用户名: 密码: 验证码:
L1_0-FePt的结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
L1_0-FePt具有超高的单轴磁晶各向异性Ku,被认为在将来超高密度垂直磁记录介质中具有良好的应用潜力。本论文结合薄膜生长技术和高空间分辨电子显微术,对L1_0-FePt的结构控制、磁性能与生长条件的关系、小晶粒的有序化等问题进行了研究,并发展相关电子显微方法研究L1_0-FePt的磁二向色性。
     为了实现垂直记录,在非晶基底上生长了Pt/Fe多层膜,研究制备条件对L1_0-FePt的[001]垂直取向度的影响。发现退火条件对薄膜[001]垂直取向影响很小,而减小Fe层生长速率并提高生长温度能少量提高薄膜[001]垂直取向度。在MgO单晶基底上外延生长了[001]垂直取向的L1_0-FePt薄膜,研究了薄膜磁性能与生长条件的关系。针对L1_0-FePt矫顽力过高的问题,在多层膜快速退火中引入氧化,制备了Fe_3O_4/L1_0-FePt交换耦合双层膜。微磁模拟表明,Fe_3O_4厚度不能超过约10 nm,Fe_3O_4的引入可以使L1_0-FePt的矫顽力降低约28.6%。
     L1_0-FePt的磁性严重依赖于其化学有序度。利用球差校正高分辨电子显微术对单个十面体FePt颗粒的有序状态进行了研究,发现颗粒图像上最里面5层{002}面原子图像的积分强度随层数发生周期性起伏。多层法图像模拟结果表明这种周期性起伏不会出现在无序的FePt十面体上,实验十面体的最里面的五层{002}面为化学有序,外面三层的有序状态则不能完全确定。这些结果证明FePt颗粒小至3.4 nm时仍然可以是有序的。
     利用电子能量损矢谱技术对FePt相关材料进行了研究。对Fe_3O_4/L1_0-FePt双层膜的能量损失断面图(ELSP)研究,得到了Fe-L边的化学位移信息,结合氧元素面分布情况,推测氧在氧化过程中进入L1_0-FePt中,并在晶界形成氧化前驱体。结合ELSP和多元统计方法,发展了获得各向异性材料二向色性谱的实验方法。利用单根多壁碳纳米管的C-K边ELSP谱进行验证,获得了本征的平均谱和二向色性谱。利用ELSP-多元统计方法对单个L1_0-FePt颗粒的Fe-L边进行了研究,获得了二向色性信息,这种二向色性是由磁各向异性引起的。这种电子能量损失谱的磁线性二向色性可以用来研究磁性材料的磁矩信息。
Because of its ultra-high magnetocrystalline anisotropy Ku, L1_0-FePt has great application potential for future ultra-high density perpendicular magnetic recording media. In this thesis we have combined the thin film technique with high resolution electron microscopy, investigating the structure control of the L1_0-FePt thin film, the relationship between growth conditions and the magnetic properties and the ordering state of small FePt nanoparticle. We have also tried to develop electron energy-loss spectroscopy based method to investigate the magnetic linear dichroism of L1_0-FePt.
     In pursuance of high density perpendicular recording, we have investigated the influence of the fabricating conditions on the degree of [001] perpendicular orientation of Pt/Fe multilayer grown on amorphous substrate. It was found that the annealing temperature and the annealing time did not have much effect on the degree of [001] perpendicular orientation, while this [001] perpendicular orientation degree can be promoted partly when decrease the growth rate of the Fe layer at elevated temperature. Perfect [001] perpendicular oriented L1_0-FePt thin film was fabricated epitaxially on MgO substrate and the magnetic properties were investigated as a function of the growth conditions. In order to solve the high coercivity problem associated with its high magnetocrystalline anisotropy in L1_0-FePt, Pt/Fe multilayer was rapid thermally annealed while oxidation was introduced to fabricate exchange-coupled Fe_3O_4/L1_0-FePt bilayer. Micromagnetic simulation results indicate that the thickness of the Fe_3O_4 layer should smaller than a critical value which is about 10 nm. The introduction of the Fe_3O_4 layer can reduce the coercivity of L1_0-FePt by about 28.6%.
     The magnetic properties of L1_0-FePt depend strongly on the degree of chemical ordering. The ordering state of a single FePt decahedron nanoparticle was studied using aberration-corrected high resolution transmission electron microscopy (HRTEM). The HRTEM image of this particle indicate that the integrated intensity of the {002} layer atoms oscillated periodically from one shell to another for the inner five {002} shells while the outer three {002} shells did not show this kind of oscillation. Multislice image simulation results indicate that this intensity oscillation cannot be found in the images of disordered FePt decahedrons. The experimental decahedron may be ordered for the inner five {002} shells and the ordering state for the outer three shells remains unknown. Our results show that FePt particle, as small as 3.4 nm, can still be ordered. Even though, multiple twinning causes an effective reduction of the magnetic anisotropy.
     We have employed electron energy-loss spectroscopy to study the FePt related materials. Using energy-loss spectroscopic profiling (ELSP) technique, we obtained the chemical shift information for Fe-L edge. Combined with oxygen elemental mapping results, it was proposed that oxygen diffused into the L1_0-FePt layer to form oxidation precursor along the grain boundary. We have also combined the ELSP method with multivariate statistical analysis (MSA) method to develop a method of experimentally measuring the dichroic signals in an anisotropic material. It was tested on the C-K ELSP images from a single multi-wall carbon nanotube and the intrinsic averaged spectrum and the dichroic spectrum were successfully recovered from MSA processing. We used this ELSP-MSA technique to investigate the magnetic anisotropy of a single L1_0-FePt particle Fe-L edge image. The dichroic like signal was recovered which was due to its magnetic anisotropy. This kind of magnetic linear dichroism can be used to study the magnetic moment of magnetic materials.
