用户名: 密码: 验证码:
有机高分子与无机半导体纳米材料的电子显微学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维纳米材料,如纳米管、纳米线和纳米带等,因其独特的物理化学性质,以及在纳米器件、光电子器件、微传感器等方面的潜在的应用前景,已经成为纳米科技研究的热点之一。本论文综合利用扫描电子显微镜、场发射高分辨透射电子显微镜、选区电子衍射、电子能量损失谱、X-射线能量谱及X-射线衍射仪等先进的表征手段对几种有机聚合物纳米管(线)以及两种无机半导体一维纳米材料进行了研究,主要工作如下:
     (1)采用聚合物溶液浸润模板法,分别制备了聚苯乙烯、聚酰胺6及聚酰胺66纳米管与纳米线,利用场发射高分辨透射电子显微镜,获得了聚苯乙烯及聚酰胺6纳米管的高分辨像;研究了聚苯乙烯和聚酰胺6纳米管的结晶情况,发现聚合物一维纳米材料的结晶度高于聚合物块材的结晶度;利用电子能量损失谱,结合场发射高分辨透射电镜,研究了聚苯乙烯纳米管的结构,计算了聚苯乙烯纳米管的C=C与C-C的比例,这一结果与理论计算结果一致;
     (2)对化学气相沉积法制备的单斜β-Ga2O3纳米材料进行了研究。研究发现:催化剂比例不同,制备的β-Ga2O3纳米线的形貌不同,分别为晶粒融合纳米线、单晶纳米线及纳米棒;在制备的β-Ga2O3纳米线中,还发现了核-壳结构的纳米线,利用电子能量损失谱证实核-壳结构的成分均为Ga2O3;单晶纳米线的择优生长取向为[202],利用气-固生长机理阐明了单晶β-Ga2O3纳米线的生长机制;
     (3)对固相源化学气相沉积法制备的InGaAs化合物半导体纳米线进行了研究。研究发现:InGaAs纳米线有两种不同的形貌,一种表面光滑,另一种表面呈锯齿形貌,两种形貌随机出现,同时存在。通过高分辨率透射电子显微镜分析发现,锯齿状的形貌是由于周期性出现的孪晶所导致,而InGaAs纳米线表面光滑部分的内部不存在孪晶等缺陷;另外,InGaAs纳米线头部催化剂颗粒有两种不同结构,一种是六方相的Au4In,另一种是立方相的AuIn2;催化剂颗粒微观结构的不同对InGaAs纳米线的微观结构没有影响,根据研究结果推断了InGaAs纳米线的生长机理。
One-dimensional nanomaterials, including nanotubes, nanowires, nanobelts, etc., have attracted intense attention due to their unique physical and chemical properties and potential applications in a variety of areas, such as nano-devices, optoelectronic devices, micro-sensors and so on. In this dissertation, advanced scanning electron microscopy, field emission high-resolution transmission electron microscopy, selected area electron diffraction, electron energy loss spectroscopy, X-ray energy spectrum and X-ray diffraction were applied to systematically investigate several kinds of organic polymer nanotubes/nanowires and two types of one-dimensional inorganic semiconductor materials, and the main conclusions are described as following:
     (1) Polystyrene, polyamide6and polyamide66nanotubes and nanowires were successfully synthesized by the method of polymer solution template wetting. The morphology and microstructure of polystyrene and polyamide6nanotubes were analyzed by field emission high-resolution transmission electron microscopy. The crystallization of polystyrene and polyamide6nanotubes was studied, and the crystallinity degree of bulk polymer and polymer nanotube was also investigated respectively, which shows that crystallinity degree of polymer nanotube is higher than bulk polymer. Besides, the structure of polystyrene nanotubes was studied using electron energy loss spectroscopy attached to the high field emission resolution transmission electron microscopy. The ratio of C=C and C-C in PS nanotubes were determined by EELS spectrum, and the result is consistent with the theoretical calculation.
     (2) Monoclinic β-Ga2O3nanomaterials were successfully prepared by chemical vapor deposition method and were investigated by TEM. The results show that if the ratio of catalysts is different, morphology of β-Ga2O3nanowires is different. Three morphologies of β-Ga2O3nanowires were obtained, grains stacked nanowires, single crystal nanowires and nanorods, respectively. Besides, the core-shell structure namowire was formed, and the components of core and shell were all Ga2O3which was confirmed by electron energy loss spectroscopy. The preferential growth orientation of the single crystal nanowires is [202] and the growth mechanism of single crystal P-Ga2O3was clarified by gas-solid growth mechanism.
