用户名: 密码: 验证码:
无氰共沉积电镀Au-Sn共晶合金工艺及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
倒装芯片技术能够改善大功率LED出光率低和散热能力差的缺点,而倒装芯片的导热和导电均要通过凸点来实现,因此凸点性能的优劣直接影响着芯片的可靠性。Au-30at.%Sn共晶合金钎料,具有优良的力学性能和高可靠性,是倒装芯片结构凸点的理想材料。相对于蒸镀、溅射和化学镀法,电镀法制备Au-30at.%Sn共晶合金凸点具有成本低廉、工艺简单、凸点定位精确以及可制作小尺寸凸点等优点。然而,目前使用的氰化物Au-Sn镀液含有剧毒,严重污染环境和危害人身安全,因此急需开发一种无氰的Au-Sn合金电镀液。
     本论文系统地研究了无氰亚硫酸盐-焦磷酸盐Au-Sn镀液体系中镀液成分和工艺参数对Au-Sn合金镀层表面形貌和镀层成分的影响;然后通过响应曲面法来精确控制Au-Sn共沉积镀层的成分;利用电化学手段分析了镀液成分对Au-Sn共沉积行为的影响规律;最后评价了Au-30at.%Sn共晶镀层的性能:对比了分层法与共沉积法制备的Au-30at.%Sn共晶合金凸点,并研究了共沉积法制备的Au-30at.%Sn共晶合金凸点与铜、镍基板间的界面反应。主要结论如下:
     1、选用弱碱性的亚硫酸盐-焦磷酸盐镀液体系共沉积电镀Au-Sn合金镀层。以镀层的表面形貌和镀层成分作为评价指标优化镀液成分和工艺参数,其结果如下:Au与亚硫酸钠摩尔浓度比为1:12-1:24,Sn与焦磷酸钾摩尔浓度比为1:6-1:9,EDTA0.01-0.08mol/L,邻苯二酚0.01~0.07mol/L,抗坏血酸0.09mol/L,氯化镍0.005mol/L, pH7.5~8.5,温度35-45℃,搅拌速度200rpm,脉冲频率大于10Hz,当周期换向脉冲频率为100Hz时,正向电流导通时间不小于2ms,正向关段时间不小于4ms,负向电流导通时间不大于2ms,正反向工作电流比大于4:1。
     2、采用响应曲面法对Au-Sn共沉积镀液成分和工艺参数进行调整来进一步精确控制Au-Sn合金镀层的成分。部分因子试验发现主因素及交互作用对镀层成分影响的大小顺序为C>A>E>AB>D>AD>B。以pH值、EDTA浓度和邻苯二酚浓度为因子进行中心复合试验建立响应与因子关系的模型,通过模型求解得到特定镀层成分对应的最优因子组合。利用该模型获得了对应Au-30at.%Sn共晶合金镀层的最优镀液成分和工艺参数,重复实验表明在此镀液成分和工艺参数下可以获得成分稳定的Au-30at.%Sn共晶成分镀层。共晶合金成分准确,实验具有可重复性。
     3、利用电化学手段分析了镀液成分对金锡共沉积行为的影响规律。络合剂的加入使得Au、Sn沉积电位接近,有利于Au和Sn的共沉积。EDTA的加入,使得Au-Sn合金的还原峰电位正向移动;邻苯二酚的加入,使得Au-Sn合金的还原峰电位负向移动;当同时加入EDTA和邻苯二酚时,Au-Sn还原峰进一步负向移动。添加剂的加入使得Au-Sn阴极还原峰正向、负向移动,从而改变了Au-Sn共沉积行为。阴极还原峰正向移动,有利于镀层中Au含量增加,阴极还原峰负向移动,有利于镀层中Sn含量增加。Au-Sn合金的共沉积在还原峰电位下为扩散控制,随着电位的负移,将由扩散和电化学步骤混合控制。
     4、对共沉积Au-30at.%Sn共晶合金镀层粗糙度、结合力、熔点和耐蚀性等性能进行评价。实验结果表明共沉积Au-30at.%Sn共晶合金镀层的粗糙度仅为几十纳米,与Si/TiW/Au基体结合力良好,其熔点为280.66℃,此外还具有良好的耐蚀性。共沉积法制备的Au-30at.%Sn共晶合金凸点与分层法制备的共晶合金凸点相比质量明显提高。共沉积的Au-30at.%Sn共晶合金镀层分别与Ni和Cu基板在310℃下钎焊反应,在Au-30at.%Sn/Ni界面处形成了(Ni,Au)3Sn2金属间化合物;在Au-30at.%Sn/Cu界面上形成了两层金属间化合物,靠近钎料的(Au,Cu)5Sn和靠近Cu基板的AuCu。Au-30at.%Sn共晶合金镀层与Ni、Cu基板形成良好连接,表明共沉积的Au-30at.%Sn共晶合金镀层具有良好的可焊性。
The flip-chip technology can improve the luminescence efficiency and thermal dissipation of high-power LEDs. Since the electric and thermal conductivities of flip-chip are carried out by solder bump, the capability of the bump has a direct impact on the chip reliability. Au-30at.%Sn eutectic solder is the idea material for flip-chip bump due to its excellent mechanical properties and high reliability. Electroplating of Au-30at.%Sn eutectic alloy bump has the advantages of low cost, simple process, precise position control and small size bump preparation compared with evaporation, sputtering and electroless. However, cyanide Au-Sn electroplating solution being currently used is highly toxic and does seriously harm to environment and personal safety, hence it is urgent to develop a non-cyanide Au-Sn electroplating solution.
