用户名: 密码: 验证码:
氧化铝/镍复合材料制备新工艺及结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝陶瓷因其价格低,硬度大,电绝缘性高,化学稳定性好等优点,在结构陶瓷、电子陶瓷、生物陶瓷等领域占有重要的位置。但断裂韧性较低是限制其更广泛应用的主要原因。陶瓷材料的脆性主要是由物质的化学键合性质和它的显微结构所决定,因此,优化材料整体显微结构均匀性及物相间晶界的化学键合状态是解决氧化铝陶瓷脆性的根本。同时,功能化已成为材料技术发展的新趋势,结合材料的功能性和结构性,开发新型功能化氧化铝陶瓷基复合材料已成为新材料领域的热点之一。
     本论文基于微球结构设计,首先采用非均相沉淀包裹—热还原工艺制备了纳米铁磁性金属(Fe、Co、Ni及其合金)包裹氧化铝复合微球粉体,然后以氧化铝/镍复合微球为原料,采用热压烧结法制备了氧化铝/镍复合金属陶瓷;通过采用不同原料及热压工艺对氧化铝/镍复合材料微观结构及界面结合状态进行了设计,并在此基础上,通过包裹掺杂钇稳定氧化锆制备了氧化锆/镍/氧化铝多相复合陶瓷。利用扫描电子显微镜(SEM)、能量发散谱仪(EDS)、X-射线衍射仪(XRD)对复合微球前驱体、热还原产物、热压烧结产物的形貌、宏观结构、成分进行了表征;采用透射电子显微镜(TEM)及电子能量损失谱仪(EELS)对氧化铝/镍复合金属陶瓷的微观结构及界面化学进行了表征和分析;利用阿基米德法测量了金属陶瓷的密度,并分别用三点弯曲法和单边切口横梁法对材料的抗弯强度和断裂韧性进行了评估;借助LCR自动测量仪和振动样品磁强计对复合金属陶瓷的电磁性能进行了检测。本论文取得的主要成果及创新点有:
     (1)开发了非均相沉淀包裹—热还原制备壳/核结构纳米金属/氧化铝微球新工艺,并利用这一工艺制备了一系列纳米金属(Fe、Co、Ni及其合金)包裹氧化铝复合微球。系统研究了非均相沉淀包裹过程中包裹颗粒浓度、加料速度、反应时间及表面活性剂等因素的影响。在优化条件(包裹颗粒浓度10~15g/L,加料速度4~SmL/min,反应时间1~2hr,表面活性剂5mL/L,搅拌速度1000r/min)下,获得了理想的纳米金属包裹氧化铝复合微球粉体前驱体,前驱体在氢气还原下容易转变成纳米金属/氧化铝复合微球。这一工艺可实现金属含量及组成、包裹层厚度、分布状态、金属颗粒大小可控,磁性能良好。
     (2)基于氧化铝/镍复合材料微观结构设计,系统研究了分别采用金属镍包裹氧化铝微球、氧化铝包裹金属镍微球及氧化铝/镍共沉淀微球来制备复合金属陶瓷,较好地调控了金属镍的分布方式,分别形成晶界型、晶内型以及晶内/晶界混合型结构。采用球形包裹结构复合粉体原料,大大改善了复合材料的结构均匀性。
     (3)在所制备的氧化铝/镍复合材料中,氧化铝与镍粒子界面通过非反应性成键形成-Ni-Ni-Al-O-Al强的界面键合,改善了材料界面结合状态;同时,金属镍粒子的引入大大细化了氧化铝晶粒,使氧化铝主晶界得到强化,断裂模式发生改变,达到了氧化铝陶瓷的韧化目的,抗弯强度可提高到600MPa左右,断裂韧性则可提高到6~8MPa·m~(1/2)。同时氧化铝/镍复合材料保持了较高的饱和磁化强度、矫顽力和介电常数;
     (4)系统地研究了氧化锆与镍共掺杂行为,发现氧化铝复合陶瓷与单相Al_2O_3相比,抗弯强度可提高28%,断裂韧性可提高141%,但复合材料的韧性增强并未高于Al_2O_3/Ni和Al_2O_3/ZrO_2两种复合材料韧性增强之和,即未出现韧性叠加效应,主要是ZrO_2的部分相变增韧效应被邻近大金属Ni粒子吸收掉。Ni和ZrO_2的引入增强了空间电荷的极化,使复合材料具有较高的介电常数。
     本论文开发的非均相沉淀包裹—热还原制备纳米金属包裹氧化铝复合微球粉体工艺,工艺过程简单,原料来源广泛,容易实现规模化生产;复合微球粒子流动性好,填充密度高,集合了纳米磁性金属与陶瓷各自的特点,比表面积大、表面活性高,分散性好,并具有核/壳结构协同特性,可成为良好的电磁波吸收剂及催化剂;采用这种复合微球粉体烧结制备结构陶瓷可以从根本上解决金属与陶瓷的弱结合、化学成分分布不均等问题,在刀具材料、铝电解惰性阳极、陶瓷—金属封接等领域具有广阔的潜在应用。
Alumina has been and will continue to be widely used in structural,electronic, optical and biomedical applications due to its outstanding properties of low cost,high rigidity,high electrical resistance and chemical stability.However,the brittleness is a major limitation of alumina in many applications.It is well known that the brittleness of alumina is resulted from the chemical bonding characteristics among components and the microstructure,so that optimizing the microstructure and state of chemical bonds among components are keys to reduce the brittleness of alumina.Moreover,with the functionality has been a general tendency for materials technology,combining the functional and structural characteristics of ceramics and developing novel alumina-based composites have been a hotspot.
