed,throttle angle is the only control input that influences engine torque generation,and thus engine speed.The model has two state variables:manifold pressure and engine speed,the disturb input is load torque.It is also necessary to unitary the system's parameters for designing accurate controller.The parameter's uncertainty and hard constraints of the engine model were given after analyzing the system's inputs variables,state variables,output variables.And then an LMI-based robust controller was designed with the limits of the hard constraints such as throttle angle and manifold pressure are actually limited in a certain range.Finally the designed controller was used into both the linear model and nonlinear model,the simulation verified the engine speed could be controlled effectively with disturb load torque,at the same time, the requirements of input constraint and output constraint could be meet.Simulation also shows that model can be controlled well under parameters uncertainty.
     Finally,a hardware-in-the-loop testing platform based on xPC Target is developed. And the controller that introduced here are tested in this platform.It is a general procedure which can be adopted for all the active engine control systems,not only for their development but also for the verification of their reliability.The steps of the procedure are described in this paper.The specific application on which this paper is focused concerns ISC working condition.Simulation results are presented in order to validate the proposed model and compare it with the 'true' one.The result of simulation shows that the control strategy has been veried experimentally.
引文
[1]程庆,黄河,吴平友.发动机怠速智能控制系统的研究[J].Drive System Technique.2003.
    [2]DUKSUN SHIM,JAEHONG PARK,PRAMOD P,KHARGONEKAR,WILLIAM B,RIBBENS.Reducing Automotive Engine Speed Fluctuation at idle[J].IEEE-Transactions on control system technology.1996,4(4).
    [3]KYUNG JINN YANG,JAE WEON CHOI,KEUM SHIK Hong.Advanced Sliding Mode Idle Speed Control for a Nonlinear Engine Model:Coordinated Throttle/Spark Advance Control[J].PR0001-3SICE.1997:29-31.
    [4]CHRISTIAN BOHN,THOMAS BOHME,AIK STAATE,PETRA MANE-MANN.A Nonlinear Model for Design and Simulation of Automotive Idle Speed Control Strategies[J].Proceeding of the 2006 American Control Conference.2006.
    [5]卓斌,刘启华.车用汽油机燃料喷射与电子控制[M].1999.
    [6]邵千钧,何文华,熊树生.基于CMAC的点火提前角控制怠速稳定性的研究[J].天津:内燃机学报.2005.
    [7]WEIWEI JIN,DONGMING JIN,XUN ZHANG.VLSI Design and Implementation of a Fuzzy Logic Controller for Engine Idle speed[J].IEEE0-7803-8511-X.2004.
    [8]L.A.FELDKAMP,G.V.PUSKORIUS.Trainable Fuzzy and Neural-Fuzzy Systems for Idle-speed Control[J].IEEE0-7803-0614-7.1993.
    [9]WAHEED D.MASHE,JATINDER S,BEDI.Engine Idle Quality Improvement using A Fuzzy Logic controller[J].IEEE.1995.
    [10]李彬轩,何文华等.模糊控制在发动机怠速控制中应用的研究[J].小型内燃机.1998:1-3.
    [11]赵光舟,杨志家.应用神经网络模糊控制器的发动机怠速控制[J].内燃机工程.2000.
    [12]金惟惟.用于电控发动机怠速控制的模糊逻辑芯片研制[D].北京:清华大学硕士学位论文.2005.
    [13]张振东,周萍等.电控发动机怠速控制模糊算法研究[J].北京:农业机械学报.2005:75-77.
    [14]吴锋,杨志家等.利用旁通空气的摩托车发动机怠速控制系统研究[J].内燃机工程.2002.
    [15]张道文,姚春林,童岱.模糊神经网络在发动机怠速控制中的应用[J].汽车技术.2002:18-20.
    [16]DIMITRY GORIMEVSKY,LEE A FELDKAMP.On line optimization of RBF Network Feedforward Compensation for Load Disturbance in Idle Speed Control of Automotive Engine[J].IEEE0-7803-2975-9.1996.