引文
[1] Wang, S. X. and Taratorin, A. M. Magnetic Information Storage Technology. San Diego: Academic Press, 1999
    [2] Weller, D. and Moser, A. Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 1999, 35: 4423-4439
    [3] Naito, K. Ultrahigh-density storage media prepared by artificially assisted self-assembling methods. Chaos 2005, 15: 047507
    [4] Charap, S. H., Lu, P.-L. and He, Y. Thermal stability of recorded information at high densities. IEEE Trans. Magn. 1997, 33: 978-983
    [5] Weller, D., Moser, A., Folks, L., et al. High Ku materials approach to 100 Gbits/in2. IEEE Trans. Magn. 2000, 36: 10-15
    [6] McDaniel, T. W. Ultimate limits to thermally assisted magnetic recording. J. PHYS.: Condens. Matter 2005, 17: R315-R332
    [7] Wood, R., Sonobe, Y., Jin, Z., et al. Perpendicular recording: the promise and the problems. J. Magn. Magn. Mater 2001, 235: 1-9
    [8] Bertram, H. N. and Williams, M. SNR and density limit estimates: A comparison of longitudinal and perpendicular recording. IEEE Trans. Magn. 2000, 36: 4-9
    [9] Uesaka, Y., Takahashi, Y., Nakatani, Y., et al. Monte Carlo simulation of thermal fluctuation in magnetization of longitudinal and perpendicular magnetic recording media. J. Magn. Magn. Mater 1997, 174: 203-218
    [10] Ross, C. Patterned magnetic recording media. Ann. Rev. Mater. Res. 2001, 31: 203-235
    [11] Sun, S., Murray, C. B., Weller, D., et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287: 1989-1992
    [12] Moser, A., Takano, K., Margulies, D. T., et al. Magnetic recording: advancing into the future. J. Phys. D-Appl. Phys. 2002, 35: R157-R167
    [13] Watanabe, K. and Masumoto, H. On the high-energy product Fe-Pt permanent magnetic alloys. Trans. Japan Inst. Metals 1983, 9: 627-632
    [14] Li, F. and Ren, L. Fabrication and magnetic properties of FePt3 nanowire arrays. Phys. Stat. Sol. A 2002, 193: 196-201
    [15] Kisker, E., Wassermann, E. F. and Carbone, C. Evidence for the high-spin to low-spin state transition in ordered Fe3Pt invar. Phys. Rev. Lett. 1987, 58: 1784-1787
    [16] Chen, M., Liu, J. P. and Sun, S. H. One-step synthesis of FePt nanoparticles with tunablesize. J. Am. Chem. Soc. 2004, 126: 8394-8395
    [17] Howard, L. E. M., Nguyen, H. L., Giblin, S. R., et al. A synthetic route to size-controlled fcc and fct FePt nanoparticles. J. Am. Chem. Soc. 2005, 127: 10140-10141
    [18] Sun, S. H., Anders, S., Thomson, T., et al. Controlled synthesis and assembly of FePt nanoparticles. J. Phys. Chem. B 2003, 107: 5419-5425
    [19] Elkins, K. E., Vedantam, T. S., Liu, J. P., et al. Ultrafine FePt nanoparticles prepared by the chemical reduction method. Nano Letters 2003, 3: 1647-1649
    [20] Jeyadevan, B., Hobo, A., Urakawa, K., et al. Towards direct synthesis of fct-FePt nanoparticles by chemical route. J. Appl. Phys. 2003, 93: 7574-7576
    [21] Jeyadevan, B., Urakawa, K., Hobo, A., et al. Direct synthesis of fct-FePt nanoparticles by chemical route. Jpn. J. Appl. Phys. Part 2 - Lett. 2003, 42: L350-L352
    [22] Gibot, P., Tronc, E., Chaneac, C., et al. (Co,Fe)Pt nanoparticles by aqueous route; self-assembling, thermal and magnetic properties. J. Magn. Magn. Mater. 2005, 290: 555-558
    [23] Shevchenko, E., Talapin, D., Kornowski, A., et al. Colloidal crystals of monodisperse FePt nanoparticles grown by a three-layer technique of controlled oversaturation. Adv. Mater. 2002, 14: 287-290
    [24] Acet, M., Mayer, C., Muth, O., et al. Formation of extended ordered monolayers of FePt nanoparticles. J. Cryst. Growth 2005, 285: 365-371
    [25] Sun, S. H. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater. 2006, 18: 393-403
    [26] Terheiden, A., Rellinghaus, B., Stappert, S., et al. Embedding and self-organization of nanoparticles in phospholipid multilayers. J. Chem. Phys. 2004, 121: 510-516
    [27] Yu, A. C. C., Mizuno, M., Sasaki, Y., et al. Fabrication of monodispersive FePt nanoparticle films stabilized on rigid substrates. Appl. Phys. Lett. 2003, 82: 4352-4354
    [28] Hamann, H. F., Woods, S. I. and Sun, S. H. Direct thermal patterning of self-assembled nanoparticles. Nano Lett. 2003, 3: 1643-1645
    [29] Sasaki, Y., Mizuno, M., Yu, A. C. C., et al. Chemically synthesized L10-type FePt nanoparticles and nanoparticle arrays via template-assisted self-assembly. IEEE Trans. Magn. 2005, 41: 660-664