     In the present work, the effects of solution ingredients and process parameters of non-cyanide sulfite-pyrophosphate Au-Sn solution system on the morphology and composition of Au-Sn coating were systematically investigated, and then the response surface methodology was used to precisely control the composition of Au-Sn coating. The influence law of solution ingredients on Au-Sn co-electrodeposition behavior was analyzed by electrochemical means. Finally, the properties of the Au-30at.%Sn eutectic coating were evaluated. The Au-30at.%Sn eutectic alloy bumps prepared by co-electrodeposition were compared with those prepared by sequential electroplating. The interfacial reactions between co-electrodeposited Au-30at.%Sn eutectic alloy bumps and copper and nickel substrates were also investigated. The main conclusions are as follows:
     1. The weakly alkaline sulfite-pyrophosphate Au-Sn solution system was chosen to co-electrodeposit Au-Sn alloy coating. The morphology and composition of Au-Sn coating were regarded as the evaluation indexes to optimize the solution ingredients and process parameters. The results were as follows:the molar ratio of gold to sodium sulfite and tin to potassium pyrophosphate were1:12-1:24and1:6~1:9, respectively; the concentration of EDTA, catechol, ascorbic acid and nickel chloride were0.01-0.08mol/L,0.01-0.07mol/L,0.09mol/L and0.005mol/L, respectively; the range of the pH value of the solution was restricted between7.5~8.5; the temperature range was35~45℃; the stirring speed was set at200rpm; the pulse frequency was greater than10Hz; the forward on time was not shorter than2ms, the forward off time was not shorter than4ms, the reversal on time was not longer than2ms, and the ratio of forward current to reverse current was larger than4:1when the duty ratio of periodic reversal pulse was100Hz.
     2. Response surface methodology was adopted to adjust the Au-Sn co-electrodeposition solution ingredients and process parameters to precisely control the composition of Au-Sn coating. It was shown that the impact of main factors and interactions on the composition of Au-Sn coating fell in order of C>A>E>AB>D>AD>B in the fractional factorial design experiment. Central composite design experiment, containing pi I value, EDTA concentration and catechol concentration, was carried out to built the model correlating the response and the factors. Then the optimum solutions of solution ingredient and process parameter for the predicted values of Au-Sn coating can be determined based on the model. According to the model, the optimum solution for the Au-30at.%Sn eutectic coating was also determined. It was indicated that the Au-30at.%Sn eutectic alloy can be obtained under the optimum condition by repeated experiments. The eutectic alloy composition was accurate, and the experiment had repeatability.
     3. The influence law of solution ingredients on Au-Sn co-electrodeposition behavior was analyzed by electrochemical means. After adding complexing agent into the solution, the deposition potential of Au was close to that of Sn, which was benefit for the co-electrodeposition of Au-Sn alloy. After adding EDTA into the solution, the reduction peak potential of Au-Sn moved towards positive direction; after adding catechol into the solution, the reduction peak potential of Au-Sn was shifted negatively; the reduction peak potential of Au-Sn was further shifted to negative direction with the addition of both EDTA and catechol. The additives made the Au-Sn eathodie reduction peaks move towards to positive or negative position, which changed the co-electrodeposition behavior of Au-Sn. The Au content in the coating increased when the eathodie reduction peak moved towards to positive direction, while the Sn content in the coating increased when the eathodie reduction peak moved towards to negative direction. The co-electrodcposition of Au-Sn under the eathodie peak potential was controlled by diffusion step. With cathodic potential towards to negative direction, the co-electrodeposition process was controlled by both diffusion and electrochemical step.