    [17]F J.SCILLIERI,JULIA H.BUCKLAND,JAMES S FREUDENBERG.Reference Feedback in the Idle Speed Control of a Direct-injection Spark-ignition Engine[J].IEEETransactions on vehicular technology.2005,54(1).
    [18]DIMITRY GORINEVSKY,LEE A.FELDKAMP.RBF Network Feedforward Compensation of Load Disturance in Idle Speed Control[J].IEEEControl System.1996.
    [19]JOSEPH.J.SCILLIERI,JULIA.BUCKLAND,JAMES S.FREUDENBERG.Use of Feedforward in Idle Speed Control for a Direct Injection Spark Ignition Engine During Lean Burn[J].Proceeding of the American Control Conference.2002:8-10.
    [20]任天睿.基于BP神经网络模型的发动机怠速预测控制[D].南京:南京理工大学硕士学位论文.2003.
    [21]张金龙,赵芙生.汽油发动机怠速的预测控制[J].南京农业大学学报.2002:50-52.
    [22]谭德荣,严新平,刘正林等.一种基于预测的电控汽油及怠速稳定性控制方法[J].汽车技术.2004.
    [23]韩以仑,张翠平,杨庆佛.基于专家系统的汽车发动机怠速控制的仿真试验研究[J].内燃机工程.2003:35-38.
    [24]张文强.汽油机怠速滑模控制策略及其SIMULINK实现[D].西华大学硕士学位论文.2006.
    [25]XIAOQIU LI,STEPHEN YURKOVICH.Sliding Mode Control of Delayed System With Application to Engine Idle speed Control[J].IEEETransactions on Control Systems Technology.2001,9(6).
    [26]A.I.BHATTI,S.K.SPURGEON,R.DOREY,C.EDWARDS.RAPID Prototyping of a sliding mode controller for idle speed control[J].The Institution of Electrical Engineers.1997.
    [27]ALEX GIBSON,ILYA KOLMANOVKY,DAVER HROVAT.Application of Disturance Observers to Automotive Engine Idle Speed Control for Fuel Economy Improvement [J].Proceeding of the 2006 American Control Conference.2006:14-16.
    [28]SORIN C,BENGEA,XIAOQIU LI,R.A.DECARLO.Combined Controller Observer Design for Uncertain Time Delay System With Application to Engine Idle Speed Control.Transactions of the ASME.2004:772-780o
    [29]KENNETH R.BUTTS,N.SIVASHANKAR,JINSUN.Application of l_1 Optimal Control to the Engine Idle Speed Control Problem[J].IEEETransactionson Control Systems Technology.1999,7(2).
    [30]PU SUN,BARRY POWELL,DAVOR HROVAT.Optimal Idle Speed Control of an Automotive Engine[J].Proceedings of the American Control Conference.2000.
    [31]KJERGAARD L,NIELSEN S,VESTERHOLM T,HENDRICKS E.Advanced nonlinear engine idle speed control Systems[J].SAE paper 940974.1994.
    [32]杨琳.基于H∞控制理论的电力系统稳定器的研究[D].华北电力大学硕士学位论文.2002.
    [33]BUTTS,N.SIVASHANKAR,J.SUN.Feedforward and feedback design for engine idle speed control using l_1 optimization[J].American Control Conference.1995.
    [34]A.BALLUCHI,L.BENVENUTI,M.D.Di BENEDETTO,C.PINELLO,L.SANGIOVANNIV.Automotive engine control and hybrid systems:challenges and opportunities[J].Proceedings of the IEEE.2000:888-912.
    [35]A.BALLUCHI,L.BENVENUTI,M.D.Di BENEDETTO,A.L.SANGIOVANNIV.Nonlinear and Hybrid Systems in Automotive Control,ch.Idle speed control synthesis using an assume-guarantee approach[J].UK:Springer-Verlag.2002:229-243.
    [36]E.HENDRICKS,S.C.SORENSON.Mean Value Modelling of Spark Ignition Engines [J].SAE Automotive Engineering 900616.1990.
    [37]E.HENDRICKS,A.CHEVALIER,M.JENSEN.Modeling of the Intake Manifold Filling Dynamics[J].SAE Automotive Engineering 960037.1996.
    [38]杨家志等.发动机怠速模型及前馈补偿控制[J].American Control Conference.1997:19-23.
    [39]俞立.鲁棒控制:线性矩阵不等式处理方法[M].2002.
    [40]C.W.SCHERER,WERILAND S.Linear Matrix Inequalities in Control[C].2000.
    [41]S.BOYD,L.EI.GHAOUI.Linear Matrix Inequalitities in System and Control Theory [J].1994.
    [42]YAOLONG TAN,JIE CHANG,HUALIN TAN.Adaptive Backstepping Control and Friction Compensation for AC Servo With Inertia and Load Uncertainties[J].IEEE Transactions on Industrial Electronics S0278-0046.2003,50(5):944-952.
    [43]王青伟,刘正华,尔联洁.飞行转台Backstepping与神经网络并行控制[J].系统仿真学报.2006,18(12):3475-3479.