    [30] Darling, S. B., Yufa, N. A., Cisse, A. L., et al. Self-organization of FePt nanoparticles on photochemically modified diblock copolymer templates. Adv. Mater. 2005, 17: 2446-2450
    [31] Coffey, K. R., Parker, M. A. and Howar, J. K. High anisotropy L10 thin films for longitudinal recording. IEEE Trans. Magn. 1995, 31: 2737-2739
    [32] Ristau, R. A., Barmak, K., Lewis, L. H., et al. On the relationship of high coercivity and L10 ordered phase in CoPt and FePt thin films. J. Appl. Phys. 1999, 86: 4527-4533
    [33] Visokay, M. R. and Sinclair, R. Direct Formation of Ordered Copt and Fept Compound Thin-Films by Sputtering. Appl. Phys. Lett. 1995, 66: 1692-1694
    [34] Farrow, R. F. C., Weller, D., Marks, R. F., et al. Control of the axis of chemical ordering and magnetic anisotropy in epitaxial FePt films. J. Appl. Phys. 1996, 79: 5967-5969
    [35] Sun, X. C., Kang, S. S., Harrell, J. W., et al. Synthesis, chemical ordering, and magnetic properties of FePtCu nanoparticle films. J. Appl. Phys. 2003, 93: 7337-7339
    [36] Kang, S. S., Nikles, D. E. and Harrell, J. W. Synthesis, chemical ordering, and magnetic properties of self-assembled FePt-Ag nanoparticles. J. Appl. Phys. 2003, 93: 7178-7180
    [37] Kang, S. S., Jia, Z. Y., Nikles, D. E., et al. Synthesis, self-assembly, and magnetic properties of FePt1-xAux nanoparticles. IEEE Trans. Magn. 2003, 39: 2753-2757
    [38] Yan, Q. Y., Kim, T., Purkayastha, A., et al. Enhanced chemical ordering and coercivity in FePt alloy nanoparticles by Sb-doping. Adv. Mater. 2005, 17: 2233-2237
    [39] Maeda, T., Kai, T., Kikitsu, A., et al. Reduction of ordering temperature of an FePt-ordered alloy by addition of Cu. Appl. Phys. Lett. 2002, 80: 2147-2149
    [40] Maeda, T., Kikitsu, A., Kai, T., et al. Effect of added Cu on disorder-order transformation of L10-FePt. IEEE Trans. Magn. 2002, 38: 2796-2798
    [41] Takahashi, Y. K., Ohnuma, M. and Hono, K. Effect of Cu on the structure and magnetic properties of FePt sputtered film. J. Magn. Magn. Mater. 2002, 246: 259-265
    [42] Takahashi, Y. K. and Hono, K. On low-temperature ordering of FePt films. Scr. Mater. 2005, 53: 403-409
    [43] Li, B. H., Feng, C., Yang, T., et al. Effect of composition on L10 ordering in FePt and FePtCu thin films. J. Phys. D-Appl. Phys. 2006, 39: 1018-1021
    [44] Platt, C. L., Wierman, K. W., Svedberg, E. B., et al. L10 ordering and microstructure of FePt thin films with Cu, Ag, and Au additive. J. Appl. Phys. 2002, 92: 6104-6109
    [45] Nishimura, K., Takahashi, K., Uchida, H., et al. Effects of third elements (Ag, B, Cu, Ir) addition and high Ar gas pressure on L10 FePt films. J. Magn. Magn. Mater. 2004, 272-76: 2189-2190
    [46] Hsu, Y. N., Jeong, S., Laughlin, D. E., et al. Effects of Ag underlayers on the microstructure and magnetic properties of epitaxial FePt thin films. J. Appl. Phys. 2001, 89: 7068-7070
    [47] Zhao, Z. L., Ding, J., Inaba, K., et al. Promotion of L10 ordered phase transformation by the Ag top layer on FePt thin films. Appl. Phys. Lett. 2003, 83: 2196-2198
    [48] Zhao, Z. L., Inaba, K., Ito, Y., et al. Crystallography ordering studies of the L10 phase transformation of FePt thin film with Ag top layer. J. Appl. Phys. 2004, 95: 7154-7156
    [49] Xu, Y. F., Chen, J. S. and Wang, J. P. In situ ordering of FePt thin films with face-centered-tetragonal (001) texture on Cr100-xRux underlayer at low substratetemperature. Appl. Phys. Lett. 2002, 80: 3325-3327
    [50] Wang, H. Y., Ma, X. K., He, Y. J., et al. Enhancement in ordering of FePt films by magnetic field annealing. Appl. Phys. Lett. 2004, 85: 2304-2306
    [51] Wang, H. Y., Mao, W. H., Sun, W. B., et al. High coercivity and small grains of FePt films annealed in high magnetic fields. J. Phys. D-Appl. Phys. 2006, 39: 1749-1753
    [52] Cebollada, A., Weller, D., Sticht, J., et al. Enhanced magnetooptical Kerr-effect in spontaneously ordered FePt alloys - Quantitative agreement between theory and experiment. Phys. Rev. B 1994, 50: 3419-3422
    [53] Shen, W. K., Judy, J. H. and Wang, J. P. In situ epitaxial growth of ordered FePt (001) films with ultra small and uniform grain size using a RuAl underlayer. J. Appl. Phys. 2005, 97: 10H301
    [54] Cao, J. W., Cai, J., Liu, Y., et al. Effect of CrW underlayer on structural and magnetic properties of FePt thin films. J. Appl. Phys. 2006, 99: 08F901
    [55] Tsuji, Y., Noda, S. and Yamaguchi, Y. Structure and magnetic property of c-axis oriented L10-FePt nanoparticles on TiN/a-Si underlayers. J. Vac. Sci. Technol. B 2007, 25: 1892-1895