     (3) The morphology and microstructure of InGaAs compound semiconductor nanowires prepared by solid phase chemical vapor deposition were investigated. The SEM and TEM images show that InGaAs nanowires have two different morphologies:one is smooth surface and the other is jagged surface, and the two morphologies appear randomly and existed simultaneously. Jagged morphology results from the twins boundary occurring periodically by high-resolution transmission electron microscope, and there is no defect such as twining existed in the smooth surface. Furthermore, there are two kinds of structures of catalyst particles in top of InGaAs nanowires:one is hexagonal phase Au4In, and the other is cubic phase Auln2. While different microstructure of catalyst particles has no effect on the microstructure o f InGaAs nanowires. In addition, the growth mechanism of InGaAs nanowires is proposed based on the results the HRTEM analysis results.
引文
[1]Feynman R P. There's plenty of room at the bottom. Eng. Sci.,1960,23:22-36
    [2]Roco M C. Nanoparticles and nanotechnology research. J. Nanopart. Res.,1999,1:1-7
    [3]Mills A, Hunte S L. An overview of semiconductor photocatalysis. J. Photoch. Photobio. A,1997, 108:1-35
    [4]Gregory B, Olson. Designing a new material world. Science,2000,288:993-999
    [5]Kubo R. Electronic properties of metallic fine particles. J. Phys. Soc. Jpn.,1962,17:975-986
    [6]Kawabata A, Kubo R. Electronic properties of fine metallic particles Ⅱ:plasma resonance absorption. J. Phys. Soc. Jpn.,1966,21:1765-1772
    [7]Buffat P, Borel J P. Size effect on the melting temperature of gold particles. Phys. Rev. A,1976,13: 2287-2298
    [8]Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc.,1993,115:8706-8715
    [9]Wada N. Preparation of fine metal particles by the gas evaporation method with plasma jet flame. J. Appl. Phys.,1969,8:551-558
    [10]童忠良主编.纳米化工产品生产技术[M].北京:化学工业出版社,2006,8-10页
    [11]李嘉,尹衍升,张金升等.纳米材料的分类及基本结构效应.现代技术陶瓷,2003,2:26-30
    [12]Wang N, Cai Y, Zhang R Q. Growth of nanowires. Mater. Sci. Eng. R., A,2008,60:1-51
    [13]Shang L, Li X R, Wang Y Q. Application of high-resolution transmission electron microscopy and electron energy-loss spectroscopy in the characterization of polymer nanotubes. e-polymers,2013, 008:1-8
    [14]Kim H, Jin C, Park S, Lee W I, Lee C. Structure and luminescence properties of thermally nitrided Ga2O3 nanowires. Mater. Res. Bull.,2013,48:613-617
    [15]Jiang H F, Chen Y Q, Zhou Q T, Su Y, Xiao H H, Zhu L A. Temperature dependence of Ga2O3 micro/nanostructures via vapor phase growth. Mater. Chem. Phys.,2007,103:14-18
    [16]Lopez I, Nogales E, Mendez B, Piqueras J. Influence of Sn and Cr doping on morphology and luminescence of thermally grown Ga2O3 nanowires. J. Phys. Chem. C,2013,117:3036-3045
    [17]张立德,牟季美著.纳米材料和纳米结构[M].北京:科学出版社,2001,59-66页
    [18]Ekimov A I, Efros A L, Onushchenko A A. Quantum size effect in semiconductor microcrystals. Solid State Commun.,1985,56:921-924
    [19]Niklasson G A, Bobbert P A, Craighead H G. Optical properties of square lattices of gold nanoparticles. Nanostruct. Mater.,1999,12:725-730
    [20]Roco M C, Bai C L, Fissan H J, Schoonman J, Hayashi C, Oda M. Review of national research programs in nanoparticle and nanotechnology research. J. Aerosol Science,1998,29:749-751
    [21]Halperin W P. Quantum size effects in metal particles. Rev. Mod. Phys.,1986,58:533-536
    [22]张立德.跨世纪的新领域:纳米材料科学.科学,1993,45:13-17
    [23]Ball P, Garwin L. Science at the atomic scale. Nature,1992,355:761-766
    [24]Kondo Y, Takayanagi K. Synthesis and characterization of helical multi-shell gold nanowires. Science,2000,289:606-608
    [25]Begtrup G E, Ray K G, Kessler B M, Yuzvinsky T D, Garcia H, Zettl A. Probing nanoscale solids at thermal extremes. Phys. Rev. Lett.,2007,99:155901/1-4
