用户名: 密码: 验证码:
热超声键合高频换能系统设计与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电换能器及驱动系统是高频热超声键合换能系统的关键构成之一,其结构设计与驱动控制方法的研究具有重要学术和应用价值。本文以改善高频热超声引线键合效率与质量为目的,系统地研究了高频超声换能器柔性解耦结构动态设计理论,功率超声激振信源、动态调谐控制策略、键合工艺温控算法,获得如下成果:
     基于机电等效电路原理、有限元分析及模块化设计思想,提出了热超声引线键合高频超声换能器柔性解耦结构设计方法,降低了安装环非柔性连接结构对换能器纵振能量分布的影响,有效解决了换能器高频域模态密集问题。研制了工作频率为125kHz的超声换能器,考察了换能器超声能量传递规律及其谐振特性。
     建立了压电换能器谐振频率附近的等效电路导纳模型,提出静态电容、动态电阻是影响高频压电换能器电端匹配特性、谐振特性的主要因素,证明了热超声引线键合压电换能器应用时无需电端匹配的推断;归纳出基于电流反馈技术、阻抗相位反馈技术实现超声换能器动态调谐的依据及规律。
     将DDS直接数字频率合成技术、射频领域交流信号电流真有效值及相位检测技术、精密温度测控技术、虚拟仪器技术引入高频热超声引线键合换能器驱动系统设计中,开发了以工业级高速AVR单片机为核心的嵌入式系统,试验表明驱动系统实现了高频率分辨率、高品质、高切换速率的功率超声信号生成、高速压电换能器电流真有效值、阻抗相位检测、高速自适应调谐控制、精密温度控制,高效率数据通讯,为高频热超声引线键合样机及相关功率超声加工设备的研制奠定了良好的设计基础。
     将二分搜索、分支界限搜索等分治策略引入高频超声换能系统的动态调谐控制算法设计中,提出了基于电流反馈、阻抗相位反馈检测的快速调谐控制策略,并且通过阈值及频率搜索域的自适应调节,提高了调谐搜索算法的效率,增强了嵌入式系统MCU对高频换能系统调谐过程的干预能力,仿真及试验结果表明基于相位反馈的二分搜索调谐控制算法具有更佳的谐振频率搜索特性。
     利用系统辨识方法建立了热超声引线键合工艺温升系统数学模型,设计了PID及模糊自适应PID温度控制器,仿真与试验结果表明模糊自适应PID具有具有很强的抗干扰鲁棒性及较好的控制精度,适合于具有多场耦合、时滞非线性、时变特性的热超声芯片键合工艺温度控制。
     上述研究成果丰富了热超声引线键合高频压电换能器及驱动控制系统的设计理论,对促进微电子封装装备技术进步具有重要意义。
The piezoelectric transducer and its driving system are one of the key componentsof high frequency thermosonic bonding equipments, and the research on its structureand driving control methodology has important academic and application values. Toimprove the efficiency and quality of thermosonic IC bonding, this dissertationstudies on the dynamic design theory of flexible connection structure for highfrequency ultrasonic transducer, exciting signal source of the power ultrasound,dynamic tuning of control strategies and bonding temperature. The followingcontributions have been achieved:
     The flexible connection structure of high-frequency ultrasonic transducer forthermosonic wire bonding is proposed based on the electromechanical equivalenttheory, finite element analysis(FEA) and modular design concept. Thus the influenceof the inflexible joint on the energy distribution of longitudinal vibration can bereduced and the modal concentration problem of high-frequency transducer is solved.A125kHz ultrasonic transducer has been designed, whose energy transmission lawand resonance characteristic have been investigated.
     The admittance model of equivalent circuit adjacent to the resonant frequency ofthe ultrasonic transducer is established, and it is concluded that the static category andthe dynamic resistance are the major influence factors for electrics matching andresonant feature of the ultrasonic transducer and it is not necessary for thehigh-frequency ultrasonic transducer to design matching circuit when the transducerpossesses minor static capacitance. Both theory and regulation of the dynamic tuningfor high-frequency ultrasonic transducer based on current and impedance phasefeedback technology are presented.
     The technologies, including the direct digital synthesis technology, detectingmethod of the current real effective value and signal phase in RF field, precisemeasurement technique of the temperature and virtual instrument technology, areimported into the driving system design of the high-frequency thermosonic transducer.An embedded system based on high speed AVR microprocessor is developed.Experimental test results of the driving system show the high quality power ultrasonicsignal generation, quick measurement for real effective value of the current andimpedance phase between signals, self adapting tuning control, precise temperature control and highly active data communication can be realized using the system, and itprovides a perfect hardware basis for the prototype development of the thermosonicbonding.
     The method of the divide-and-conquer strategy, such as binary search andbranch-bound algorithm, are utilized to design the control algorithm for dynamictuning of the thermosonic transducer system. Based on the current and impedancephase feedback technology, the quick tuning control strategies are presented. Throughself-adaption of the threshold value and frequency search field, the robust andefficiency of the search algorithm are improved. The simulation and test resultsindicate that the tuning control of binary search algorithm based on impedance phasedetecting possesses a better research ability for resonant frequency.
     Mathematical model of the temperature rising system for thermosonic bondingprocess is obtained through system identification method and a temperature controlleris developed with fuzzy PID adaptive control algorithm, the simulation and testresults indicate that the fuzzy PID self adaptive controller has strong capacities ofresisting disturbance and better robust performances and control precision, thetechnology is fit to temperature accuracy control of the thermosonic wire bondingprocess with multi field coupling, time varying and hysteresis.