    [56] Luo, C. P., Liou, S. H., Gao, L., et al. Nanostructured FePt : B2O3 thin films with perpendicular magnetic anisotropy. Appl. Phys. Lett. 2000, 77: 2225-2227
    [57] Yan, M. L., Sabirianov, R. F., Xu, Y. F., et al. L10 ordered FePt : C composite films with (001) texture. IEEE Trans. Magn. 2004, 40: 2470-2472
    [58] Yan, M. L., Xu, Y. F., Li, X. Z., et al. Highly (001)-oriented Ni-doped L10 FePt films and their magnetic properties. J. Appl. Phys. 2005, 97: 10H309
    [59] Shao, Y., Yan, M. L. and Sellmyer, D. J. Effects of rapid thermal annealing on nanostructure, texture and magnetic properties of granular FePt : Ag films for perpendicular recording. J. Appl. Phys. 2003, 93: 8152-8154
    [60] Yang, F. J., Wang, H., Wang, H. B., et al. Microstructure evolution, magnetic and mechanical properties of FePt/B4C multifunctional multilayer composite films. J. Phys. D-Appl. Phys. 2007, 40: 6735-6739
    [61] George, T. A., Li, Z., Yan, M. L., et al. Nanostructure and magnetic properties of L10 FePt: X films. J. Appl. Phys. 2008, 103: 07D502
    [62] Wu, Y. C., Wang, L. W., Lai, C. H., et al. Control of microstructure in (001)-orientated FePt-SiO2 granular films. J. Appl. Phys. 2008, 103: 07E140
    [63] Wu, Y. C., Wang, L. W., Rahman, M. T., et al. Evolution of granular to particulate structure of (001) FePt on amorphous substrates. J. Appl. Phys. 2008, 103: 07E126
    [64] Zeng, H., Yan, M. L., Powers, N., et al. Orientation-controlled nonepitaxial L10 CoPt and FePt films. Appl. Phys. Lett. 2002, 80: 2350-2352
    [65] Yan, M. L., Powers, N. and Sellmyer, D. J. Highly oriented nonepitaxially grown L10 FePt films. J. Appl. Phys. 2003, 93: 8292-8294
    [66] Nakagawa, S. and Kamiki, T. Highly (001) oriented FePt ordered alloy thin films fabricated from Pt(100)/Fe(100) structure on glass disks without seed layers. J. Magn. Magn. Mater. 2005, 287: 204-208
    [67] Cao, J. W., Cai, J., Liu, Y., et al. Preparation of (001) oriented L10 phase FePt thin films by alternate sputtering. J. Magn. Magn. Mater. 2006, 303: 142-146
    [68] Kim, J. S., Koo, Y. M., Lee, B. J., et al. The origin of (001) texture evolution in FePt thin films on amorphous substrates. J. Appl. Phys. 2006, 99: 053906
    [69] Kim, J. S., Koo, Y. M. and Shin, N. The effect of residual strain on (001) texture evolution in FePt thin film during postannealing. J. Appl. Phys. 2006, 100: 093909
    [70] Ichitsubo, T., Tojo, S., Uchihara, T., et al. Mechanism of c-axis orientation of L10 FePt in nanostructured FePt/B2O3 thin films. Phys. Rev. B 2008, 77: 094114
    [71] Victora, R. H., Xue, J. H. and Patwari, M. Areal density limits for perpendicular magnetic recording. IEEE Trans. Magn. 2002, 38: 1886-1891
    [72] Kuo, C. M. and Kuo, P. C. Magnetic properties and microstructure of FePt-Si3N4 nanocomposite thin films. J. Appl. Phys. 2000, 87: 419-426
    [73] Dai, Z. R., Sun, S. H. and Wang, Z. L. Phase transformation, coalescence, and twinning of monodisperse FePt nanocrystals. Nano Lett. 2001, 1: 443-447
    [74] Kuo, C. M., Kuo, P. C., Hsu, W. C., et al. Effects of W and Ti on the grain size and coercivity of Fe50Pt50 thin films. J. Magn. Magn. Mater. 2000, 209: 100-102
    [75] Ko, H. S., Perumal, A. and Shin, S. C. Fine control of L10 ordering and grain growth kinetics by C doping in FePt films. Appl. Phys. Lett. 2003, 82: 2311-2313
    [76] Liu, C., Wu, X. W., Klemmer, T., et al. Reduction of sintering during annealing of FePt nanoparticles coated with iron oxide. Chem. Mat. 2005, 17: 620-625
    [77] Zeng, H., Li, J., Wang, Z. L., et al. Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Letters 2004, 4: 187-190
    [78] Chen, M. P., Kuroishi, K. and Kitamoto, Y. Magnetic properties and microstructure of isolated Fe-Pt nanoparticle-monolayer assembly by protective coating. IEEE Trans. Magn. 2005, 41: 3376-3378
    [79] Lee, D. C., Mikulec, F. V., Pelaez, J. M., et al. Synthesis and magnetic properties of silica-coated FePt nanocrystals. J. Phys. Chem. B 2006, 110: 11160-11166
    [80] Mizuno, M., Sasaki, Y., Yu, A. C. C., et al. Prevention of nanoparticle coalescence under high-temperature annealing. Langmuir 2004, 20: 11305-11307
    [81] Elkins, K., Li, D., Poudyal, N., et al. Monodisperse face-centred tetragonal FePt nanoparticles with giant coercivity. J. Phys. D: Appl. Phys. 2005, 38: 2306-2309