    [26]Kubo R. Electronic properties of metallic fine particles. I. J. Phys. Soc. Jpn.,1962,17:975-986
    [27]卢嘉,Tinkham M单电子晶体管.物理,1998,3:137-140
    [28]Feldhein D L. Keating C D. Nano patterns of polylstyrene block butyl acylcde block copolymer brushes on the surfaces of exfoliated and intercalated clay layers. Chem. Soc. Rev.,1998,27:1-12
    [29]Chokshi A H, Rosen A, Karch J and Gleiter H. On the validity of the hall-petch relationship in nanocrystalline materials. Scripta Metall.,1989,23:1679-1683
    [30]Zhang Y F, Wang N, Wang N, et al. Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett.,1998,72:1835-1837
    [31]Morales A M, Lieber C M. A laser ablation method for synthesis of crystalline semiconductor nanowires. Science,1998,279:208-211
    [32]Kaempfe M, Graener H, Kiesow A, Heilmann A. Formation of metal particle nanowires induced by ultrashort laser pulses. Appl. Phys. Lett.,2001,79:1876-1879
    [33]Zeng X B, Xu Y Y, Zhang S B, et al. Silicon nanowires grown on a pre-annealed Si substrate. J. Cryst. Growth,2003,247:13-17
    [34]Bae S Y, Seo H W, Park J, et al. Porous GaN nanowires synthesized using thermal chemical vapor deposition. Chem. Phys. Lett.,2003,376:445-451
    [35]Wang J B, Zhou X Z, Liu Q F, et al. Magnetic texture in iron nanowire arrays. Nanotechnology, 2004,15:485-489
    [36]袁淑娟,周仕明,鹿牧,Ni纳米线阵列的铁磁共振研究,物理学报,2006,55:891-896
    [37]Xu J X, Xu Y. Fabrication of amorphous Co and Co-P nanometer array with different shapes in alumina template by AC electrodeposition. Mater. Lett.,2006,60:2069-2072
    [38]Valizadeh S, George J M, Leisner P, et al. Electrochemical synthesis of Ag/Co multilayered nanowires in porous polycarbonate membranes. Thin Solid Films,2002,402:262-271
    [39]Gapin A I, Ye X R, Chen L H, et al. Patterned media based on soft/hard composite nanowire array of Ni/CoPt IEEE Trans. Magn.,2007,43:2151-2153
    [40]Gao L M, Song X P, Wang P P, et al. Synthesis and magnetic properties of Fe-Co alloy nanowire arrays in porous alumina template. Journal of Xi'an Jiao Tong University,2006,40:1139-1143
    [41]金艳梅,赵素芬,陈子瑜.Fe0.97Pt0.03纳米线的制备与磁性研究.记录与介质,2007,8:48-51
    [42]Fasol G. Nanowires:Small is beautiful. Science,1998,280:545-546
    [43]Wang C R, Tang KB, Yang Q, et al. Growth of Pb5S2I6 meso-scale tubular crystals. J. Cryst. Growth, 2001,226:175-178
    [44]Pease R F W. Electron beam lithography. Contemp. Phys.,1981,22:265-290
    [45]朱峰,氧化镓准—维纳米材料制备、特性及应用的基础研究:[学位论文]上海:上海交通大学,2006
    [46]Xia Y N, Yang P D, Sun Y G, et al One-dimensional nanostructures:synthesis, characterization, and applications. Adv. Mater.,2008,15:353-389
    [47]Wu Y Y, Yang P D. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 2001,123:3165-3166
    [48]Gundiah G, Govindaraj A, Rao C N R. Nanowires, nanobelts and related nanostructures of Ga2O3. Chem. Phys. Lett.,2002,351:189-194
    [49]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science,2001,291:1947-1949
    [50]Pan Z W, Dai Z R, Wang Z L. Lead oxide nanobelts and phase transformation induced by electron beam irradiation. Appl. Phys. Lett.,2002,80:309-311
    [51]Dai Z R, Gole J L, Stout J D, et al. Gallium oxide nanoribbons and nanosheets. J. Phys. Chem., 2002,106:1274-1279
    [52]Dai Z R, Pan Z W and Wang Z L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater.,2003,13:9-24
    [53]Yan H F, Xing Y J, Hang Q L, et al. Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism. Chem. Phys. Lett.,2000,323:224-228
    [54]Zhang Y F, Tang Y H, Wang N, et al Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett.,1998,72:1835-1837
    [55]Lee S T, Zhang Y F, Tang Y H,et al. Semiconductor nanowires from oxides. J. Mater. Res.,1999, 14:4503-4507
    [56]Zhou X T, Wang N, Lai H L, et al. P-SiC nanorods synthesized by hot filament chemical vapor desposition. Appl. Phys. Lett.,1999,74:3942-3944