    [44]WIKTOR BOLRK,JERZY SASIADEK.Singularity of Backstepping Control for Nonlinear Systems[J].Proceedings of the American Control Conference Anchorage.2002:2689-2694.
    [45]JANKOVIC,M.MAGNER.Fuel economy optimization in automotive engines[J].Proceedings of the 2006 American Control Conference.2006:1191-1196.
    [46]CAVINA.N,MINELLI.G,CAGGIANO.M.Model-Based Idle Speed Control for a High Performance Engine[J].SAE Paper 2003-01-0358.2003.
    [47]GANESAN.S,DESSERT.P,YASIN.S.An Idle Speed Controller Using Analytically Developed Fuzzy Logic Control Law[J].SAE Paper 2002-01-0138.2002.
    [48]ZHI HU WU,SHANG LIU,RUN PEI.Robust Model Predictive Control Of Engine Idle Speed With Distrubance Observer[J].Proceedings of the Seventh International Conference on Machine Learning and Cybernetics.2008:2019-2114.
    [49]N.HEINTZ,M.MEWS,G.STIER,A.J.BEAUMONT,A.D.NOBLE.An approach to torque-based engine management systems[J].SAE Technical Paper 2001-01-0269.2001.
    [50]GUZZELLA L.,C.H.ONDER.Introduction to Modeling and Control of Internal Combustion Engines[J].Berlin:Springer.2004.
    [51]ROBERT BOSCH GMBH ed.Ottomotor-Management[J].Braunschweig,Germany:Vieweg(Management of gasoline engines,in German).2003.
    [52]GERHARDT,H.HONINGER,H.BISCHOF.A new approach to functional and software structure for engine management systems-Bosch ME7[J].SAE Technical Paper 98P-178(49).1998.
    [53]HAMMEL.C,H.JESSEN,B.BOSS,A.TRAUB,C.TISCHER,H.HONINGER.A common software architecture for diesel and gasoline engine control systems of the new generation EDC/ME(D)17[J].SAE Technical Paper 2003-01-1048.2003.
    [54]CHRISTIAN BOHN,THOMAS BOHME,AIK STAATE,PETRA MANE-MANN.A Nonlinear Model for Design and Simulation of Automotive Idle Speed Control Strategies[J].Proceedings of the 2006 American Control Conference.2006:3272-3277.
    [55]钱人一.现代汽车发动机电子控制[M].上海交通大学出版社.1999:95 97.
    [56]FEKETE N,NESTER V.Model-based air fuel ratio control of a lean multi-cylinder engine[J].SAE Automotive Engineering 950846.1995.
    [57]STEPHEN YURKOVICH,MELINDA SIMPSON.Crank-angle domain modeling and control for idle speed[J].SAE Automotive Engineering 970027.1997.
    [58]ELBERT HENDRICKS,DAVE TRUMPY.Modcling of the intake manifold filling dynamics[J].SAE Automotive Engineering 960037.1996.
    [59]PETER HALUSKA,LINO GUZZELLA.Control orientaled modeling if mixture formation phenomena in multi-port injection SI gasoline engines[J].SAE Automotive Engineering 980628.1998.
    [60]PETER HALUSKA,LINO GUZZELLA.Artificial intelligence for combustion engine control[J].SAE Automotive Engineering 960328.1996.
    [61]A.CHEVALIER,M.MILLER,E.HENDRICKS.On the Validity of Mean Value Engine Models During Transient Operation[J].SAE Paper 2000-01-1261.2000.
    [62]W.VIGILD,E.HENDRICKS A.CHEVALIER,C.Predicting the Port Air Mass Flow of SI Engines in Air/Fuel Ratio Control Applications[J].SAE Paper 2000-01-260.2000.
    [63]O.TOKER,H.OZBAY.H_∞ optimal and suboptimal controllers for infinite dimensional SISO plants[J].IEEE Trans Automat Control.1995,40:751-755.
    [64]G.MEINSMA.Polynomial solutions H_∞ problems[M].In J.Robust Nonlinear Control.1994,4:323-352.
    [65]H KWAKERNAAK.Robust control and H_∞-optimization-Tutorial paper[J].Automatica.1993,29:155-273.
    [66] EHENDRICKS, TVESTERHOLM, et al. Modelling of the intake Manifold Filling Dynamics[J]. SAE Technical Paper 960037. 1996.
    