    [82] Shima, T., Takanashi, K., Takahashi, Y. K., et al. Coercivity exceeding 100 kOe in epitaxially grown FePt sputtered films. Appl. Phys. Lett. 2004, 85: 2571-2573
    [83] Kanai, Y., Matsubara, R., Watanabe, H., et al. Recording field analysis of narrow-track SPT head with side shields, tapered main pole, and tapered return path for 1 Tb/in2. IEEE Trans. Magn. 2003, 39: 1955-1960
    [84] Takahashi, N., Akiyama, K., Miyagi, D., et al. Advanced optimization of standard head model with higher writing field and higher field gradient using 3-D ON/OFF method. IEEE Trans. Magn. 2008, 44: 966-969
    [85] Osaka, T. and Sayama, J. A challenge of new materials for next generation's magnetic recording. Electrochim. Acta 2007, 52: 2884-2890
    [86] Rottmayer, R. E., Batra, S., Buechel, D., et al. Heat-assisted magnetic recording. IEEE Trans. Magn. 2006, 42: 2417-2421
    [87] Victora, R. H. and Shen, X. Composite media for perpendicular magnetic recording. IEEE Trans. Magn. 2005, 41: 537-542
    [88] Wang, J. P., Zou, Y. Y., Hee, C. H., et al. Approaches to tilted magnetic recording for extremely high areal density. IEEE Trans. Magn. 2003, 39: 1930-1935
    [89] Suess, D., Schrefl, T., F?hler, S., et al. Exchange spring media for perpendicular recording. Appl. Phys. Lett. 2005, 87: 012504
    [90] Okamoto, S., Kikuchi, N., Kitakami, O., et al. Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films. Phys. Rev. B 2002, 66: 024413
    [91] Staunton, J. B., Ostanin, S., Razee, S. S. A., et al. Long-range chemical order effects upon the magnetic anisotropy of FePt alloys from an ab initio electronic structure theory. J. Phys.-Condes. Matter 2004, 16: S5623-S5631
    [92] Ping, D. H., Ohnuma, M., Hono, K., et al. Microstructures of FePt-Al-O and FePt-Ag nanogranular thin films and their magnetic properties. J. Appl. Phys. 2001, 90: 4708-4716
    [93] Takahashi, Y. K., Ohkubo, T., Ohnuma, M., et al. Size effect on the ordering of FePt granular films. J. Appl. Phys. 2003, 93: 7166-7168
    [94] Takahashi, Y. K., Koyama, T., Ohnuma, M., et al. Size dependence of ordering in FePt nanoparticles. J. Appl. Phys. 2004, 95: 2690-2696
    [95] Miyazaki, T., Kitakami, O., Okamoto, S., et al. Size effect on the ordering of L10 FePt nanoparticles. Phys. Rev. B 2005, 72: 144419
    [96] Jia, Z. Y., Kang, S., Shi, S., et al. Size effect on L10 ordering and magnetic properties of chemically synthesized FePt and FePtAu nanoparticles. J. Appl. Phys. 2005, 97: 10J310
    [97] Rong, C. B., Li, D. R., Nandwana, V., et al. Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles. Adv. Mater. 2006, 18: 2984-2988
    [98] Chepulskii, R. V. and Butler, W. H. Temperature and particle-size dependence of the equilibrium order parameter of FePt alloys. Phys. Rev. B 2005, 72: 134205
    [99] Muller, M. and Albe, K. Lattice Monte Carlo simulations of FePt nanoparticles: Influence of size, composition, and surface segregation on order-disorder phenomena. Phys. Rev. B 2005, 72: 094203
    [100] Yang, B., Asta, M., Mryasov, O. N., et al. Equilibrium Monte Carlo simulations of A1-L10 ordering in FePt nanoparticles. Scr. Mater. 2005, 53: 417-422
    [101] Yang, B., Asta, M., Mryasov, O. N., et al. The nature of A1-L10 ordering transitions in alloy nanoparticles: A Monte Carlo study. Acta Mater. 2006, 54: 4201-4211
    [102] Muller, M., Erhart, P. and Albe, K. Thermodynamics of L10 ordering in FePt nanoparticles studied by Monte Carlo simulations based on an analytic bond-order potential. Phys. Rev. B 2007, 76: 155412
    [103] Wang, R. M., Dmitrieva, O., Farle, M., et al. Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. Phys. Rev. Lett. 2008, 1: 017205
    [104]唐伟忠.薄膜材料制备原理、技术及应用.北京:冶金工业出版社, 1998
    [105]陈海英.精密磁强计的发展现状及应用.现代仪器2000, 6: 5-7
    [106] Williams, D. B. and Carter, C. B. Transmission electron microscopy. New York: Plenum press, 1996
    [107]进藤大辅,及川哲夫.材料评价的分析电子显微方法(刘安生译).北京:冶金工业出版社, 2001
    [108] Egerton, R. F. Electron energy-loss spectroscopy in the electron microscopy. 2nd Edition. New York: Plenum Press, 1996
    [109] Li, J. S., Mirzamaani, M., Bian, X. P., et al. 10 Gbit/in2 longitudinal media on a glass substrate. J. Appl. Phys. 1999, 85: 4286-4291
    [110] Yan, M. L., Zeng, H., Powers, N., et al. L10,(001)-oriented FePt : B2O3 composite films for perpendicular recording. J. Appl. Phys. 2002, 91: 8471-8473
    [111] Ahn, K. H., Baik, S. and Kim, S. S. Change of growth orientation in Pt films epitaxially grown on MgO(001) substrates by sputtering. J. Mater. Res. 2002, 17: 2334-2338