    [57]Zhang R Q, Lifshitz Y, Lee S T. Oxide-assisted growth of semiconducting nanowires. Adv. Mater., 2003,15:635-640
    [58]章晓中,电子显微分析,北京:清华大学出版社,2006,18-19页
    [59]郭可信,电子显微镜在材料科学中的应用,材料科学与工程,2002,20:5-10
    [60]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354:56-58
    [61]Scherzer O. Optik,1947,2:114-132
    [62]Freitag B, Kujawa S, Mul P M, et al. Breaking the spherical and chromatic aberration barrier in transmission electron microscopy. Ultramicroscopy,2005,102:209-214
    [63]Michael A, Keefe O. Seeing atoms with aberration-corrected sub-Angstrom electron microscopy. Ultramicroscopy,2008,108:196-209
    [64]McCulloch D G, Brydson R. Carbon K-shell near-edge structure calculations for graphite using the multiple-scattering approach. J. Phys.:Condens. Matter,1996,8:3835-3841
    [65]Serin V, Colliex C, Brydson R, et al. EELS investigation of the electron conduction-band states in wurtzite AIN and oxygen-doped AIN (O). Phys. Rev. B,1998,58:5106-5115
    [66]Pearson D H, Fultz B, Ahn C C. Measurements of 3d state occupancy in transition metals using electron energy loss spectrometry. Appl. Phys. Lett.,1988,53:1405-1407
    [67]Pearson D H, Ahn C C, Fultz B. White lines and d-electron occupancies for the 3d and 4d transition metals. Phys. Rev. B.,1993,47:8471-8478
    [68]Egerton R F. Electron energy-loss spectroscopy in the electron microscope, Plenum Press, New York,1986
    [69]Rez P. Cross-sections for energy loss spectrometry. Ultramicroscopy,1982,9:283-287
    [70]Bernhard W. Erpobung eines spharisch and chromatisch korrigierten Elektronenmikroskopes. Optik, 1980.57:73-94
    [71]Tiemeijer P C. Measurement of Coulomb interactions in an electron beam monochromator. Ultramicroscopy,1999,78:53-62
    [72]Egerton R F. New techniques in electron energy-loss spectroscopy and energy-filtered imaging. Micron,2003,34:127-139
    [73]FEI Tecnai on-line help manual-monochromator,18
    [74]Kujawa S, Freitag B, Hubert D. An aberration corrected (S) TEM microscope for nanoresearch. Microscopy Today,2005,13:16-21
    [75]Lazar S, Botton G A, Wu M Y, et al. Materials science applications of HREELS in near edge structure analysis and low-energy loss spectroscopy. Ultramicroscopy,2003,96:535-546
    [76]Gref R, Minamitake Y, Peracchia M T, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science,1994,263:1600-1603
    [77]Hillebrenner H, Buyukserin F, Stewart J D, Martin C R. Template synthesized nanotubes for biomedical delivery applications. Nanomedicine,2006,1:39-50
    [78]Dai L M, He P G, Li S N. Functionalized surfaces based on polymers and carbon nanotubes for some biomedical and optoelectronic applications. Nanotechnology,2003,14:1081-1097
    [79]Bong D T, Clark T D, Granja J R, Ghadiri M R. Self-assembling organic nanotubes. Angew. Chem. Int. Ed.,2001,40:988-1011
    [80]MacDiarmid A G. Synthetic metals:a novel role for organic polymers (Nobel lecture). Angew. Chem. Int. Ed.,2001,40:2581-2590
    [81]Tan E P S, Lim C T. Physical properties of a single polymeric nanofiber. Appl. Phys. Lett.,2004, 84:1603-1605
    [82]Steinhart M, Wehrspohn R B, Gosele U, Wendorff J H. Nanotubes by template wetting:A modular assembly system. Angew. Chem. Int. Ed.,2004,43:1334-1344
    [83]Danginet D, Pra L, Demoustier-Champagne S. Investigation of the electronic structure and spectroelectrochemical properties of conductive polymer nanotube arrays. Polymer,2005,46: 1583-1594
    [84]Wang C C, Kei C C, Yu Y W, Perng T P. Organic nanowire-templated fabrication of alumina nanotubes by atomic layer deposition. Nano Lett.,2007,7:1566-1569
    [85]Martin C R. Membrane-based synthesis of nanomaterials. Chem. Mater.,1996,8:1739-1746
    [86]Stewart S, Liu G J. Block copolymer nanotubes. Angew. Chem. Int. Ed.,2000,39:340-344