     4. The properties of the co-electrodeposiled Au-30at.%Sn eutectic coatings were evaluated, such as roughness, bonding force, melting point, corrosion resistance and so on. The results showed that the roughness of the co-electrodeposited Au-30at.%Sn eutectic alloy coatings was only tens of nanometer, and the bonding force between the Au-30at.%Sn alloy eutectic coating and Si/TiW/Au substrate was good. The melt point was280.66℃. Moreover, the co-electrodeposited Au-30at.%Sn eutectic alloy coatings had good corrosion resistance. It is obvious that the quality of the Au-30at.%Sn eutectic bump prepared by co-electrodeposition was improved compared with that prepared by sequential electroplating. After the co-electrodeposited Au-30at.%Sn coatings reacted with Ni and Cu substrates at310oC, it was shown that (Ni,Au)3Sn2intermetallic compound formed at the interface of Au-30at.%Sn/Ni, while two-layer intermetallic compound, i.e.,(Au,Cu)5Sn close to the matrix of solder and AuCu close to the Cu substrate, formed at the interface of Au-30at.%Sn/Cu. The good bonding between the Au-30at.%Sn eutectic alloy coatings and Ni and Cu substrates indicated that the co-electrodeposited Au-30at.%Sn eutectic coating had good solderability.
引文
[1]吴震,钱可元,韩彦军,等.高效率、高可靠性紫外 LED 封装技术研究[J].光电子激发,2007,18(1):1-4.
    [2]张楼英,吕广才,杨金红.照明用大功率的封装与出光[J].电子元器件应用,2009,11(9):85-87.
    [3]Steigerwald D. A., Bhat,J. C., Collins D. Illumination with Solid State Lighting Technology [J]. IEEE journal on selected topics in quantum electronics,2002,8(2): 310-320.
    [4]Lin Y. C., Nguyen T., Yan Z., et al.2006 International Microsystems, Packing, Assembly Conference Taiwan [C]. Taiwan:Inst. of Elec. and Elec. Eng. Computer Society,2006.
    [5]Guo X. Y. Effect of Current Crowding and Device Structure on operation of Gallium Ni tride Based Light Emitting Diodes [D]. Boston:Boston University,2002.
    [6]周志敏,周纪海,纪爱华.LED驱动电路设计与应用[M].北京:人民邮电出版社,2006:32-35.
    [7]杨清德,康娅.LED及其工程应用[M].北京:人民邮电出版社,2007:615.
    [8]余彬海,李绪锋.倒装芯片衬底粘接材料对大功率 LED 热特性的影响[J].封装测试技术,2005,30(6):49-55.
    [9]Zhu Y. X., Xu. C., Da X. L., et al. Enhanced output of flip-chip light-emitting diodes with a sidewall reflector [J]. Solid-State Electronies,2007,57(5):674-677.
    [10]夏志东,雷永平,史耀武.绿色高性能无铅钎料的研究与发展[J].电子工艺技术,2002,23(5):185-191.
    [11]张红耀.无铅焊料的发展概况[J].云南冶金,2002,31(5):50-53.
    [12]刘琳,薛松柏,姚立华.电子元器件引线表面镀层的无铅化发展及展望[J].焊接,2005,9:5-9.
    [13]杨艳,尹立孟,冼健威,马鑫,等.绿色电子制造及绿色电子封装材料[J].电子工艺技术,2008,29(5):256261.
    [14]贾红星,刘素芹,黄金亮,等.电子组装用无铅钎料的研究进展[J].材料开发与应用,2003,18(5):42-46.
    [15]戴志锋,黄继华.微电子组装中Sn-Zn系无铅钎料的研究与开发[J].电子工艺技术,2004,25(1):5-8.
    [16]郭福.无铅钎焊技术与应用[M].北京:科学出版社,2006.
    [17]马鑫,何鹏.电子组装中的无铅软钎焊技术[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [18]Lin II. J., Chuang T. II. Effects of Ce and Zn additions on the microstructure and mechanical properties of Sn3Ag0.5Cu solder joints [J]. Journal of Alloys and Compounds, 2010,500(2):167-174.
    [19]He M., Leon N. D., Acoff V. L. Effect of Bi on the microstructure and tensile behavior of Sn-3.7Ag solders [J]. Soldering & Surface Mount Technology,2010,22(3):4-9.
    [20]Islam R. A., Chan Y. C., Jillek W., et al. Comparative study of wetting behavior and mechanical properties (microhardness) of Sn-Zn and Sn-Pb solders [J]. Microelectronics Journal,2006,37(8):705-713.
    [21]Chuang T. H., Yu C. L., Chang S. Y., et al. Phase identification and growth kinetics of the intermetallic compounds formed during In-49Sn/Cu soldering reactions [J]. Journal of Electronic Materials,2002,31(6):640-645.