     Based on the structural design of microspheres,nano-ferromagnetic metals (Fe,Co,Ni and alloys)-coated alumina microspheres were prepared by heterogeneous precipitation,followed thermal-reduction process.Then,alumina-based Ni composite cermets were prepared by hot-press sintering alumina/Ni composite microspheres.The microstructure and interfacial bonding states for alumina/Ni composite cermets were tailored via adopting different sintering raw materials and hot-press sintering processes. Furthermore,alumina-based Ni and zirconia composites were prepared by coating Ni and yttrium-stablized zirconia successively on alumina microspheres.The morphologies, microstructure and composition or crystalline phases of the composite microspherical precursors,thermal-reduction products and resultant hot-press sintering cermets were characterized by scanning electron microscope(SEM),energy dispersive spectroscope (EDS) and X-ray diffraction(XRD),respectively.The microstructure and interfacial chemistry of alumina/Ni cermets were analyzed by transmission electron microscope(TEM) and electron energy loss spectroscopy(EELS).The Archimedes' method was used to measure the density of alumina/Ni cermets.The flexural strength and fracture toughness were estimated via the three-point bending and single-edge-notched beam methods respectively.And by means of the LCR automative meter and vibration sample magnetmeter(VSM) the electro-and magnetic properties of alumina/metal composites were investigated.The main results and innovations obtained in this study include:
     (1) A novel preparative route for core-shell structural nanometal-coated alumina microspheres has been developed and a series of nano-metals(Fe、Co、Ni and alloys)-coated alumina powders were successfully prepared by this novel heterogeneous precipitation coating-thermalreduction process.These spherical powders were characterized with controllable properties,such as metal content and constitutes,coating thickness,metal distributing state and size of metal particles,and excellent magnetic performance.The aqueous heterogeneous precipitation process were mainly influenced by the concentration of coated particles,adding raw materials rate,reaction time and surface active reagent,et al.At the optimized precipitation parameters,i.e.,10~15g/L of the concentration of alumina micropowders,4~5mL/min of the rate of adding reactants, 5mL/L of the surface active reagent,and 1~2 hr of the reaction time,the mechanical stirring speed of 1000r/min,the designed precursors of Ni-coated alumina microspheres were fabricated.Then Ni-coated alumina powders were prepared after the hydrogen reduction of the precursors.
     (2)Based on the microstructural design concept,three kinds of composite cermets with intergranular structure,intragranular structure or mixture of these two named according to the Ni particle location in the alumina matrix were prepared by hot-press sintering Ni-coated alumina microspheres,alumina-coated Ni microspheres and alumina/Ni coprecipitates respectively.These processes could adjust the distribution manners of Ni particles,and made the microstructural design for the alumina/Ni composites come true.
     (3)By adopting metal-coated powders,the structural uniformity of composite cermets were improved,and the interfacial bonding state between Ni and alumina was also amended by the formed strong bonds of -Ni-Ni-Al-O-Al at some hot-press sintering conditions.The introduction of Ni particles was also favorable to fine grain sizes of alumina.The toughening alumina was enhanced by strengthening matrix grain boundaries and changing fracture mode of alumina and a maximum mean values of about 600MPa for fracture strength and 6~8MPa·m~(1/2) for fracture toughness were obtained.And these cermets exhibited high saturation magnetism,coercive force and relative high dielectric constants.
     (4)Comparing with monolithic alumina,the inclusions of Ni and ZrO_2 could increase the fracture strength of alumina by 28%and fracture toughness by 141%. However,the toughness enhancement of Al_2O_3/(ZrO_2+Ni) composites was not higher than the sum of the toughness enhancement of Al_2O_3/ZrO_2 and of Al_2O_3/Ni composites, because the toughness by phase transformation of ZrO_2 was absorbed by large Ni particles neighboring to ZrO_2 phase.And higher dielectric constants of composites were due to the intensification of space charge polarization by means of the inclusion of Ni and ZrO_2.
     This heterogeneous precipitation coating—thermal-reduction process for preparation of nanometal-coated alumina microspheres is featured with simple processing,rich raw materials resource,and easy scale-up production.These composite microspheres with excellent fluidity,high filling density,high specific surface areas and surface activeness,combined the properties of nanometals with alumina matrix and possessed the cooperative features of metal shell and alumina core,are promising excellent electromagnetic wave absorbers and advanced catalysts in hydrogen-production industry.Furthermore,by adopting these kinds of microspheres as sintering raw materials,many technical issues such as weak interfacial combinations between metal and alumina matrix,poor uniformity in chemical components etc.,will be resolved,and these materials have great potential uses in the fields of ceramic tool materials,large inert anode materials for aluminium electrolysis,and ceramic-metal seals,etc.
引文
[1]杨金萍,吕明,辛崇飞,彭诚,饶平根,吴建青,.纳米氧化铝对牙科烤瓷材料的强化与增韧[J].华南理工大学学报(自然科学版),2006,34(1):101.104.
    [2]徐三魁,孙保帅,陈金身,尹学敏.纳米α-Al_2O_3超细磨料绿色制备工艺的研究[J].金刚石与磨料磨具工程,2006,25(1):25-28.
    [3]李志宏,夏晓风,詹欲生.陶瓷刚玉磨料制造及应用进展[J].金刚石与磨料磨具工程,2000,19(3):37-38.
    [4]吴志鸿.纳米氧化铝的制备及其在催化领域的应用[J].工业催化,2004,12(2):35-39.
    [5]王世全,齐波,闫军.结构陶瓷用低收缩率α-Al_2O_3的技术研究[J].现代技术陶瓷,2005,10(4):3-5.
    [6]姜军生,王宝友,黄传真.陶瓷刀具材料的现状与发展[J].山东陶瓷,2000,23(1):4-7.
    [7]陈艳红,赵华.陶瓷刀具材料的应用及发展[J].河南教育学院学报(自然科学版),2000,9(4):21-23.
    [8]颜鲁婷,司文捷,苗赫濯.Al_2O_3/SiC纳米复相陶瓷材料的研究进展[J].材料科学与工艺,2005,13(4):337-340.
    [9]黄勇,张立明,汪长安,杨金龙,谢志鹏.先进结构陶瓷研究进展评述[J].硅酸盐通报,2005,29(5):91-101.
    [10]刘小瀛,王宝生,张立同.氧化铝基陶瓷型芯研究进展[J].航空制造技术,2005,(7):26-29.
    [11]汪文虎,张西涛,杨丽娜,王增强.航空发动机涡轮叶片精铸模具的现状及发展趋势[J]航空制造技术,2005,(6):26-29.