    [87]Li X R, Wang Y Q, Song G J, et al. Fabrication of patterned polystyrene nanotube arrays in an anodic aluminum oxide template by photolithography and the multiwetting mechanism. J. Phys. Chem. B,2009,113:12227-12230
    [88]Martin C R. Nanomaterials:A membrane-based synthetic approach. Science,1994,266:1961-1966
    [89]Parthasarathy R V, Martin C R. Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization. Nature,1994,369:298-301
    [90]Steinhart M, Wendorff J H, Greiner A. et al. Polymer nanotubes by wetting of ordered porous templates. Science,2002,296:1997
    [91]Chun I, Reneker D H. Nanometer diameter fibers of polymer produced by electrospinning. Nanotechnology,1996,7:216-223
    [92]Sun Z C, Zussman E, Yarin A L, et al. Compound core-shell polymer nanofibers by co-electrospinning. Adv. Mater.,2003,15:1929-1932
    [93]Bognitzki M, Hou H Q, Ishaque M, et al. Polymer, metal, and hybrid nano-and mesotubes by coating degradable polymer template fibers (TUFT process). Adv. Mater.,2000,12:637-640
    [94]Yang X M, Zhu Z X, Dai T Y, Lu Y. Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template. Macromol. Rapid Commun.,2005,26:1736-1740
    [95]Shen Y Q, Wan M X. Tubular polypyrrole synthesized by in situ doping polymerization in the presence of organic function acids as dopants. J. Polym. Sci. Part A:Polym. Chem.,1999,37:1443-1449
    [96]Kim B H, ParK D H, Joo J, et al. Synthesis, characteristics, and field emission of doped and de- doped polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene) nanotubes and nanowires. Synth. Met.,2005,150:279-284
    [97]Hulteen J C, Martin C R. A general template-based method for the preparation of nanomaterials. J. Mater. Chem.,1997,7:1075-1087
    [98]浦鸿汀,谢娟.聚合物—维纳米材料的研究进展.高分子材料科学与工程,2006,22:1-5
    [99]Demoustier-Champagne S, Stavaux P Y. Effect of electrolyte concentration and nature on the morphology and the electrical properties of electropolymerized polypyrrole nanotubules. Chem. Mater.,1999,11:829-834
    [100]Lehmann V. The physics of macropore formation in low doped N-type silicon. J. Electrochem. Soc,1993,140:2836-2843
    [101]Lehmann V, Foil H. Formation mechanism and properties of electrochemically etched trenches in n-type silicon. J. Electrochem. Soc.,1990,137:653-659
    [102]Jessensky O, Muller F, Gosele U. Self-organized formation of hexagonal pore arrays in anodie alumina. Appl. Phys. Lett.,1998,72:1173-1175
    [103]Masuda H, Fukuda K. Orederd metal nonohole arrays made by a two-step replication of honeycomb structure of anodic alumina. Science,1995,268:1466-1468
    [104]Song G J, She X L, Fu Z F, Li J J. Preparation of good mechanical property polystyrene nanotubes with array structure in anodic aluminum oxide template using simple physical techniques. J. Mater. Res.,2004,19:3324-3328
    [105]Kim K, Jin J I. Preparation of PPV nanotubes and nanorods and carbonized products derived therefrom. Nano Lett.,2001,1:631-636
    [106]Balta-Calleja F J, Vonk C G. X-ray scattering of synthetic polymers. Amsterdam:Elsevier,1989, pp:241-245
    [107]Guinier A, Fournet G. Small-angle scattering of X-rays. New York:Wiley,1955, pp:240-243
    [108]Martin C, Eeckhaut G, Mahendrasingam A, et al. Micro-SAXS and force/strain measurements during the tensile deformation of single struts of an elastomeric polyurethane foam. J. Synchrotron Rad.,2000,7:245-250
    [109]Creagh D C, O'Neill P M, Martin D J. Synchrotron radiation study of the relation between structure and strain in polyurethane elastomers. J. Synchrotron Rad.,1997,4:163-168
    [110]Goertz V, Dingenouts N, Nirschl H. Comparison of nanometric particle size distributions as determined by SAXS, TEM and analytical ultracentrifuge. Part. Part. Syst. Charact.,2009,26:17-24