    [112] Chantrell, R. W. and O'Grady, K. Magnetic characterization of recording media. J. Phys. D-Appl. Phys. 1992, 25: 1-23
    [113] Hellwig, O., Kortright, J. B., Takano, K., et al. Switching behavior of Fe-Pt/Ni-Fe exchange-spring films studied by resonant soft-x-ray magneto-optical Kerr effect. Phys. Rev. B 2000, 62: 11694-11698
    [114] Thiele, J.-U., Maat, S. and Fullerton, E. E. FeRh/FePt exchange spring films for thermally assisted magnetic recording media. Appl. Phys. Lett. 2003, 82: 2859-2861
    [115] Casoli, F., Albertini, F., Fabbrici, S., et al. Exchange-coupled FePt/Fe bilayers with perpendicular magnetization. IEEE Trans. Magn. 2005, 41: 3877-3879
    [116] Asti, G., Ghidini, M., Pellicelli, R., et al. Magnetic phase diagram and demagnetization processes in perpendicular exchange-spring multilayers. Phys. Rev. B 2006, 73: 094406
    [117] Casoli, F., Albertini, F., Nasi, L., et al. Strong coercivity reduction in perpendicular FePt/Fe bilayers due to hard/soft coupling. Appl. Phys. Lett. 2008, 92: 142506
    [118] Zha, C. L., Zhang, Y. S., Ma, B., et al. Perpendicular exchange coupling in TbFeCo/FePt bilayer films. Chin. Phys. Lett. 2006, 23: 978-981
    [119] Briks, N. and Meier, G. H. Introduction to High Temperature Oxidation of Metals. London: Edward Arnold, 1983
    [120] Colliex, C., Manoubi, T. and Ortiz, C. Electron-energy-loss-spectroscopy near-edge structures in the iron-oxygen system. Phys. Rev. B 1991, 44: 11402-11411
    [121] Park, C. H., Na, J. G., Jang, P. W., et al. Effects of annealing condition on the structural and magnetic properties of FePt thin films. IEEE Trans. Magn. 1999, 35: 3034-3036
    [122] Na, K.-H., Na, J.-G., Kim, H.-J., et al. Microstructure and magnetic properties of oxidized Fe–Pt films with high rate order–disorder transformation. IEEE Trans. Magn. 2001, 37: 1312-1314
    [123] Anders, S., Toney, M. F., Thomson, T., et al. X-ray absorption and diffraction studies of thin polymer/FePt nanoparticle assemblies. J. Appl. Phys. 2003, 93: 6299-6304
    [124] Anders, S., Toney, M. F., Thomson, T., et al. X-ray studies of magnetic nanoparticle assemblies. J. Appl. Phys. 2003, 93: 7343-7345
    [125] Liu, C., Klemmer, T. J., Shukla, N., et al. Oxidation of FePt nanoparticles. J. Magn. Magn. Mater. 2003, 266: 96-101
    [126] Kim, Y. K. and Olivetia, M. Magnetic properties of reactively sputtered Fe1-xO and Fe3O4 thin films. J. Appl. Phys. 1994, 75: 431-437
    [127] Watanabe, K. and Masumoto, H. On the high-energy product Fe-Pt permanent magnet Alloys. Tans. JIM 1983, 24: 627-632
    [128] Zeng, H., Li, J., Liu, J. P., et al. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 2002, 420: 395-398
    [129]韦丹.材料的电磁基础.北京:科学出版社, 2005
    [130] Donahue, M. J. and Porter, D. G. OOMMF User's Guide. National Institute of Standards and Technology, Gaithersburg, MD: Interagency Report NISTIR 6376, 1999
    [131] Wohlfarth, E. P. Ferromagnetic Materials. Amsterdam: North-Holland, 1980
    [132] Suess, D., Schrefl, T., Dittrich, R., et al. Exchange spring recording media for areal densities up to 10 Tbit/in2. J. Magn. Magn. Mater 2005, 290-291: 551-554
    [133] Kneller, E. F. and Hawig, R. The exchange-spring magnet: A new material principle for permanent magnets. IEEE Trans. Magn. 1991, 27: 3588-3600
    [134] Urban, K. W. Studying atomic structures by aberration-corrected transmission electron microscopy. Science 2008, 321: 506-510
    [135]王蓉.电子衍射物理教程.北京:冶金工业出版社, 2002
    [136] Phillipp, F., Hoschen, R., Osaki, M., et al. New high-voltage atomic-resolution microscope approaching 1-angstrom point resolution installed in Stuttgart. Ultramicroscopy 1994, 56: 1-10
    [137] Krivanek, O. L., Dellby, N. and Lupini, A. R. Towards sub-angstrom electron beams. Ultramicroscopy 1999, 78: 1-11
    [138] Haider, M., Rose, H., Uhlemann, S., et al. A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 1998, 75: 53-60
    [139] Haider, M., Uhlemann, S. and Zach, J. Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 2000, 81: 163-175
    [140] Uhlemann, S. and Haider, M. Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 1998, 72: 109-119
    [141] Saxton, W. O. Observation of lens aberrations for very high-resolution electron-microscopy .1. Theory. J. Microsc.-Oxf. 1995, 179: 201-213
    [142] Tanaka, N. Present status and future prospects of spherical aberration corrected TEM/STEM for study of nanomaterials. Sci. Technol. Adv. Mater. 2008, 9: 014111