    [12]郭景坤.关于陶瓷材料的脆性问题[J].复旦学报(自然科学版),2003,42(6):822-827.
    [13]陈国清,张凯锋,王国峰,韩文波.放电等离子烧结Al_2O_3-ZrO_2纳米复相陶瓷及其力学性能[J].航空材料学报,200424,(1):1-6.
    [14]赵萍,孙康宁,李江田.固态相变-热压烧结制备Ti_3Al/TiC+Al_2O_3陶瓷复合材料[J].材料热处理学报,2004,25(1):12-15.
    [15]蔡苇,贾碧,陈刚,胡文康.纳米复相陶瓷的制备方法综述[J].重庆科技学院学报.2006.80):29-32.
    [16]Chih-Peng Lin,Shaw-Bing Wen,Ting-Tai Lee.Preparation of nanometer-sized α-alumina powders by calcining an emulsion of boehmite and oleic acid[J].J.Am.Ceram.Soc.,2002,85(1):129-133.
    [17]Zhongjun Li,Xun Feng,Hongguang Yao.Ultrafine alumina powders derived from ammonium aluminum carbonate hydroxide[J].J.Mater.Sci.,2004,39(6):2267-2269.
    [18]王宏志,高濂,李炜群,李强.高分子网络凝胶法制备纳米α-Al_2O_3粉体[J].无机材料学报,2000,15(2):356-360.
    [19]唐浩林.溶胶等离子体喷射法合成α-Al_2O_3纳米材料[J].陶瓷学报.2002,23(1):22-25.
    [20]Ji-guang Li,and Xudong Sun.Synthesis and sintering behavior of a nanocrystalline a-alumina powder[J].Acta mater.,2000,48(12):3103-3112.
    [21]吴义权,张玉峰,黄校先,郭景坤.低温制备纳米α-Al_2O_3粉体[J].无机材料学报,2001,16(2):349-352.
    [22]W.Zeng,L.Gao,J.Guo.Sintering kinetics of α-Al_2O_3 powder[J].Ceramics International,1999,25(8):723-729.
    [23]李继光,孙旭东,王雅蓉,宋丹.α-Al_2O_3的烧结动力学[J].金属学报,1998,34(2):195-199.
    [24]I.Chen,X.Wang.Sintering dense nanocrystalline ceramics without stage grain growth[J].Nature,2000,404(3):168-171.
    [25]陈蓓,魏锡文,胡学健.硅酸铝纤维陶瓷基复合材料的性能研究[J].重庆大学学报.1997,20(4):48-53.
    [26]朱时珍,刘以成,于晓东.SiC长纤维增强玻璃陶瓷基复合材料的研究fJl.北京理工大学学报,2000,20(3):250-260.
    [27]谢征芳,肖加余,陈朝辉,王兴业,郑文伟,江大志.用溶胶-凝胶法制备碳纤维三维编织物增强氧化铝基复合材料的研究[J].国防科技大学学报,1998,20(5):14-18.
    [28]黄政仁,沈志坚,凌律巍,谭寿洪,江东亮.碳化硅晶须补强莫来石复合材料的SPS烧结致密化研究[J].陶瓷学报,2002,22(3):115-120.
    [29]吕君,郑治祥,金志浩,王永兰.晶须及颗粒增韧氧化铝基陶复合材料的抗热震性能[J].材料工程,2000,25(12):15-18.
    [30]Chan Woo-park and Duk Yong-yoon.Effects of SiO2,CaO2,and MgO additions on the grain growth of alumina[J].J.Am.Ceram.Soc.,2000,83(10):2605-2609.
    [31]郭瑞松,郭多力,齐海寿.添加稀土氧化物对氧化铝复相陶瓷性能的影响[J].硅酸盐学报,2002,30(1):112-116.
    [32]G.Messing,E.Suvaci,K.S.OH.Kinetics of template growth in alumina during the process of templated grain growth(TGG)[J].Acta Mater.,2001,49(11):2075-2081.
    [33]谢志鹏,高立春,李文超,徐利华,王习东.晶种诱导长柱状晶生长规律与高韧性氧化铝陶瓷材料[J].中国科学(E辑),2003,33(1):11-17.
    [34]Riu Doh-hyung,Kong Young-min,Kim Hyoun-ee.Effect of Cr_2O_3 addition on microstructural evolution and mechanical properties of Al_2O_3[J].J.Eur.Ceram.Soc.,2000,20(10):1474-1481.
    [35]吴义权,张玉峰,黄校先,郭景坤.原位生长棒晶氧化铝陶瓷的制备[J].硅酸盐学报,2000,28(6):585-588.
    [36]王欣.氧化铝陶瓷晶粒的各向异性生长研究[D].上海硅酸盐研究所博士学位论文,2000.
    [37]X.Q.Liu,X.M.Chen.Effects of Sr_2Nb_2O_7 additive on microstructure and mechanical properties of 3Y -TZP/Al_2 O_3 ceramics[J].Ceramics International,2002,28(2):209-215.
    [38]吴义权.氧化铝陶瓷显微结构设计基制备新途径研究[D].上海硅酸盐研究所博士论文, 2000.
    [39]R.Voytovych,I.Maclaren,M.A.Gulgun,R.M.Cannort,M.Ruhle.The effect of yttrium on densification and grain growth in α-alumina[J].Acta Materialia,2002,50(13):3453-3463.
    [40]Young-Woo Rhee,Ho Yong Lee,Suk-Joong L.kang.Diffusion induced grain-boundary migration and mechanical property improvement in Fe-doped alumina[J].J.Eur.Ceram.Soc.,2003,23(10):1667-1674.
    [41]王永庆,周科之.金属铜颗粒对氧化铝陶瓷抗热震行为的影响[J].佛山陶瓷,2000,(6):5-7.
    [42]卢金山,高濂,归林华,郭景坤.Al_2O_3/Ni包裹粉体的制备、烧结行为及其显微结构研究[J].无机材料学报,2001,16(2):277-282.
    [43]李国军,赵世柯,黄校先,郭景坤.Ni包裹Al_2O_3复合粉体的制备[J].无机材料学报,2002,17(2):235-240.