    [22]Liu X. Y., Huang M. L., Wu C. M. L., et al. Effect of Y2O3 particles on microstructure formation and shear properties of Sn-58Bi solder [J]. Journal of Materials Science: Materials in Electronics,2010,21(10):1046-1054.
    [23]Rizvi M. J., Bailey C., Chan Y. C., et al. Effect of adding 0.3 wt% Ni into the Sn-0.7 wt% Cu solder Part I:Wetting behavior on Cu and Ni substrates [J]. Journal of Alloys and Compounds,2007,438(1-2):116-121.
    [24]Yoon J. W., Chun H. S., Jung S. B. Reliability evaluation of Au-20Sn flip chip solder bump fabricated by sequential electroplating method with Sn and Au [J]. Materials science and engineering A,2008,473:119-125.
    [25]Elger G., Hutter M., Oppermann H., et al. Development of an assembly process and reliability investigations for flip-chip LEDs using the AuSn soldering [J]. Microsystem Technology,2002,7:239-243.
    [26]Anhock A., Oppermann H., et al. Proceedings of the 1998 22nd IEEE/CPMT International Electronics Manufacturing Technology Symposium [C]. Berlin:IEEE,1998.
    [27]Kallmayer C., Lin D., Kloeser J., et al. Proceedings of the 17th IEEE/CPMT International Electronics Manufacturing Technology Symposium [C]. Austin:IEEE,1995.
    [28]Zakel E., Gwiasda J., et al. Proceedings of the 16th IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium [C]. La Jolla:IEEE,1994.
    [29]周涛,汤姆鲍勃,马丁奥德,等.金锡焊料及其在电子器件封装领域中的应用[J].电子与封装,2005,5(8):5-8.
    [30]刘泽光,陈登权,罗锡明等.金锡钎料性能及应用[J].电子与封装,2004,16:24-26.
    [31]刘欣,胡立雪,罗驰.电化学制备金锡合金薄膜技术研究[J],微电子学,2010,40(3):430-433.
    [32]Hutter M., Oppermann H., Engelmann G., et al.52nd Electronic Components and Technology Conference [C]. San Diego:Institute of Electrical and Electronics Engineers Inc. 2002.
    [33]Elger G., Voigt J., Oppermann, H. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society [C].San Diego: Institute of Electrical and Electronics Engineers Inc., 2001.
    [34]Lee C. C., Wang C. Y. , Matijasevic G. S. A new bonding technology using gold and tin multilayer composite structures [J]. IEEE Trans. Compon Hybrids Manufacturing Technol. 1991, 14(2): 407-412.
    [35]Buene L., Falkenberg-Arell H. A study of evaporated gold-tin films using transmission electron microscopy [J]. Thin Solid Films, 1980, 65: 247-257.
    [36]曾华楔,吴仲达.电镀基本原理与实践[M].北京:机械工业出版社,1986.
    [37]屠振密,李宁等.实用电镀合金技术[M].北京:国防工业出版社,2007.
    [38]陈亚,李士嘉,王春林,等.现代实用电镀技术[M].北京:国防工业出版社,2003.
    [39]Tohru W,纳米电镀[M].北京:化学工业出版社,2006.
    [40]Liew M. J., Roy S., Scott K. Development of a non-toxic electrolyte for soft Au electrodeposition: an overview of work at University of Newcastle upon Tyne [J]. Green Chemistry, 2003, 5:376-381.
    [41]Pearson G. Hard and soft acids and bases. Journal of the American Chemical Society [J]. 1963, 85(22):3533-3539.
    [42]王帅.聚酯基硫脲树脂的合成及其对贵金属离子的吸附分离性能[D].长沙:中南大学, 2008.
    [43]戴安邦,酸碱的软硬度的势标度及其相亲强度和络合物的稳定度[J].化学通报,1978,1:26-32.
    [44]王丽丽Au-Sn合金电镀液[J]. Plating and finishing.1999,21(2):42-44.
    [45]王丽丽.金-锡合金电镀[J]. Plating and finishing. 2004,26(1):38-41.
    [46]张立茗,方景礼,等.实用电镀添加剂[M].北京:化学工业出版社,2007.
    [47]方景礼.电镀添加剂理论与应用[M].北京:国防工业出版社,2006.
    [48]Morrissey R.J. Non-cyanide electroplating solution for gold or alloys thereof. US, 5277790[P]. 1994-01-11.
    [49]Hayward F. C. Pulse plating process for deposition of gold-tinalloy. US, 2006/0163080 Al[P]. 2006-10-26.