    [67] PUSHKARAJ A. PANSE. Dynamic Modeling and Control of Port Fuel Injection Engines[D]. Master Degree paper. 2005.
    
    [68] GANG CHEN. Unsteady MultiPhase Intake Flow in a Part-injection Gasoline En- gine[J]. SAE Technical paper 960074. 1996.
    
    [69] H RONG-WEN. A Transient SI Engine Model for Vehicle Dynamic Simulation[M]. PHD dissertation ,University of California,USA. 1994.
    
    [70] I ARSIE, C PIANESE, G RIZZO, et al. An adapt estimator of fuel film dynamics in the intake port of a spark ignition engine[J]. Control Engineeing Practice. 2003:303-309.
    
    [71] JAN GUERQUIN. The Develepment of an IC Engine Modle-Based Fuel Injection Controller with Fuel Film Compensation [J]. Master dissertation University of Toronto, Canada. 2003.
    
    [72] HUBER, LIEBEROTH LEDEN, MAISCH, REPPICH. Electronic throttle control[J]. SAE Automotive Engineering 99-1518. 1999.
    
    [73] DEUR, PAVKOVIC, PERIC, JANSZ, HROVAT. An electronic throttle control strategy including compensation of friction and Limp - Home effects[J]. IEEE Transactions on Industry Applications. 2004, 40(3):821 - 834.
    
    [74] PAVKOVIC, DEUR, JANSZ, PERIC. Experimental identification of electronic throttle body[J]. CD-ROM proceedings of 10th European conference on power electronics and applications, Toulouse, France. 2003.
    
    [75] PAVKOVIC, DEUR. Self-tuning control of an electronic throttle[J]. Internal memorandum. 2002.
    
    [76] CONATSER R, WAGNER J. Health monitoring for automotive electronic throttle control systems [J]. Proceedings of the seventh mechatronics forum international conference,Atlanta. 2000.
    
    [77] ERIKSSON.L, NIELSEN L. Non-Linear Model-Based Throttle Control[J]. SAE paper 2000-01-0261. 2000.
    