    [143] Allsop, N. A., Dobson, P. J. and Hutchison, J. L. Optimized HREM imaging of objects supported by amorphous substrates using spherical aberration adjustment. J. Microsc.-Oxf. 2006, 223: 1-8
    [144] Li, D. R., Poudyal, N., Nandwana, V., et al. Hard magnetic FePt nanoparticles by salt-matrix annealing. J. Appl. Phys. 2006, 99: 08E911
    [145] Bethe, H. A. Theory on the diffraction of electrons in crystals. Ann. Phys. 1928, 87: 55-128
    [146] Cowley, J. M. and Moodie, A. F. The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst. 1957, 10: 609-619
    [147]进藤大辅,平贺贤二.材料评价的高分辨电子显微方法(刘安生译).北京:冶金工业出版社, 1998
    [148] Li, F. and Lannin, J. S. Radial distribution function of amorphous carbon. Phys. Rev. Lett. 1990, 65: 1905-1908
    [149] Gryaznov, V. G., Heydenreich, J., Kaprelov, A. M., et al. Pentagonal symmetry and disclinations in small particles. Cryst. Res. Technol. 1999, 34: 1091-1119
    [150] Doye, J. P. K. and Wales, D. J. Magic numbers and growth sequences of smallface-centred-cubic and decahedral clusters. Chem. Phys. Lett. 1995, 247: 339-347
    [151] Hytch, M. J. and Stobbs, W. M. Quantitative comparison of high-resolution TEM images with image simulations. Ultramicroscopy 1994, 53: 191-203
    [152] Dai, Z. R., Sun, S. H. and Wang, Z. L. Shapes, multiple twins and surface structures of monodisperse FePt magnetic nanocrystals. Surf. Sci. 2002, 505: 325-335
    [153] Rellinghaus, B., Dmitrieva, O. and Stappert, S. Destabilization of icosahedral structures in FePt multiply twinned particles. J. Cryst. Growth 2004, 262: 612-619
    [154] Tan, C. Y., Chen, J. S., Liu, B. H., et al. Microstructure of FePt nanoparticles produced by nanocluster beam. J. Cryst. Growth 2006, 293: 175-185
    [155] Chen, J. S., Tan, C. Y. and Chow, G. M. Microstructure and direct ordering of FePt nanoparticles produced by nanocluster beam technology. Nanotechnology 2007, 18: 435604
    [156] Gruner, M. E., Rollmann, G., Entel, P., et al. Multiply twinned morphologies of FePt and CoPt nanoparticles. Phys. Rev. Lett. 2008, 100: 087203
    [157] Muller, M. and Albe, K. Structural stability of multiply twinned FePt nanoparticles. Acta Mater. 2007, 55: 6617-6626
    [158] Potapov, P. L. and Schryvers, D. Measuring the absolute position of EELS ionisation edges in a TEM. Ultramicroscopy 2004, 99: 73-85
    [159] Walther, T. Electron energy-loss spectroscopic profiling of thin film structures: 0.39 nm line resolution and 0.04 eV precision measurement of near-edge structure shifts at interfaces. Ultramicroscopy 2003, 96: 401-411
    [160] Krivanek, O. J., Gubbes, A. J. and Dellby, N. Developments in EELS instrumentation for spectroscopy and imaging. Microsc. Microanal. Microstruct. 1991, 2: 315-332
    [161] van Aken, P. A., Liebscher, B. and Styrsa, V. J. Quantitative determination of iron oxidation states in minerals using Fe L2,3-edge electron energy-loss near-edge structure spectroscopy. Phys. Chem. Miner. 1998, 25: 323-327
    [162]孙岳魁.各向异性材料中的电子能量损失理论及其应用: [硕士学位论文],北京:清华大学, 2005
    [163] Yuan, J., Wang, Z. W., Fu, X., et al. Development of electron energy-loss spectroscopy for nanoscience. Micron 2008, 39: 658-665
    [164] Leapman, R. D., Fejes, P. L. and Silcox, J. Orientation dependence of core edges from anisotropic materials determined by inelastic scattering of fast electrons. Phys. Rev. B 1983, 28: 2361-2373
    [165] Menon, N. K. and Yuan, J. Quantitative analysis of the effect of probe convergence on electron energy loss spectra of anisotropic materials. Ultramicroscopy 1998, 74: 83-94
    [166] Daniels, H., Brown, A., Scott, A., et al. Experimental and theoretical evidence for themagic angle in transmission electron energy loss spectroscopy. Ultramicroscopy 2003, 96: 523-534
    [167] Jouffrey, B., Schattschneider, P. and Hebert, C. The magic angle: a solved mystery. Ultramicroscopy 2004, 102: 61-66
    [168] Schattschneider, P., Hebert, C., Franco, H., et al. Anisotropic relativistic cross sections for inelastic electron scattering, and the magic angle. Phys. Rev. B 2005, 72: 045142
    [169] Sun, Y. and Yuan, J. Electron energy loss spectroscopy of core-electron excitation in anisotropic systems: Magic angle, magic orientation, and dichroism. Phys. Rev. B 2005, 71: 125109