    [50]邓正平,温青.锡及锡合金可焊性镀层电镀工艺[J].电镀与精饰,2006,28(5):33-38.
    [51]胡会利,宋以斌,李宁等.焦磷酸钾体系电沉积锡钴合金的研究[J].材料保护,2006,39(9):241-243.
    [52]冯绍彬,刘清,包祥.焦磷酸盐镀铜锡合金稳定性的研究[J].材料保护,2006,39(5):23-25.
    [53]梁均方.焦磷酸盐仿金电镀的研究[J].嘉应大学学报(自然科学),2003,21(3):33-35.
    [54]乔木,冼爱平,尚建库.碱性焦磷酸盐镀液电镀Sn Ag 无铅钎料的研究[J].金属学报,2004,40(8):822-826.
    [55]Zhang J. Q., An M. Z., Chang L. M. Study of the electrochemical deposition of Sn-Ag-Cu alloy by cyclic voltammetry and chronoamperometry [J]. Electrochimica Acta,2009, 54:2883-2889.
    [56]木名濑隆Au-Sn-Cu合金电镀液.JP,56136994[P].1981,10,26.
    [57]Franco Z., Andre M. Electrodeposition of Gold Alloys. US,3764489 [P].1973-10-09.
    [58]Leopoldini M., Marino T., Russo N., et al. Antioxidant properties of phenolic compounds: H-Atom versus electron transfer mechanism [J]. Phys. Chem. A 2004,108:4916-4922.
    [59]Hradil H., Hradil G. Electroplating solution for gold-tin eutectic alloy. WOP, WO/2005/110287 A2 [P].2005-11-24.
    [60]邓殊皓.脉冲电沉积纳米晶铬-镍-铁合会工艺及其基础理论研究[D].长沙:中南大学,2003.
    [61]向国朴.脉冲电镀的理论及应用[M],天津:天津科学技术出版社,1989.
    [62]朱瑞安,郭振常.脉冲电镀[M],北京:电子工业出版社,1986.
    [63]Gay P. A., Bercot P., Pagetti J. Pulse plating effects in silver electrodeposition [J]. Plat.Surf. Finish.2000,87(12):80-84.
    [64]Tao S., Li D. Y. Mechanical and electrochemical properties of nanocrystalline copper deposits produced by pulse electrodeposition [J]. Nanotechnol.2006,17(1):65-78.
    [65]Sarvestani R. K., Williams J. D. Frequency-dependent control of grain size in electroplating gold for nanoscale applications [J]. Electrochemical and Solid-State Letters,2010,13(6):D37-D39.
    [66]Hideto W., Shinjirou H., Hideo H. Microbump formation by non-cyanide Gold Electroplating [J]. Journal of The Electrochemical Society,1999,146(2):574-579.
    [67]张景双,翟淑芳,屠振密.脉冲金镀层耐磨性能的研究[J].电镀与环保,2002,22(3):5-7.
    [68]Schwartz M., Arcos C., Nobe K. Direct&Pulse current electrodeposition of iron group thin film alloys containing vanadium [J]. Plat. Surf. Finish.2003,90(6):46-51.
    [69]Muller C., Sarret M., Andreu T. Electrodeposition of ZnMn alloys using pulse plating [J]. Electrochem. Soc.2003,150(11):772-776.
    [70]Fei J. Y., Wilcox G. D. Electrodeposition of Zn-Co Alloys with Pulse Containing Reverse Current [J]. Electrochimica Acta.2005,50(13):2693-2698.
    [71]Jankowski A. F., Saw C. K., Hayes J. P. The thermal stability of nanocrystalline Au-Cu alloys [J]. Thin Solid Films,2006,515:1152-1156.
    [72]Hong C. P., Dai P. Q., Ke X. B. Corrosion Characteristic of Nanocrystalline Nickel Prepared by Pulse Electrodeposition [J]. Rare Met. Mater. Eng.,2007,36(1):130-133.
    [73]Roshanghias A., Heydarzadeh S. M. The effects of pulse plating variables on morphology and corrosion behavior of Zn-Fe alloy coatings [J]. J. Coat. Toehnol. Res.2012, 9(2):215-218.
    [74]Donnell T., Wang N. N., Kulkarni S., et al. Electrodeposited anisolropic NiFe 45/55 thin films for high-frequency micro-inductor applications [J]. Journal of Magnetism and Magnetic Materials,.2010,322:690-1693.
    [75]Mondal K., Lalvani S. B. Copper-Platinum deposition by pulse plating [J]. Journal of The Electrochemical Society,2006,153(6):C393-C399.
    [76]Liu Y. D., PRITZKER M. Effect of pulse plating on composition of Sn-Pb coatings deposited in fluoroborate Solutions [J]. Journal of Applied Eleclrochemistry,2003, 33:1143-1153.