    [78] DANIJEL PAVKOVIC, JOSKO DEUR, MARTIN JANSZ, NEDJELJKO PERIC. Adaptive control of automotive electronic throttle[J]. Control Engineering Practice. 2006, 14:121 - 136.
    [79]HASHIMOTO,ISHIGURO,YASUI,AKAZAKI.Highly reliable electronic throttle system design[J].SAE paper 2003-01-0708.2003
    [80]BARIC,PETROVIC,PERIC.Neural network based sliding mode controller for a class of linear systems with unmatched uncertainties[J].Proceedings of the 41st IEEE conference on decision and control.2002:967-972.
    [81]E.D.SONTAG.Further facts about input to state stabilization[J].Transactions on Automatic Control,IEEE.1990,(AC-35):473-476.
    [82]E.D.SONTAG.Smooth stabilization implies coprime factorization[J].IEEE Transactions on Automatic Control.1989,(34):435-443.
    [83]CHAOHONG CAI,ANDREW R.TEEL.Input-output-to-state stability for discrete-time systems[J].Automatica.2008,(44):326-336.
    [84]郭宏志,陈虹,宋同好,周欣.嵌入CAN节点的汽车电子节气门仿真系统[J].系统仿真学报.2008.已录用.
    [85]MAGEE D P,BOOK W J.The application of input shaping to a system with varying parameters[J].Proceedings of the Japan/USA Symposium on Flexible Automation.1992:519-525.
    [86]SINGER N C,SEERING W P.Preshaping command inputs to reduce system vibration [J].ASME Journal of Dynamic Systems,Measurement and Control.1990,23(3):76-82.
    [87]MIROSLAV KRSTIC,IOANELLAKOPOULOS,PETAR KOKOTOVIC.Nonlinear and Adaptive Control Design[M].1995
    [88]KRSTIC M,LIZ.Inverse optimal design of input-to-state stabilizing nonlinear controllers [J].IEEE Trans Automatic Control.1998,43:336-349.
    [89]王晓明等.电动机的单片机控制[M],vol.43.2002
    [90]GRIFFITHSOUS P G.Embedded Software Control Design for an Electronic Throttle Body[J],vol.43.2000
    [91]VECTOR.CANoe user manual[M].2007.
    [92]邹博文.基于模型的汽油机空燃比控制技术研究[D].浙江大学博士论文.2006.
    [93]E.HENDRICKS,et al.Nonlinear Closed Loop,SI Engine Control Observers[J].SAE 920237.1992.
    [94] PER B JENSEN, M B OLSEN, J POULSEN, et al. A New Family of Nonlinear for SI Engine Air/Fuel Ratio Control[J]. SAE 970615. 1993.
    
    [95] P KAIDANTZIS, P RASUMSSEN, M JENSEN, et al. Advanced Nonlinear Ob- server Control of SI Engines[J]. SAE 930768. 1993.
    
    [96] EHENDRICKS, JANNIK POULSEN, et al. Alternative Observers for SI Engines Air/Fuel Ratio Control[J]. Proceedings of the 35th Conference on Decision and Control ,Kobe,Japan. 1996:2806-2811.
    
    [97] A CHEVALIER. Predicting the Port Air Mass Flow Of SI Engines in Air/Fuel Ratio Control Applications[J]. SAE 2000-01-0260. 2000.
    
    [98] I ARSIE, C PIANESE, G RIZZO, et al. Identification of Manifold Two-Phase Fuel Flow Model in A Spark Ignition with Kalman Filter and least Square Methods[J]. Proceedings of Seventh IEEE Mediterranean Conference on Control and Automation. 2003:184-199.
    
    [99] CH ONDER, HP GEERING. Model-Based Multivariable Speed and Air-to-Fuel Ratio Control of an SI Engine[J]. SAE 930859. 1993.
    
    [100] KHALID S, AL-OLIMAT, et al. Adaptive Air-Fuel Ratio Control of an SI Engine Using Fuzzy Logical Parameters Evaluation[J]. SAE 2000-01-1246. 2000.
    
    [101] E HENDRICS, T VESTERHOLM, P KAIDANTZIS. Nonlinear Transient Fuel Film Compensation^]. SAE 930767. 1993.
    
    [102] J K PIEPER, R MEHROTRA. Air/Fuel Ratio Control Using Sliding Mode MethodsfJ]. Proceeding of American Control Conference. 1999:1027-1031.
    
    [103] J K PIEPER, R MEHROTRA. Nonlinear Algorithms for simultaneous Speed Tracking and Air/Fuel Ratio Control in an Automobile Engine [J]. SAE 1999-01-0547. 1999.
    