    [170] Le Bosse, J. C., Epicier, T. and Jouffrey, B. Polarization dependence in ELNES: Influence of probe convergence, collector aperture and electron beam incidence angle. Ultramicroscopy 2006, 106: 449-460
    [171] Dellby, N., Krivanek, O. L., Nellist, P. D., et al. Progress in aberration-corrected scanning transmission electron microscopy. Journal of Electron Microscopy 2001, 50: 177-185
    [172] Thole, B. T., Carra, P., Sette, F., et al. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 1992, 68: 1943-1946
    [173] Carra, P., Thole, B. T., Altarelli, M., et al. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 1993, 70: 694-697
    [174] van der Laan, G., Thole, B. T., Sawatzky, G. A., et al. Experimental proof of magnetic x-ray dichroism. Phys. Rev. B 1986, 34: 6529-6531
    [175] van der Laan, G. and Thole, B. T. Strong magnetic x-ray dichroism in 2p absorption spectra of 3d transition-metal ions. Phys. Rev. B 1991, 43: 13401-13411
    [176] Kuiper, P., Searle, B. G., Rudolf, P., et al. X-ray magnetic dichroism of antiferromagnet Fe2O3: The orientation of magnetic moments observed by Fe 2p x-ray absorption spectroscopy. Phys. Rev. Lett. 1993, 70: 1549-1552
    [177] Morrison, D. F. Multivariate Statistical Methods. 3rd Edition. Singapore: McGraw-Hill, 1990
    [178] Bonnet, N., Brun, N. and Colliex, C. Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis. Ultramicroscopy 1999, 77: 97-112
    [179] Jolliffe, I. T. Principal Component Analysis. 2nd Edition. New York: Springer, 2002
    [180] Shlens, J. A Tutorial on Principal Component Analysis. http://www.snl.salk.edu/~shlens/notes.html, 2005
    [181] Titchmarsh, J. M. Detection of electron energy-loss edge shifts and fine structure variations at grain boundaries and interfaces. Ultramicroscopy 1999, 78: 241-250
    [182] Zhang, Z. J., Zhou, Y. and Yue, Y. Control the relative length of carbon nanotubes fromsite to site on one silicon substrate. Appl. Phys. Lett. 2005, 87: 223121
    [183] Sun, Y. K. and Yuan, J. Spatially resolved core level spectroscopy of nanotubes. Mater. Sci. Forum 2005, 475-479: 4085-4088
    [184] Menon, N. K. and Yuan, J. Towards atomic resolution EELS of anisotropic materials. Ultramicroscopy 1999, 78: 185-205
    [185] Stephan, O., Ajayan, P. M., Colliex, C., et al. Curvature-induced bonding changes in carbon nanotubes investigated by electron energy-loss spectrometry. Phys. Rev. B 1996, 53: 13824-13829
    [186] Gao, S. P., Zhang, A. H., Zhu, J., et al. Anisotropic spectroscopy of nitrogen K-edge in group-III nitrides. Appl. Phys. Lett. 2004, 84: 2784-2786
    [187] Tenne, R., Margulis, L., Genut, M., et al. Polyhedral and cylindrical structures of tungsten disulphide. Nature 1992, 360: 444-446
    [188] Feldman, Y., Wasserman, E., Srolovitz, D. J., et al. High-rate, gas-phase Ggrowth of MoS2 nested inorganic fullerenes and nanotubes. Science 1995, 267: 222-225
    [189] Hitchcock, A. P. Near-edge electron energy-loss spectroscopy: comparison to X-ray-absorption. Jpn. J. Appl. Phys. Part 1. 1993, 32: 176-181
    [190] Yuan, J. and Menon, N. K. Magnetic linear dichroism in electron energy loss spectroscopy. J. Appl. Phys. 1997, 81: 5087-5089
    [191] van Aken, P. A. and Lauterbach, S. Strong magnetic linear dichroism in Fe L23 and O K electron energy-loss near-edge spectra of antiferromagnetic hematite alpha-Fe2O3. Phys. Chem. Miner. 2003, 30: 469-477
    [192] Hebert, C. and Schattschneider, P. A proposal for dichroic experiments in the electron microscope. Ultramicroscopy 2003, 96: 463-468
    [193] Schattschneider, P., Rubino, S., Hebert, C., et al. Detection of magnetic circular dichroism using a transmission electron microscope. Nature 2006, 441: 486
    [194] Verbeeck, J., Hebert, C., Rubino, S., et al. Optimal aperture sizes and positions for EMCD experiments. Ultramicroscopy 2008, 108: 865-872
    [195] Schattschneider, P., Hebert, C., Rubino, S., et al. Magnetic circular dichroism in EELS: Towards 10 nm resolution. Ultramicroscopy 2008, 108: 433-438
    [196] Zuo, J. M., Gao, M., Tao, J., et al. Coherent nano-area electron diffraction. Microsc. Res. Tech. 2004, 64: 347-355
    [197] Gao, M., Zuo, J. M., Twesten, R. D., et al. Structure determination of individual single-wall carbon nanotubes by nanoarea electron diffraction. Appl. Phys. Lett. 2003, 82: 2703-2705
    [198] Zuo, J. M., Vartanyants, I., Gao, M., et al. Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science 2003, 300: 1419-1421

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700