    [77]Peter L., Cziraki A., Pogany L., et al. Microstructure and giant magnctoresistance of Electrodeposited Co-Cu/Cu Mul tilayers [J]. Journal of the Electrochemical Society, 2001,148(3):C168-C176.
    [78]王垣芳,毕爱文.浅谈电镀槽中的阳极排布[J].电镀与精饰,1999,21(6):25-26.
    [79]蔡积庆.无氰镀金[J].电镀与环保,2002,22(1):11-12.
    [80]万小波,周兰,肖江. 无氰脉冲电镀金工艺及其在空腔靶中的应用[J].电镀与涂饰,2006,25(2):43-45.
    [81]李贤成.无氰亚硫酸钠镀金工艺[J].电镀与涂饰,2005,24(9):31-32.
    [82]顾心群.无氰亚硫酸盐镀金[J].航空精密制造技术,1997,33(5):44-45.
    [83]张福顺,黄明亮,潘剑灵,等.无氰金锡合企电镀液的成分优化及电流密度确定[J].机械工程材料,2010,34(11):50-54.
    [84]张静,徐会武,李学颜,等.电镀Au-Sn合金的研究[J].半导体技术,2009,34(11):1066-1069.
    [85]Etienne B., Frederic D., Marc T., et al. Influence of the Electrochemical Parameters on the Properties of Electroplated Au-Cu alloys [J]. Journal of The Electrochemical Society,2011,158(4):D223-D227.
    [86]Mirghasem H., Soheila E. The effect of Ti(I) on the hard gold alloy electrodeposition of Au-Co from acid baths [J]. Journal of Electronalytical Chemistry,2010, 645:109-114.
    [87]Okinaka Y. Significance of inclusions in electroplated gold films for electronics applications [J].Gold Bulletin,2000,33(4):117-127.
    [88]Su F. Y., Huang J. F., Sun I. W. Galvanostation Deposition of Palladium Gold Alloys in a Lewis Basic EMI-Cl-BF4 Ionic Liquid [J]. Journal of the Electrochemical Society, 2004,151(12):C811-C815.
    [89]Kersten H.J. Klectrodepsition of tin gold alloy. US,1905105[P].1933-04-25.
    [90]Peter S., John M.D., Kathleen R. R. Tin-gold electroplating bath and process. US,4013523[P].1977-03-22.
    [91]Kuhn W, Zilskc W. Process and bath for the electrolytic deposition of gold-tin alloy coatings. US,4634505[P].1987-01-06.
    [92]Fred T, Hempel W. Bath for the electroplating of gold-tin alloys. DE,4406434[P]. 1995-10-08.
    [93]Morrissey R. J. Electroplating Solutions for Alloys of Gold with Tin. WO,2005/118917A1 [P].2005-12-15.
    [94]Uchida El, Okada T. Non-cyanide-type gold-tin alloy plating bath. US,6544398 B2.2003.
    [95]Funaoka Y., Arai S., Kaneko N. Electrodepostion of Au-Sn alloy from a sulfite-pyrophosphate bath [J]. Electrochemistry,2004,2:98-102.
    [96]Vicenzo A., Michela R., Luca V., et al. Electrochemical deposition and structural characterization of Au-Sn alloys [J]. J Solid State Eletrochem,2004,8:159-166.
    [97]Vorobyova T. N., Vrublevskaya 0. N. Electrochemical deposition of gold-tin alloy from ethylene glycol electrolyte [J]. Surface Coatings Technology,2010,204:1314-1318.
    [98]Ivey D. G., Sun W. Z. Codepositing of Gold-Tin Alloys. US.6245208 B1 [P].2001-06-12.
    [99]Djurfors B., Doesburg J. Electrodeposition process and a layered composite material produced thereby. US,6797409 [P].2004-09-28.
    [100]Sun W., Ivey D. G. Development of an electroplating solution for codepositing Au-Sn alloys [J]. Materials Science and Engineering,1999, B65:111-122.
    [101]He A., Liu Q., Ivey D. G. Development of stable, non-cyanide solutions for electroplating Au-Sn alloy films [J]. Journal of materials science:materials in electronics,2006,17:63-70.
    [102]Doesburg J., Ivey D. G. Microstructure and preferred orientation of Au-Sn alloy plated deposits [J]. Materials Science and Engineering,2000, B78:44-52.
    [103]Djurfors B., Ivey D. G. Microstructural characterization of pulsed electrodeposited Au/Sn alloy thin films [J]. Materials Science and Engineering,2002, B90:309-320.