    [44]晏泓,许并社.纳米α-Al_2O_3/W复合粉体的制备[J].无机材料学报,2003,18(5):1127-1130.
    [45]L.A.Dyaz,A.F.Valdes,C.Dyaz,A.M.Espino,R.Torrecillas.Alumina/Molybdenum nanocomposites obtained in organic media[J].J.Euro.Cera.Soc.,2003,23(15):2829-2834.
    [46]D.Osso,O.Tillement,G.Lecaer,A.Mocellin.Alumina-alloy nanocomposite powders by mechanosynthesis[J].J.Mater.Sci.,1998,33(12):3109-3119.
    [47]曾晓春,孙国雄,张树格.自蔓延高温合成法制备Al_2O_3-Cr金属陶瓷[J].硅酸盐学报,1999,27(2):98-102.
    [48]刘政,刘小梅,朱应禄,陈慈诰.低浸渗压力制备氧化铝/锌合金复合材料[J].矿冶,1998,7(2):49-67.
    [49]P.Bhattacharya and K.Chattopadhyay.Nano Al_2O_3-Pb and SiO_2-Pb cermets by sol-gel technique and the phase transformation study of the embedded Pb particles[J].NanoStructured Materials,1999,12(5-8):1077-1080.
    [50]E.D.Rodeghiero,O.K.Tse,J.Chisaki,E.P.Giannelis.Synthesis and properties of Ni-α-Al_2O_3composites via sol-gel[J].Mat.Sci.Eng.A,1995,195(1):151-161.
    [51]李国军,黄校先,郭景坤.Al_2O_3/Ni金属陶瓷显微结构和力学性能的研究[J].无机材料学报,2004,19(03):546-552.
    [52]李国军,黄校先,郭景坤.晶内/晶间复合型Al_2O_3/Ni纳米金属陶瓷显微结构和力学性能的研究[J]无机材料学报,2003,18(01):71-77.
    [53]李国军,陈大明,黄校先,郭景坤.包裹和热压工艺制备Al_2O_3/Ni金属陶瓷[J].航空材料学报,2002,22(01):1-5.
    [54]李国军,陈大明,黄校先,郭景坤.残余热应力对Al_2O_3/Ni金属陶瓷断裂行为和力学性能的影响[J].材料工程,2002,36(12):36-38.
    [55]Jinshan Lu,Lian Gao;Jingkun Guo;Niihara,K.Preparation,sintering behavior,and microstructural studies of Al_2O_3/Mo composites from boehmite-coated Mo powders[J].Materials Research Bulletin,2000,35(14-15):2387-96.
    [56]Jinshan Lu,Lian Gao,Jing Sun,Linhua Gui,Jingkun Guo.Preparation and sintering behavior of Ni-Al_O_3 nanocermets from coated powders[J].Journal of Materials Science Letters,2001,20(1):1-3.
    [57]Jinshan Lu,Lian Gao,Linhua Gui,Jingkun Guo.Preparation,thermal stability and sintering behavior of Ni/Al_2O_3 coated powders[J].Materials Chemistry and Physics,2001,72(3):352-5.
    [58]Lu,Jinshan,Gao,Lian,Sun,Jing,Gui,Linhua,Guo,Jingkun.Effect of nickel content on the sintering behavior,mechanical and dielectric properties of Al_2O_3/Ni composites from coated powders[J].Materials Science and Engineering A:Structural Materials:Properties,Microstructure and Processing,2000,293(1):223-228.
    [59]K.T.Faber,A.G.Evans.Crack deflection process Ⅰ[J].Acta.Met.,1983,31(4):565-576.
    [60]K.T.Faber,A.G.Evans.Crack deflection process Ⅱ[J].Acta.Met.,1983,31(4):577-584.
    [61]M.F.Ashby,F.J.Blunt,M.Bannister.Flow characteristics of highly constrained metal wires[J].Acta.Met.,1989,37(1):1847-1857.
    [62]李国军.纳米NiO粉体和Al_O_3/Ni金属陶瓷的制备与研究[D].中科院上海硅酸盐研究所博士学位论文,2001.
    [63]D.B.Marshall,W.L.Morris.Toughening mechanisms in cemented carbides[J].J.Am.Ceram.Soc.,1990,73(10):2938-2943.
    [64]高濂,靳喜海,郑珊.纳米复相陶瓷[M].化学工业出版社,北京:2003,105-106.
    [65]张巨先,高陇桥.纳米粉添加剂对Al_O_3陶瓷烧结性能及微结构的影响[J].真空电子技术,2000,29(06):36-39.
    [66]卢金山,高濂,归林华,郭景坤.Al_O_3/Ni包裹粉体的制备、烧结行为及其显微结构研究.无机材料学报[J],2001,16(2):277-282.
    [67]R.Brydson,J.Bruley,H.Mullejans,et al.Modelling the bonding at metal-ceramic interfaces using PEELS in the STEM[J].Ultrarnicroscopy,1995,59(12):81-92.
    [68]K.Sun,J.Liu,N.Nag,et al.Studying the metal-support interaction in Pd/γ-Al_2O_3 catalysts by atomic-resolution electron energy-loss spectroscopy[J].Catalysis letters,2002,84(3):193-199.
    [69]Susan B.Sinnott,Elizabeth C.Dickey.Ceramic/metal interface structures and their relationship to atomic-and meso-scale properties[J].Mater.Sci.Eng.R,2003,43(1):1-59.
    [70]M.W.Finnis.Theory of metal-ceramic interfaces[J].J.Phys.:Condens.Matter,1996,8(32):5811-5836.
    [71]J.Maier.Ionic conduction in space charge regions[J].Prog.Solid State Chem.1995,23(3):171-263.
    [72]A.M.Stoneham.Interfacial modelling[J].Mater.High Temp.1994,12(2-3):183-187.
    [73]D.M.Duffy,J.H.Harding,A.M.Stoneham.Simulation of the NiO/Ag interface with point defects[J].Acta Metall.Mater.1995,43(4):1559-1568.