    [111]Campoy I, Gomez M A, Marco C. Small angle X-ray diffraction study of blends of nylon 6 and a liquid crystal copolyester. Polymer,2000,41:2295-2299
    [112]Tendeloo G V. The initial stages of ordering in alloys studied by electron diffraction and high resolution microscopy. J. Microsc.,1980,119:125-140
    [113]Jepps N W, Page T F. Intermediate transformation structures in silicon carbide. J. Microsc.,1980, 119:177-188
    [114]Bursill L A, Wood G. Electron-optical imaging of TieO11 at 1.6 A point-to-point resolution. J. Phil. Mag. A.,1978,38:673-689
    [115]Cosslett V E, Camps R A, Saxton W O, et al. Atomic resolution with a 600-kV electron microscope. Nature,1979,281:49-51
    [116]Read R T, Young R J. Radiation damage and high resolution electron microscopy of polydiacetylene crystals. J. Mater. Sci.,1984,19:327
    [117]Egerton R F. Electron energy-loss spectroscopy in the electron microscope. New York:Plenum Press,1996, pp:346-352
    [118]Varlot K, Martin J M, Quet C. EELS analysis of PMMA at high spatial resolution. Micron.,2000, 32:371-378
    [119]Li J J, Song G J, She X L, Han P, Peng Z, Chen D. Assembly, morphology and thermal stability of polyamide 6 nanotubes. Polym. J.,2006,38:554-558
    [120]Campoy I, Gomez M A, Marco C. Structure and thermal properties of blends of nylon 6 and a liquid crystal copolyester. Polymer,1998,39:6279-6288
    [121]Xenopoulos A, Clark E S, Kohan M I. Nylon Plastics Handbook. Munich:Hanser Publishers,1995, pp:108-137
    [122]Holmes D R, Bunn C W, Smith D J. The crystal structure of polycaproamide:Nylon 6. J. Polym. Sci.,1955,17:159-177
    [123]Arimoto H, Ishibashi M, Hirai M, Chatani Y. Crystal structure of the γ-form of nylon 6. J. Polym. Sci.,1965,3:317-326
    [124]Xenopoulos A, Clark E S, Kohan M I. Nylon Plastics Handbook. Munich:Hanser Publishers, 1995, p:316
    [125]Wu T M, Wu J Y. Structural analysis of polyamide/clay nanocomposites. J. Macromol. Sci. Phys. B,2002,41:17-31
    [126]Cai W W, Li C Y, Lotz B, Keating N, Marks D. Submicrometer scoll/tubular lamellar crystals of nylon 66. Adv. Mater.,2004,16:600-605
    [127]Daniels H R. Novel characterization techniques for carbonaceous materials in FEG TEM. UK:the university of leeds
    [128]Yang P, Lieber C M. Nanostructured high-temperature superconductors:creation of strong-pinning columnar defects in nanorod/superconductor composites. J. Mater. Res.,1997,12:2981-2996
    [129]Wang Z L, Gao R P, Cole J L, et al. Silica nanotubes and nanofiber arrays. Adv. Mater.,2000,12: 1938-1940
    [130]Bai Z G, Yu D P, Zhang H Z, et al. Nano-scale GeO2 wires synthesized by physical evaporation. Chem. Phys. Lett.,1999,303:311-314
    [131]Huang M H, Wu Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater.,2001,13:113-116
    [132]Zhang D F, Sun L D, Yin J L, et al. Low-temperature fabrication of highly crystalline SnO2 nanorods.Adv. Mater.,2003,15:1022-1025
    [133]Liang C H, Meng G W, Lei Y, et al. Catalytic growth of semiconducting In2O3 nanofibers. Adv. Mater.,2001,13:1330-1333
    [134]Tippins H H. Optical absorption and photoconductivity in the band edge of β-Ga2O3. Phys. Rev. A,1965,140:316-319
    [135]Herbert W C, Minnier H B, Brown J J. Self-activated luminescence of β-Ga2O3. J. Electrochem. Soc.,1969,116:1019-1021
    [136]Edwards D D, Mason T O, Goutenoir F, et al. A new transparent conducting oxide in the Ga2O3-m2O3-SnO2 system. Appl. Phys. Lett.,1997,70:1706-1708
    [137]Nguyen P, Vaddiraju S, Meyyappan M. Indium and tin oxide nanowires by vapor-liquid-solid growth technique. J. Electron. Mater.,2006,35:200-203
    [138]Kar S, Chaudhuri S. Shape selective growth of CdS one-dimensional nanostructures by a thermal evaporation process. J. Phys. Chem. B,2006,110:4542-4547
    [139]Law J B K, Thong J T L. Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time. Appl. Phys. Lett.,2006,88:133114/1-3