    [104]He A. Q., Djurfors B., Akhlaghi S., et al. Pulse Plating of Gold-Tin Alloys for Microelectronic and Optoelectronic Applications [J]. Plating and surface finishing, 2002,89(11):48-53.
    [105]刁建元,张绍军.无氰镀金用亚硫酸金钠含金量的测定[J].Journal of Sanmenxia Polytechnic,2010,9(3):114-116.
    [106]曹人平,肖士民.无氰镀金工艺的研究[J].电镀与环保,2006,26(1):11-14.
    [107]吴水清.镀金添加剂的研究进展[J].电镀与涂饰,2000,19(5):38-43.
    [108]刘奎仁,吕久吉,谢峰.亚硫酸盐无氧镀银工艺[J].沈阳黄金学院学报,1997,16(4):258263.
    [109]迟兰洲,胡文成,陈瑞生.无氰化学镀金镀速及稳定性的研究[J].表面技术,1994,23(1) :12-15.
    [110]Djurfors B.,Ivey D. G. Pulsed Electrodeposition of the Euteclic Au/Sn Solder for Optoelectronic Packaging [J]. Journal of Electronic Materials, 2001, 30(9):1249-1254.
    [111]卿湘勇.无氰共沉积电镀Au-Sn凸点的研究[D].大连,大连理工大学,2010.
    [112]实用化学编写组.实用化学手册[M].北京:科学出版社,2001.
    [113]Green T. A., Roy S. Speciation Analyis of Au(Ⅰ) Electroplating Baths Containing Sulfite and Thiosulfate [J]. Journal of The Electrochemical Society, 2006, 153 (3):157-163.
    [114]Horkans J., Romankiw L T. Pulsed Potentiostatic Deposition of Gold from Solutions of the Au(Ⅰ) Sulfite Complex [J]. Journal of the Electrochemical Society, 1977, 124:1499-1505.
    [115]Kravtsov V. I., Kondratiev V. V. Kinetics and mechanism of pyrophosphate metal complexes electro-reduction [J]. Electrochimica Acta, 1991, 36(3-4) :427 434.
    [116]Neveu B. , Lallemand F. Electrodeposition of Ply-free Sn alloys in pulsed current [J]. Applied Surface Science, 2006,252(10):3561-3573.
    [117]何新快.羧酸盐-尿索体系脉冲电沉积铬及铬合金与铁-镍-铬镀层着黑色研究[D].长沙:中南大学,2006.
    [118]An M. Z. Theory and Technology of Plating [M]. Harbin: Harbin Institute of Technology Press, 2004.
    [119]徐娟,魏晓伟,邓丽虹,等.脉冲频率对15-5PH 不锈钢电镀铬层微观结构的影响[J].材料热处理技术,2011,40(6):118-120.
    [120]Liu Y. D. , Mark P. Effect of pulse plat ing on composition of Sn Pb coatings deposited in fluoroborate solutions [J]. Journal of Applied Electrochemistry, 2003, 33:1143-1153.
    [121]Kim J. H., Suh S. M., Kwon H. S. Effect of plating conditions on the microstructures of 80Sn-20Pb electrodeposits form an organic sulphonate bath [J]. Surface and coating technology, 1996, 78:56-63.
    [122]Landolt D. , Marlot A. Microstructure and composition of pulse-plated metals and alloys[J]. Surface and Coatings Technology, 2003, 169-170:8-13.
    [123]Davis P. E. , Warwick M. E., J. Muckett S. J. Intermetallic compound growth and solderability reflowed tin and tin-lead coatings [J]. Plating Surf. Finish.,1983, 70(8):49-53.
    [124]杜楠,Sandana Y. N脉冲电镀Fe-Sb合金[J].电镀与环保,1995,15(2):1012.
    [125]Chandrasekar M. S., Malathy P. Pulse and pulse reverse plating-Conceptual, advantages and applications [J]. Electrochimica,2008,53:3313-3322.
    [126]Tsai Y. D., Hu C. C. Composition and Microstructure Control of Tin-Bismuth Alloys in the Pulse Plating Process [J]. J. Electrochem. Soc.,2011,158(8):D482-D489.
    [127]Muller C., Sarret M., Andreu T. Electrodeposition of ZnMn Alloys Using Pulse Plating [J]. J. Electrochem. Soc.,2003,150(11):C772-C776.
    [128]Roy S. Determination of the practical range of parameters during reverse-pulse current plating [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY,1997,27:299-307.
    [129]朱晓东,李宁,黎德育,等.高速电镀锌工艺对镀层粗糙度及微观形貌的影响[J].中国有色金属学报,2005,15(1):145-151.