    [74]M.Backhaus-Ricoult,Modelling of the Gibbs adsorption at transition-metal-oxide interfaces:Effect of the oxygen chemical potential on interfacial bonding,interfacial energy and equilibrium precipitate shape[J].Philos.Mag.2001,81(7):1759-1787.
    [75]M.Backhaus-Ricoult.A model of oxygen-activity-dependent adsorption(desorption) to metal-oxide interfaces[J].Acta Mater.2000,48(18-19):4365-4374.
    [76]M.Backhaus-Ricoult,Characteristic interface point defects at transition metal-oxide interfaces[J].Phys.Chem.Chem.Phys.2003,5(11):2174-2182.
    [77]G.Pacchioni,Metal/oxide adhesion energies from fh'st-principles[J].Surf.Sci.2002,520(1-2):3-5.
    [78]K.Ohno,K.Esfarjani,Y.Kawazoe.Computational Materials Science From ab Initio to Monte Carlo Methods[M],Springer-Verlag,New York,1999,253-279.
    [79]C.Pisani,R.Dovesi.Exact-exchange Hartree-Fock calculations for periodic systems.Ⅰ.Illustration of the method[J].Int.J.Quantum Chem.1980,17(3) 501-516.
    [80]C.Pisani,R.Dovesi,C.Roetti,Hartree-Fock Ab-Initio of Crystalline Systems[M],Springer-Verlag,Heidelberg,1988,68-83.
    [81]C.Pisani,Quantum-Mechanical Ab-Initio Calculation of the Properties of Crystalline Materials[M],Springer- Verlag,Heidelberg,1996,163-185.
    [82]R.G.Pan',W.Yang,Density Functional Theory of Atoms and Molecules[M],Oxford University Press,New York,1989,72-96.
    [83]Iskander G.Batyrev,Ali Alavi,and Michael W.Finnis.Equilibrium and adhesion of Nb/sapphire:The effect of oxygen partial pressure[J].Phys.Rev.B,2000,62(7):4698-4706.
    [84]W.Zhang and J.R.Smith.Nonstoichiometdc Interfaces and Al_O_3 adhesion with Nb,AI and Ag[J].Phys.Rev.Lett.,2000,85(15):3225-3228.
    [85]A.Marmier,A.Lozovoi,M.W.Finnis.The alumina(0001)surface:relaxations and dynamics from shell model and density functional theory[J].J.Euro.Cera.Soc.,2003,23(15):2729-2735.
    [86]J.Bruley,R.Brydson,H.Mu"llejans,J.Mayer,G.Gutekunst,W.Mader,D.Knauss,M.Ru¨hle,Investigations of the chemistry and bonding at niobium-sapphire interfaces[J].J.Mater.Res.1994,9(10) 2574-2583.
    [87]P.Rez,J.Bruley,P.Brohan,M.Payne,L.A.J.Garvie,Review of methods for calculating near edge structure[J].Ultramicroscopy,1995,59(1-4) 159-167.
    [88]G.Gutekunst,J.Mayer,M.Ru¨hle,Niobium/sapphire interface:structural studies by HREM[J].Scripta Mater.1994,31(8) 1097-1102.
    [89]C.Kruse,M.W.Finnis,V.Y.Milman,M.C.Payne,A.DeVita,M.J.Gillan,First-principles calculations for niobium atoms on a sapphire surface[J].J.Am.Ceram.Soc.1994,77(2)431-436.
    [90]C.Kruse,M.W.Finnis,J.S.Lin,M.C.Payne,V.Y.Milman,A.DeVita,M.J.Gillan,First-principles study of the atomistic and electronic structure of the niobium-α-alumina (0001) interface[J].Philos.Mag.Lett.1996,73(6)377-383.
    [91]C.Scheu,G.Dehm,H.Mu¨llejans,R.Brydson,M.Ru¨hle,Electron energy-loss near-edge structure of metal-alumina interfaces[J].Microsc.Microanal.Microstruct.1995,6(1) 19-31.
    [92]Dehm G,Scheu C,Rtihle M,Raj R.Growth and structure of internal Cu/Al_2O_3 and Cu/Ti /Al_O_3 interfaces[J].Acta Materialia,1998,46(3):759-772
    [93]W.Zhang,J.R.Smith,A.G.Evans.The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems:Ni/Al203and Cu/Al_O_3[J].Acta Materialia,2002,50(15):3803-3816.
    [94]Alexander Bogicevic and Dwight R.Jennison.Variations in the Nature of Metal Adsorption on Ultrathin Al_2O_3 Films[J].Phys.Rev.Lett.,1999,82(20):4050-4053.
    [95]Kokini K,DeJonge J,Rangaraj S,et al.Thermal Shock of Functionally Graded Thermal Barrier Coatings with Similar Thermal Resistance[J].Surface and Coatings Technology,2002,154(2-3):223-231.
    [96]Guo Hongbo,Gong Shengkai,Xu Huibin,et al.Evaluation of Hot-fatigue Behaviors of EB-PVD Gradient Thermal Barrier Coatings[J].Materials Science and Engineering A,2002,325(1-2):261-269.
    [97]Abayomi J.Akande,Raphael O.Idem,Ajay K.Dalai.Synthesis,characterization and performance evaluation of Ni/Al_2O_3 catalysts for reforming of crude ethanol for hydrogen production[J].Applied Catalysis A:General,2005,287(1):159-175.
    [98]邱竹贤,石忠宇,徐君莉.铝电解用Fe-Ni-Co-Al_2O_3金属陶瓷惰性阳极[J].中国工程科学,2004,6(8):35-39.
    [99]Sung-Soo Kim,Seon-Tae Kim,Joon-Mo Ahn,et al.Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density[J].J.Magnet.Magnet.Mater.,2004,271(1):39-45.
    [100]张巨先.国内外电真空用氧化铝陶瓷金属化层显微结构分析[J].真空电子技术,2004,33(4):24-26.
    [101]郭景坤.陶瓷晶界应力设计[J].无机材料学报.1995,10(1):27-31.
    [102]焦绥隆,Borsa C E.氧化铝/碳化硅纳米复合陶瓷的力学性能和强化机理[J].材料导报,1996,10(增):89-93.