    [104] C W VIGILD. Towards Robust H_∞ Control of an SI Engine's Air/Fuel Ratio[J]. SAE 1999-01-0854. 1999.
    
    [105] E HENDRICS, ISOTHERMAL VS. Adiabatic Mean Value SI Engine Model [J]. 3th IFAC Workshop,advances in Automotive Control. 2001:28-30.
    
    [106] E HENDRICS. Model and Observer Based Control of internal Combustion Engines[J]. Workshop on Modeling,Emission and Control of Automotive Engines. 2001:1-23.
    [107]E HENDRICS.Nonlinear Observer Control of internal Combustion Engines with EGR[J].NAC02 Workshop in Automotive Control.2001:1-17.
    [108]孟嗣宗,郭少平,张文海.发动机精确空燃比控制方法的研究[J].内燃机工程.1999,(20(2)):70-75.
    [109]CF CHANG,NP FEKETE,A AMSTUTZ,et al.Air/Fuel Ratio Control in Spark Ignition Engines Using Estimation Theroy[J].IEEE Transactions on Control Systems Technology.1995,(3(1)):22-31.
    [110]JD POWELL,NP FEKETE,CF CHANG,et al.Observer Based Air/Fuel Ratio Control[J].IEEE Control Systems Technology.1998:72-83.
    [111]陈新海.现代控制理论-最佳估计理论[M].1987
    [112]WEN YAO SONG,YA ZHANG.Kalman Filter[J].1991.
    [113]彦东,张洪钺.控制滤波发散的新方法及其应用[J].北京航空航天大学学报.1994,(20(4)):392-396.
    [114]SAGE AP,HUSA G W.Adaptive Filting with Unknown Prior Statistics[J].Proceedings of Joint Automatic Control Conference.1969.
    [115]徐明,刘建业,袁信.自适应卡尔曼滤波在惯导初始对准中的研究应用[J].中国惯性技术学报.1999,20(3):14-16.
    [116]张满生,张学庄,陈保平等.新型GPS动态定位自适应卡尔曼滤波方法[J].中南工业大学学报.2003,34(5):543-546.
    [117]KIM S,KMI J H.Adaptive Fuzzy-network Based C-Measure Map-Matching Algorithm for Car Navigation System[J].IEEE Transaction on Industrial Electronics.2001.
    [118]CARREW B,et al.Identification of Optimum Filter Steady State Gain for System with Unknown Noise Parameters[J].IEEE Transaction on Automatic Control.1973.
    [119]MEHRA R K.Approach to Adaptive Filtering[J].IEEE Transaction on Automatic Control.1972.
    [120]吴勇,林家俊.一种改进的滤波器噪声模型的自适应估计法[J].华东理工大学学报.2004,30(4):433-436.
    [121]GIBSON.A,KOLMANOVSKY.I,HROVAT.D.Application of Disturbance Observers to Automotive Engine Idle Speed Control for Fuel Economy Improvement[J].Proceedings of the 2006 American Control Conference.2006:1197-1202.
    [122]BROMNICK.P.Development of a Model Predictive Controller for Engine Idle Speed using CPower[J].SAE Paper 1999-01-1171.1999.
    [123]OSBURN.A.W,FRANCHEK.M.A.Reducing engine idle speed deviations using the internal model principle[J].Journal of Dynamic Systems,Measurement and Control.2006(4),128:869-877.
    [124]PAUL.H,FRANCHEK.M.A.Engine idle speed control using actuator saturation[J].Control Systems Technology.2000,8(1):192-199.
    [125]E.HENDRICKS,A.CHEVALIER,M.JENSEN.Modeling of the Intake Manifold Filling Dynamics[J].SAE Paper 960037.1996.