    [130]施莱辛格,庞诺威奇.现代电镀[M].北京:化学工业出版社,2006.
    [131]Stanley G. G. The extractive metallurgy of gold in south africa [J]. The South African Institute of Mining and Metallurgy,1987,2:842.
    [132]田泱源,李瑞芳.响应面法在生物过程优化中的应用[J].食品工程,2010,2:8-12.
    [133]Tang X. J., He G. Q., Chen Q. H., et al. Medium optimization for the production of thermal stable bglucanase by Bacillus subtilis ZJF-1A5 using response surface methodology [J]. Bioresour Technol,2004,93:175-181.
    [134]Montgomery D. C. Design and Analysis of Experiments, fifthed [M]. Singapore:John Wiley & Sons,1997.
    [135]Tsai Y. D., Hu C. C. Composition Control of Sn-Bi Deposits:Interactive Effects of Citric Acid, thyl enediaminetetraacetic Acid, and Poly (ethylene glycol) [J]. Journal of The Electrochemical Society,2009,156(11):D490-D496.
    [136]Li Y., Lu J. Characterization of the enzymatic degradation of arabinoxylans in grist containing wheat malt using response surface methodology [J]. Journal of the American Society of Brewing Chemists.2005,63:171-176.
    [137]实用化学手册编写组.实用化学手册[M].北京:科学出版社,2000.
    [138]Venkatasamy V., Riemer R., Tabakovic I. Electrodeposition of eutectic Sn96.5Ag3.5 films from iodide-pyrophosphate solution [J]. Electrochimica Acta. 2011,56(13):4834-4840.
    [139]Baltrunas G., Valiuniene A. , Vienozinskis J., et al. Electrochemical gold deposition from su1fite solution: application for subsequent polyaniline layer formation [J]. J Appl Flectrochem, 2008,38:1519-1526.
    [140]Bard A. J., Faulkner L. R电化学方法原理和应用[M].北京:化学工业出版社,2005.
    [141]Dolati A., Afshar A., Ghasemi H. A. Kinetic Study on the electrodeposi t ion of Cadmium with the Presence of Organic Agents in Sulfate Solutions [J]. Mater. Chem. Phys., 2005, 94(1) :23-28.
    [142]Chen Z., Zhang M. L., Han W., et al. Electrodeposi tion of Li and Hlecrcochemical Formation of Mg-Li Alloys from the Futectic LiCl-KCl [J]. J. Alloy. Comp., 2008, 464:174-178.
    [143]杨余芳,龚竹青,李强国Ni-Fe合金共沉积的电化学行为[J].功能材料.2007,38(12):20362040.
    [144]张锦秋.锡银铜合金的电沉积工艺与沉积机制及其焊接性能的研究[D].哈尔滨:哈尔滨工业大学,2009.
    [145]Li D. H., Conway P. P., Liu C. Q. Corrosion characterization of tin-lead and lead free solders in 3.5wt.% NaCl solution [J]. Corrosion Science,2008,50:995-1004.
    [146]Mohanty U. S. , Lin K. L. Flectrochemical corrosion study of Sn-XAg-0. 5Cu alloys in 3.5% NaCl solution [J]. J. Mater. Res., 2007, 22(9):2573-2581.
    [147]刘阳.倒装LED用Au-Sn凸点制备及其界面反应研究[D].大连:大连理工大学,2010.
    [148]Novakovic R., Ricci E. , Gnecco F., et al. Surface and transport properties of Au-Sn liquid alloys [J]. Surface Sci, 2005, 599:230-247.
    [149]Saw C. K., Siekhaus W. J. Thermal expansion of AuIn3[J]. Scripta Mater, 2005, 53:1153-1157.
    [150]Pitely S., Zavalij L., Zarembo S., et al. Linear coefficients of thermal expansion of AuO. 5Ni0.5Sn4, Au0.75Ni0.25Sn4, and AuSn4 [J]. Scripta Mater, 2004, 51:745-749.
    [151]Fu Y. Q., Bryan N. K. A., Design of hybrid micro-diffractive-refractive optical element with wide field of view for free space optical interconnections [J]. Opt. Fxpress, 2002, 10:540-549.
    [152]Wei X. F., Wang R. C., Peng C. Q., et al. Microstructural evolutions of Cu (Ni)/AuSn/Ni joints during reflow [J]. Progress in natural science: materials international, 2011, 21:347-354.
    [153]Yoon J. W., Chun H. S., Lee H. J., et al. Microst ructural evolution and interfacial reactions of fluxless-bonded Au 20Sn/Cu solder joint during reflow and aging [J]. J. Mater. Res., 2007, 22(10):2817-2824.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700