    [103]赖雪飞,游贤贵,谢克难,黄学超.金属包覆型复合粉末的研究进展[J].四川有色金属,2005,(3):24-28.
    [104]杨忠强,刘凤岐.无机有机-核壳材料研究进展[J].化学通报,2004,(3):163-169.
    [1]Oung-Woo Rhee,Ho Yong Lee,Suk-Joong L.kang.Diffusion induced grain-boundary migration and mechanical property improvement in Fe-doped alumina[J].J.Eur.Ceram.Soc.,2003,23(10):1667-1674.
    [2]晏泓,许并社.纳米α-Al_O_3/W复合粉体的制备[J].无机材料学报,2003,18(5):1127-1130.
    [3]王永庆,周科之.金属铜颗粒对氧化铝陶瓷抗热震行为的影响[J].佛山陶瓷,2000,10(6):5-7.
    [4]L.A.Dyaz,A.F.Vaides,C.Dyaz,A.M.Espino,R.Torrecillas.Alumina/Molybdenum nanocom posites obtained in organic media[J].J.Eur.Ceram.Soc.,2003,23(15):2829-2834.
    [5]D.Osso,O.Tillement,G.Lecaer,A.Mocellin.Alumina-alloy nanocomposite powders by mechano- synthesis[J].J.Mater.Sci.,1998,33(12):3109-3119.
    [6]刘政,刘小梅,朱应禄,等.低浸渗压力制备氧化铝/锌合金复合材料[J].矿冶,1998,7(2):49-67.
    [7]Junichi Hojo,Boucherville,et al.Process and apparatus for coating particles with fine powder[P].US patent:4,788,080,1988.
    [8]梁焕珍,黎少华,张洁,等.水热还原制备镍包人造金刚石.粉末冶金技术[J].2005,23(6):418-422.
    [9]Craig S.Chamberlain,Glen Connell,et al.Electromagnetic radiation absorbing material employing doubly layered particles[P].US Patent:5389434,1995.
    [10]Chamberlain,Craig S.,Vesley,George F.et al.Coated glass microbubbles and article incorporating them[P].US patent:4,618,525,1986.
    [11]凌国平,一种纳米金属陶瓷复合粉体的制备方法[P],中国专利号:CN01116714.9,2006.
    [12]Sung-Soo Kim,Seon-Tae Kim,Joon-Mo Ahn,et al.Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density[J]. J.Magnet.Magnet.Mater.,.2004,271(1):39-45.
    [13]M.Ocana,A.R.Gonzalez-Elipe.Preparation and characterization of uniform spherical silica particles coated with Ni and Co compounds[J].Colloids and Surfaces,1999,157(2):315-324.
    [14]王海龙,张锐,王西科等,Cu包覆SiC复合粉体工艺的研究[J],硅酸盐学报,2004,32(4):398-341.
    [15]李国军,赵世柯,黄校先,郭景坤.Ni包覆Al_O_3复合粉体的制备[J].无机材料学报,2002,17(2):235-240.
    [16]Sung-Tag OH,Seok Namkung.Synthesis and magnetic properties of a Fe-Ni alloy dispersed Al_O_3 nanocomposite powder prepared by chemical method[J].J.Mater.Sci.Lett.,2002,21(4):275-277.
    [17]李亚栋,李成韦,段镶锋等.混合溶剂中纳米级NiO的制备及表征[J].中国科技大学学报,1997,27(3):346-349.
    [18]Zhongjun Li,Xun Feng,Hongchang Yao.Ultra_fine alumina powders derived from ammonium aluminum carbonate hydroxide[J].J.Mater.Sci.,2004,39(6):2267-2269.
    [19]彭美勋.球形氢氧化镍的微结构形成机理与电化学性能[D].长沙:中南大学,2004.
    [20]Chang S.M.,Lee M.,Kim W.S.,Preparation of large monodispersed spherical silica particles using seed particle gowth[J].J.Colloid.Interface.Sci.,2005,286(4):536-542.
    [21]Jonghe D.,Kapolnek and De L.C.Particulate composites from coated powders[J].J.Euro.Ceram.Soc.,1992,7(3):345-351.
    [22]陈栋,李东红,沈湘黔.纳米铁-石墨复合微球的制备[J].矿冶工程,2006,26(5):75-78.
    [23]贾晓林,钟香崇.聚乙二醇在MgAl204前驱体表面的吸附及改性作用[J].中国粉体技术,2004,35(5):12-15.
    [24]赖雪飞,游贤贵,谢克难,黄学超.金属包覆型复合粉末的研究进展[J].四川有色金属,2005,(3):24-28.
    [25]杨忠强,刘凤岐.无机有机.核壳材料研究进展[J].化学通报,2004,(3):163-169.
    [26]Shen Xiang-qian,Li Dong-hong,Jing Mao-xiang,et al.Coating of Fe,Ni on α-alumina microspheres by heterogeneous precipation[J].J Central South Univ Technol,2006,13(1):22-26.
    [27]Shen Xiangqian,Jing Maoxiang,Li Wangxing,et al.Fabrication of Fe,Ni,and FeNi coated Al_O_3 core-shell microspheres by the heterogeneous precipitation[J].Powder Technol.2005,160(3):229-233.
    [28]Li Yadong,Li Chengwei,Duan Xiangfeng,et al.Preparation of nanocrystalline NiO in mixed solvent[J].J.China University of Science and Technology,1997,27(3):346-349.
    [29]刘晓红,卢芳仪,郑典模,等.由硫酸亚铁制取硫酸钾和氧化铁红[J].化学反应工程与工艺[J],2000,16(3):295-300.
    [30]李亚栋,贺蕴普,李龙泉,钱逸泰.液相控制沉淀法制备纳米级CO_3O_4微粉[J].高等学校化学学报.1999,20(4):519-522.
    [31]王立平,高燕,刘惠文,徐洮.电沉积梯度NiCo纳米合金镀层的研究[J].电镀与涂饰,2004,23(6):5-11.
    [32]关镇铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,1992,p287-377.