    [140]Ji Z G, Du J, Fan J, Wang W. Gallium oxide films for filter and solar-blind UV detector. Opt. Mater.,2006,28:415-417
    [141]Li Q, Wang C. Fabrication of wurtzite ZnS nanobelts via simple thermal evaporation. Appl. Phys. Lett.,2003,83:359-361
    [142]Ogita M, Saika N, Nakanishi Y. Ga2O3 thin films for high-temperature gas sensors. Appl. Surf. Sci.,1999,142:188-191
    [143]Ye C, Fang X, Hao Y, Teng X, Zhang L. Zinc oxide nanostructures:morphology derivation and evolution. J. Phys. Chem. B,2005,109:19758-19765
    [144]Ding Y, Gao P X, Wang Z L. Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts:a case of Sn/ZnO. J. Am. Soc.,2004,126: 2066-2072
    [145]Hu Z A, Xu T, Liu H L. Template preparation of high-density, and large-area Ag nanowire array by acetaldehyde reduction. Mater. Sci. Eng., A,2004,371:236-240
    [146]Dick K A, Deppert K, Karlsson L S, et al. A new understanding of Au-assisted growth of Ⅲ-Ⅴ semiconductor nanowires. Adv. Funct. Mater.,2005,15:1603-1610
    [147]Zhang J, Zhang L, Wang X, et al. Fabrication and photoluminescence of ordered GaN nanowire arrays. J. Chem. Phys.,2001,115:5714-5717
    [148]Wen X, Fang Y, Pang O, Yang C, Wang J, Ge W, Wong K S, Yang S. ZnO nanobelts arrays grown directly from and on zinc substrates:synthesis, characterization, and applications. J. Phys. Chem. B,2005,109:15303-1530
    [149]Lopez I, Nogales E, Mendez B, Piqueras J. Influence of Sn and Cr doping on morphology and luminescence of thermally grown Ga2O3 nanowires. J. Phys. Chem. C,2013,117:3036-3045
    [150]Kim H W, Kim N H, Lee C. Synthesis and characterization of Ga2O3 nanobelts on Pt-coated substrates. J. Korean Phys. Soc.,2005,47:539-542
    [151]Geng B Y, Liu X W, Wei X W, et al. Low-temperature growth of β-Ga2O3 nanobelts through a simple thermochemical route and their phonon spectra properties. Appl. Phys. Lett.,2005,87: 113101/1-3
    [152]Ishida M, Kawano T, Futagawa M, et al. A Si nano-micro-wire array on a Si(111) substrate and field emission device application. Superlattices Microstruct.,2003,34:567-575
    [153]Wu X C, Song W H, Huang W D, et al. Crystalline gallium oxide nanowires:intensive blue light emitters. Chem. Phys. Lett.,2000,328:5-9
    [154]Zhang H Z, Kong Y C,Wang Y Z, et al. Ga2iO3 nanowires prepared by physical evaporation. Solid State Commun.,1999,109:677-682
    [155]Kong L B, Lu M, Li M K, et al. Morphology of platinum nanowire array electrodeposited within anodic aluminium oxide template characterized by atomic force microscopy. Chin. Phys. Lett., 2003,20:763-766
    [156]向杰,贾圣果,冯孙齐,俞大鹏.氧化镓纳米带的制备研究.固体电子学研究与进展,2002,22:449-453
    [157]Xu X, Cao C B, Zhu H S. Synthesis and photoluminescence of gallium oxide ultra-long nanowires and thin nanosheets. J. Cryst. Growth,2005,279:122-128
    [158]Han W Q, Kohler-Redlich P, Ernst F, Ruhle M. Growth and microstructure of Ga2O3 nanorods. Solid State Commun.,2000,115:527-529
    [159]Jiang G J, Zhuang H R, Zhang J, et al. Morphologies and growth mechanisms of aluminum nitride whiskers by SHS method-Part 2. J. Mater. Sci.,2000,35:63-69
    [160]Lee J S, Park K, Nahm S, et al. Ga2O3 nanomaterials synthesizedfrom ball-milled GaN powders. J. Cryst. Growth,2002,244:287-295
    [161]Zhao Y F, Liu S L, Wang Y Q, et al. Growth of regular-shaped β-Ga2O3 nanorods by Ni2+ -ion-catalyzed chemical vapor deposition. J. Mater. Sci:Mater. Electron.,2014,25:181-184
    [162]Shi F, Feng X W. Synthesis and characterization of β-Ga2O3 nanorod array clumps by chemical vapor deposition. J. Nanosci. Nanotechnol.,2012,12:8481-8486
    [163]Jain K R, Lind C R. Degenerate four-wave mixing in semiconductor-doped glasses. J. Opt. Soc. Am.,1983,73:647-653
    [164]Trindade T, O'Brien P, Pickett N L. Nanocrystalline semiconductors:synthesis, properties, and perspectives. Chem. Mater.,2001,13:3843-3858