    [126]A.CHEVALIER,M.MILLER,E.HENDRICKS.On the Validity of Mean Value Engine Models During Transient Operation[J].SAE Paper 2000-01-1261.2000.
    [127]白志峰,张传伟,李舒欣,林家让,曹秉刚.电动汽车驱动与再生制动的H∞鲁棒控制[J].西安交通大学学报.2005.
    [128]ABBAS RAFTARI,LE YI WANG,DANIEL ORZEL.Optimal H-infinity Decoupling of Engine Idle Speed and Emission Subsystems[J].IEEE 0-8186-7352-4.1996.
    [129]ABBAS RAFTARI,LE YI WANG,DANIEL ORZEL.Robust Control and Coordination of Engine Systems[J].IEEE,Conference on control applications.1996.
    [130]E.HENDRICKS,S.C.SORENSON.Mean Value Modelling of Spark Ignition Engines.SAE Paper 900616.1990.
    [131]KEMIN ZHOU,J.C.Doyle,K.Glover.Robust and Optimal Control[M].2006.
    [132]俞立.鲁棒控制-线性矩阵不等式处理方法[M].41-64.,2002
    [133][孙鹏远.基于LMI优化的主动悬架多目标控制研究[D].吉林大学博士论文.2004.
    [134]陈虹,赵桂军,孙鹏远.H_2和H∞主动悬架统一的理论框架与比较[J].汽车工程.2003,25(1).
    [135]HONG CHEN,KONG HUI GUO.Constrained Control of Active Suspen -sions:An LMI Approach[J].IEEE Trans on Control Systems Technology.2005.
    [136]HONG CHEN,C.W.SCHERER.An LMI based model predictive control scheme with guaranteed H∞ performance and its application to active suspension[J].IEEE Transactions on Automatic Control.1981,(4-16.)
    [137]朱辉,王丽清,程昌圻.硬件在环仿真系统的软硬件基础[J].小型内燃机.1998,27(6):22-26.
    [138]ICHINOSE M,YOKOYAMA A,NISHIGAITO T.Development of Hardware-In-the -Loop Simulator for Adaptive Cruise Control System[J].The 6th International Symposium on Advanced Vehicle Control.2002,72.
    [139]OIDA T,KUBOTA K,TAKEUCHI T,et al.Development of a Vehicle Dynamics Simulation System for Adaptive Cruise Control[J].The 6th International Symposium on Advanced Vehicle Control.2002,98.
    [140]YI K,WOO M,KIM H S,et al.An Experimental Investigation of a CW/CA System for Automobile Using Hardware-In-the-Loop Simulation[J].Proceedings of the American control conference.1999,35:724-748.
    [141]李静,李幼德,吴坚等.基于快速成型技术的牵引力控制系统[J].吉林大学学报(工学版).2004,34:202-206.
    [142]张江滨,姚辉,杨晓萍.构建基于XPC目标的实时仿真测试系统[J].水利水电技术.2005:70-76.
    [143]徐国政,陈勇.基于Matlab/xPCTarget的数据采集系统[J].微计算机信息(测控自动化).2005,21:63-64.
    [144]苗立东,邹广德,石沛林,宋天佳.基于xPC的汽车测控系统的开发[J].汽车工程.2008,30(3):235-238.
    [145]黄飞,杨玉兵,邵利民.基于Matlab/xPC Target的BPH调速器实时仿真实验台研究[J].柴油机.2006,28(4):16-18.
    [146]孔磊,宋健.多功能液压ABS混和仿真实验台设计研究[J].公路交通科技.2006,23(10):128-131.
    [147]李升波,王建强,李克强.基于xPC的驾驶员辅助系统硬件在环仿真试验台[J].中国机械工程.2005,18(16):2012-2015.
    [148]王爽心,王玎婷,杨辉,刘国栋.基于xPC目标的液压疲劳控制系统半实物实时仿真[J].仪器仪表学报.2006,6:567-569.
    [149]程夕明,徐梁飞,何彬,李希浩,欧阳明高.串联混合电动车辆动力系统的实时仿真[J].系统仿真学报.2004,7:1467-1471.
    [150]PHILIP O,HUBER M.Development and Test of ECU Fuctions for OBD with enDyna[J].SAE paper 2004-01-5042.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700