    [33]Khor K A,Dong Z L,Gu Y W,et al.Influence of Oxide Mixtures on Mechanical Properties of Plasma.Sprayed Functionally Graded Coating[J].Thin Solid Films,2000,368(1):86-92.
    [34]Kokini K,DeJonge J,Rangaraj S,et al.Thermal Shock of Functionally Graded Thermal Barrier Coatings with Similar Thermal Resistance[J].Surface and Coatings Technology,2002,154(2-3):223-231.
    [35]Guo Hongbo,Gong Shengkai,Xu Huibin,et al.Evaluation of Hot - fatigue Behaviors of EB -PVD Gradient Thermal Barrier Coatings[J].Materials Science and Engineering A,2002,325(1-2):261-269.
    [36]邱竹贤,石忠宇,徐君莉.铝电解用Fe-Ni-Co-Al_O_3金属陶瓷惰性阳极[J].中国工程科学,2004,6(8):35-39.
    [37]Gongshin Qi,Ralph T.Yang.Selective catalytic oxidation(SCO) of ammonia to nitrogen over Fe/ZSM-5 catalyst[J].Applied Catalysis A:General.2005,287(1):25-33.
    [38]Abayomi J.Akande,Raphael O.Idem,Ajay K.Dalai.Synthesis,characterization and performance evaluation of Ni/Al_O_3 catalysts for reforming of crude ethanol for hydrogen production[J].Applied Catalysis A:General,2005,287(1):159-175.
    [39]Francisco Pompeo,Nora N.Nichio,Mariana M.V.M.Souza.Deborah V.Cesar.Study of Ni and Pt catalysts supported on a-Al_O_3 and ZrO_2 applied in methane reforming with CO_2[J].Applied Catalysis A:General 2007,316(1) 175-183.
    [40]张巨先.国内外电真空用氧化铝陶瓷金属化层显微结构分析[J].真空电子技术,2004,34(4):24-26.
    [41]李荣久.陶瓷-金属复合材料.冶金工业出版社[M],北京:2004,p231-233.
    [1]李荣久.陶瓷-金属复合材料.冶金工业出版社,北京:2004,p132-145.
    [2]江苏理工大学无机材料教研室.无机非金属材料.江苏大学出版社,江苏:2001,p309-313.
    [3]龚江宏.陶瓷材料断裂力学.清华大学出版社,北京:2001,p49-171.
    [4]S.S.Dukhin,Jun Yang,R.N.Dave,Robert Pfeffer.Deactivated sintering by particle coating:the significance of static and dynamic surface phenomena.Colloids and Surfaces A:Physicochem.Eng.Aspects.2004,235(1) 83-99.
    [5]Rodeghiero E D,Tse O K,Chisaki J,Giannelis E P.Synthesis and properties of Ni-α-Al203composites via sol-gel[J].Mater Sci Eng A 1995,195(1-2):151-161.
    [6]Lu Jinshan,Gao Lian,Gui Linhua,et al.Preparation,sintering behavior and microstructure of Al2O3-coated Ni powders.J Inorga Mater 2001;16(2) 277-282.
    [7]Voytovych R,Maclaren I,Gulgun M A,et al.The effect of yttrium on densification and grain growth in alumina.Acta Mater.,2002,50(13):3453-3463.
    [8]李荣久.陶瓷-金属复合材料.冶金工业出版社,北京:2004,p136-137.
    [9]蔡苇,贾碧,陈刚,胡文康.纳米复相陶瓷的制备方法综述[J].重庆科技学院学报.2006.8(3):29-32.
    [10]Jinshan Lu,Lian Gao,Jing Sun,Linhua Gui,Jingkun Guo.Effect of nickel content on the sintering behavior,mechanical and dielectric properties of Al_2O_3/Ni composites from coated powders[J].Mater.Sci.Eng.,A,2000,293(1):223-228.
    [11]王昕,谭训彦,尹衍升.纳米复合陶瓷增韧机理分析.陶瓷学报.2000,21(2):107-110.
    [12]张国军,岳雪梅,金宗哲.颗粒了增韧陶瓷裂纹扩展微观过程.硅酸盐学报.1995,23(4):365-370.
    [13]关镇铎,张中太,焦金生.无机材料物理性能[M].清华大学出版社,北京:1992,p287-377.
    [14]田民波.磁性材料[M].清华大学出版社,北京:2000,p1-40.
    [1]Choi S R,Bansal N P.Mechanical behavior of zirconia/alumina composites[J].Ceram Inter.2005,31(1):39-46.
    [2]Kuo Sheng-Lung,Chen Yann-Cheng,Ger Ming-Der,et al.Nano-particles dispersion effect on Ni/Al_2O_3 composite coatings[J].Mater Chem Phy,2004,86(1):5-10.
    [3]Tuan W H,and Chen W R.Mechanical properties of alumina-zirconia-silver composites[J].J Am Ceram Soc,1995,78(2):465-469.
    [4]Chen R Z,Chiu Y T,Tuan W H.Toughening alumina with both nickel and zirconia inclusions[J].J Eur Ceram Soc,2000,20(12):1901-1906.
    [5]Ocana M,Gonzalez-elipe A R.Preparation and characterization of uniform spherical silica particles coated with Ni and Co compounds[J].Colloids and Surfaces,1999,157(1-3):315-324.
    [6]王海龙,张锐,王西科等.Cu包覆SiC复合粉体工艺的研究[J].硅酸盐学报,2004,32(4):398-341.
    [7]李国军,赵世柯,黄校先,等.Ni包覆Al_O_3复合粉体的制备[J].无机材料学报,2002,17(2):235-240.
    [8]Oh Sung-Tag,Namkung Seok.Synthesis and magnetic properties of a Fe-Ni alloy dispersed Al_O_3 nanocomposite powder prepared by chemical method[J].J Mater Sci Lett,2002,21(4):275-277.
    [9]Shen Xiang-qian,Li Dong-hong,Jing Mao-xiang,et al.Coating of Fe,Ni on α-alumina microspheres by heterogeneous precipation[J].J Central South Univ Technol,2006,13(1):22-26.