    [165]Heath J R, Shiang J J. Covalency in semiconductor quantum dots. Chem. Soc. Rev.,1998,27:65-71
    [166]Olshavsky M A, Goldstein A N, Alivisatos A P. Organometallic synthesis of GaAs crystallites exhibiting quantum confinement. J. Am. Chem. Soc.,1990,112:9438-9439
    [167]Geels R S, Corzine S W, Coldren L A. InGaAs vertical-cavity surface-emitting lasers. IEEE J. Quantum Elect.,1991,27:1359-1367
    [168]Chang-Hasnain C J, Harbison J P, Hasnain G, et al. Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers. IEEE J. Quantum Elect.,1991,27:1402-1409
    [169]Unlii M S, Strite S J. Resonant cavity enhanced photonic devices. J. Appl. Phys.,1995,78:607-639
    [170]Ribordy G, Gautier J D, Zbinden H, Gisin N. Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters. Appl. Opt.,1998,37:2272-2277
    [171]Xu S J, Chua S J, Mei T, et al. Characteristics of InGaAs quantum dot infrared photodetectors. Appl. Phys. Lett.,1998,73:3153-3155
    [172]Nishioka K, Takamoto T, Agui T, Kaneiwa M, Uraoka Y, Fuyuki T. Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell's characteristics and field-test meteorological data. Sol. Energy Mater. Sol. Cells.,2006,90:1308-1321
    [173]King R R, Law D C, Edmondson K M, et al.40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett.,2007,90:183516/1-3
    [174]Kim S, Mohseni H, Erdtmann M, Michel E, Jelen C, Razeghi M. Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector. Appl. Phys. Lett.,1998, 73:963-965
    [175]Huffaker D L, Park G, Zou Z, et al.1.3 μm room-temperature GaAs-based quantum-dot laser. Appl. Phys. Lett.,1998,73:2564-2566
    [176]Huang Y, Duan X, Cui Y, et al. Logic gates and computation from assembled nanowire building blocks. Science,2001,294:1313-1317
    [177]Bryllert T, Wernersson L E, Lowgren T, Samuelson L. Vertical wrap-gated nanowire transistors. 2006,Nanotechnology,17:S227-S230
    [178]Li Y, Qian F, Xiang J, Lieber C M. Nanowire electronic and optoelectronic devices. Mater. Today, 2006,9:18-27
    [179]Kim Y, Joyce H J, Gao Q, et al. Influence of nanowire density on the shape and optical properties of ternary LnGaAs nanowires. Nano Lett.,2006,6:599-604
    [180]Regolin I, Sudfeld D, Liittjohann S, et al. Growth and characterisation of GaAs/InGaAs/GaAs nanowhiskers on (111) GaAs. J. Cryst. Growth,2007,298:607-611
    [181]Yang L, Motohisa J, Tomioka K, et al. Fabrication and excitation-power-density-dependent micro-photoluminescence of hexagonal nanopillars with a single InGaAs/GaAs quantum well. Nanotechnology,2008,19:275304/1-3
    [182]Tateno K, Zhang G, Nakano H. Growth of GaInAs/AlInAs heterostructure nanowires for long-wavelength photon emission. Nano Lett.,2008,8:3645-3650
    [183]Cornet D M, LaPierre R R. InGaAs/InP core-shell and axial heterostructure nanowires. Nanotechnology,2007,18:385305
    [184]Sato T, Motohisa J, Noborisaka J, Hara S, Fukui T J. Growth of InGaAs nanowires by selective-area metalorganic vapor phase epitaxy. J. Cryst. Growth,2008,310:2359-2364
    [185]Paladugu M, Zou J, Guo Y N, Zhang X, Kim Y, Joyce H J, Gao Q, Tan H H, Jagadish C. Nature of heterointerfaces in GaAs/InAs and JuAs/GaAs axial nanowire heterostructures. Appl. Phys. Lett.,2008,93:101911/1-3
    [186]Gonzalez J C, Malaehias A, Andrade R, et al. Direct evidences of enhanced Ga interdiffusion in InAs vertically aligned free-standing nanowires. Nanosci. Nanotechnol.,2009,9:4673-4678
    [187]Wu J, Borg B M, Jacobsson, et al. Control of composition and morphology in InGaAs nanowires grown by metalorganic vapor phase epitaxy. J. Cryst. Growth,2013,383:158-165
    [188]Jung C S, Kim H S, Jung G B, et al. Composition and phase tuned InGaAs alloy nanowires. J. Phys. Chem. C,2011,115:7843-7850

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700