    [I0]Shen Xiangqian,Jing Maoxiang,Li Wangxing,et al.Fabrication of Fe,Ni,and FeNi coated Al_O_3 core-shell microspheres by the heterogeneous precipitation[J].Powder Technol.2005,160(3):229-233.
    [11]景茂祥,沈湘黔,李东红,等.纳米铁磁性合金包裹氧化铝微球的制备[J].硅酸盐学报,2006,34(5):517-522.
    [12]景茂祥,沈湘黔.γ-FeNi包裹Al_O_3复合微球的制备[J].硅酸盐学报,2005,33(9):1163-1168.
    [13]高濂,靳喜海,郑珊.纳米复相陶瓷[M].北京:化学化工出版社,2004,p 225-249.
    [14]郭景坤.关于陶瓷材料的脆性问题[J].复旦学报(自然科学版).2003,42(6):822-827.
    [15]关镇铎,张中太,焦金生.无机材料物理性能IM].北京:清华大学出版社,1992,p287-377.
    [1]Susan B.Sinnott,Elizabeth C.Dickey.Ceramic/metal interface structures and their relationship to atomic-and meso-scale properties[J].Mater.Sci.Eng.R,2003,43(1):1-59.
    [2]Monika Backhaus-Ricoult.Gibbs 'adsorption at a alumina-copper interfaces[J].J.Eur.Ceram.Soc.,2003,23(15):2747 -2759.
    [3]Iskander G.Batyrev,Ali Alavi,and Michael W.Finnis.Equilibrium and adhesion of Nb/sapphire:The effect of oxygen partial pressure[J].Phys.Rev.B,2000,62(7):4698-4706.
    [4]W.Zhang and J.R.Smith.Nonstoichiometfic Interfaces and Al_O_3 Adhesion with Nb,AI and Ag[J].Phys.Rev.Lett.,2000,85(15):3225-3228.
    [5]A.Marmier,A.Lozovoi,M.W.Finnis.The alumina(0001)surface:relaxations and dynamics from shell model and density functional theory[J].J.Eur.Ceram.Sot.,2003,23(15):2729 -2735.
    [6]Dehm G,Seheu C,R(u|¨)hle M,Raj R.Growth and structure of internal Cu/Al_2O_3 and Cu/Ti /Al_O_3 interfaces[J].Acta Materialia,1998,46(3):759-772
    [7]W.Zhang,J.R.Smith,A.G.Evans.The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems:Ni/Al_2O_3 and Cu/Al_2O_3[J].Acta Materialia,2002,50(15):3803-3816.
    [8]Alexander Bogicevic and Dwight R.Jennison.Variations in the Nature of Metal Adsorption on Ultrathin Al_O_3 Films[J].Phys.Rev.Lett.,2003,82(20):4050-4053.
    [9]Kolhe B,Hui C.Y.Residual thermal stresses and calculation of the critical metal particulate size for interfacial crack extension in metal-ceramic matrix composites[J].Acta Mater.,1996,44(1):279-287.
    [10]李国军,黄校先,郭景坤.晶内/晶间复合型Al_O_3/Ni纳米金属陶瓷显微结构和力学性能的研究[J]无机材料学报,2003,18(01):71-77.
    [11]Jinshan Lu,Lian Gao,Jing Sun,Linhua Gui,Jingkun Guo.Preparation and sintering behavior of Ni-Al_O_3 nanocermets from coated powders[J].Journal of Materials Science Letters,2001,20(1):1-3.
    [12]Jinshan Lu,Lian Gao,Linhua Gui,Jingkun Guo.Preparation,thermal stability and sintering behavior of Ni/Al_2O_3 coated powders[J].Materials Chemistry and Physics,2001,72(3):352-355.
    [13]李荣久.陶瓷.金属复合材料[M].冶金工业出版社,北京:2004,p132-145.
    [14]S.S.Dukhin,Jun Yang,R.N.Dave,Robert Pfeffer.Deactived sintering by particle coating:the significance of static and dynamic surface phenomena[J].Colloids and Surface A:Physicochem.Eng.Aspects,2004,235(1):83-89.
    [15]R.M.Cannon,D.Korn,G.Elssner,M.Ruhle.Fracture properties of interfacially doped Nb-Al_2O_3 bicrystals:Ⅱ,relation of interfacial bonding,chemistry and local plasticity[J].Acta Mater.,2002,50(15):3903-3925.
    [16]Shujun Tang,Alan T.Zeheder.Nickel-alumina interfacial fracture toughness using the thick foil technique[J].Eng.Fracture.Mecha.,2002,69(6):701-715.
    [17]李国军.纳米NiO粉体和Al_O_3/Ni金属陶瓷的制备与研究[D].中科院上海硅酸盐研究所博士学位论文,2001.
    [18]R.Brydson,J.Bruley,H.Mullejans,et al.Modelling the bonding at metal-ceramic interfaces using PEELS in the STEM[J].Ultramicroscopy,1995,59(12):81-92.
    [19]R.F.Egerton.Electron energy loss spectroscopy in the electron microscope[M],2nd edition,Plenum,New York,1996.
    [20]郭景坤.陶瓷晶界应力设计[J].无机材料学报.1995,10(1):27-31.
    [21]王宏志.氧化铝基纳米复合陶瓷的研究[D].中国科学院上海硅酸盐研究所博士学位论文,1998.
    [22]Ohji T,Nakahira A,Niihara K.Particle/matrix interface and its role in creep inhibition in alumina/silicon carbide nanocomposites[J].J.Am.Ceram.Soc.,1996,79(1):33-45.
    [23]王昕,谭训彦,尹衍升.纳米复合陶瓷增韧机理分析[J].陶瓷学报.2000,21(2):107-110.
    [24]新原皓一,伊崎正宽,中平敦.高温超强度Si_3N_4-SiCナノ复合材料.粉体ゎょび粉末冶金,1990,37(2):352-356.
    [25]张国军,岳雪梅,金宗哲.颗粒了增韧陶瓷裂纹扩展微观过程[J].硅酸盐学报.1995,23(4):365-370.
    [26]焦绥隆,Borsa C E.氧化铝/碳化硅纳米复合陶瓷的力学性能和强化机理[J].材料导报,1996,10(增):89-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700