     The above research achievements enrich the design theory of high-frequencyultrasonic transducer and control strategy of driving system for thermosonic bonding,and it has great significances on promoting the development of microelectronicspackaging equipments.
引文
[1] Fjelstad J,Retrospective on electronics technology and prospective methodsfor co-design of IC packaging and manufacturing improvements,Proceedingsof the10th International Symposium on Quality Electronic Design,CA,USA,2009:559-564
    [2] Kahng A B,Samadi K,Topaloqlu R O,Recent topics in CMP-related ICdesign for manufacturing, Proceedings of Advanced MetallizationConference,CA,USA,2009:403-414
    [3] Wilson P R,Wilcock R,Mcnally I,et al,The superchip:innovative teachingof IC design and manufacture,Proceedings of the IEEE Custom IntegratedCircuits Conference,CA,USA,2008:535-538
    [4]国家自然科学基金委员会工程与材料科学部,机械与制造科学,北京:科学出版社,2006
    [5]王新潮,对提高中国IC封装研发水平的思考与实践,半导体行业,2008,12:60-64
    [6] Plieninger R,Dittes M,Pressel K,Modern IC packaging trends in theirreliability implications, Microelectronics Reliability,2006,46(9-11):1868-1873
    [7] Wiens D,Microelectronics design and manufacturing,Advanced Packaging,2006,15(8):26-29
    [8] Kang S Y,Williams P M,Mclaren T S,et al,Studies of thermosonic bondingfor flip-chip assembly,Materials Chemistry and Physics,1995,42(1):31-37
    [9]王福亮,李军辉,韩雷等,热超声倒装键合振动传递与键合强度形成研究,中国机械工程,2006,17(22):2350-2353
    [10] Tummala R R,Microelectronics Packaging Handbook,Part I,Chapman&Hall,New York,1997:37-40
    [11] Krzanowski J E,Transmission electron microscopy study of ultrasonic wirebonding,IEEE Transaction on Components,Hybirds,and ManufacturingTechnology,1990,13(1):176-181
    [12] Luck C F,Chan Y C and Huang K C,Development of gold to goldinterconnection flip chip bonding for chip on suspension assemblies,Microelectronics reliability,2002,34(12):381-389
    [13] Harman G G,The ultrasonic welding mechanism as applied to aluminum andgold wire bonding in microelectronics, IEEE transactions on Parts,Hybridsand Packaging,1977,13(4):406-412
    [14] Dong Z,Study of mechanism of ultrasonic wire bonding process,Singapore:Nanyang University,2002
    [15] Wang F L,Han L,Zhong J,Stress-induced atom diffusion at thermosonic flipchip bonding interface,Sensors and Actuators:A-Physical,2009,149(1):100-105
    [16] Cheah L K,Tan Y M,Wei J and Wong C K,Gold to gold thermosonic flip-chipbonding, The international Conference&Exhibition on High DensityInterconnect and System Packaging,CA,USA,2001:530-539
    [17] Caroline B H,Trend in IC packaging,Proceedings of2009EuropeanMicroelectronics and Packaging Conference,Rimini,Italy,2009:1-8
    [18] Kostrubiec F,Lisik Z,Pawlak R,et al,New laser technology for wire bondingin power devices,Microelectronics Journal,2001,32(5-6):543-546
    [19] Jian G,Development on IC flip chip bonder machine&process,Proceedingsof International Conference on Electronic Pachaging Technology and HighDensity Packaging,Beijing,China,2009:827-829
    [20] Aoh J C and Chuang C L,Development of a thermosonic wire bonding processfor gold wire bonding to copper pads using argon shielding, Journal ofElectronic Materials,2004,33(4):300-311
    [21] Yao Y F, Lin T Y and Chua K H,Improving the detection of wire bonding instacked chip scale package,Microelectronics Reliability,2003,43:2039-2045
    [22] MASON W P,Maximing the probability of achieving a goal in the case of apartially observed drift process,U.S. Patent,2514080,1945
    [23] Or S W,Chan H L W,Lo V C,et al,Dynamics of an ultrasonic transducerused for wire bonding,IEEE Transaction on Ultrasonics,Ferroelectrics,andFrequency Control,1998,45(6):1453-1460
    [24] Kusakabe C,Takehiro T and Tomikawa Y,Driving and controlling of a watchdevice ultrasonic motor by two phase pulse signals,Japanese Journal ofApplied Physics,1991,30:206-208
    [25] Hemel T and Wallaschek J,State of the art and development trends ofultrasonic linear motors,Proceeding of2000IEEE Ultrasonic Symposium,2000,1:663-666
    [26]齐海群,单小彪,谢涛,超声焊接压电换能器的研制,焊接学报,2009,30(6):17-20
    [27] Parrrini L,New methodology for the design of advanced ultrasonic transducersfor welding devices,IEEE Ultrasonics Symposium,2000:669-704
    [28] Or S W,Chan H L W,Liu P C K,Piezocomposite ultrasonic transducer forhigh-frequency wire-bonding of microelectronics devices, Sensors andActuators:A-Physical,2007,133(1):195-199
    [29] Sakakura M,Ultrasonic transducer for a bonding apparatus and method formanufacture the same,U.S. Patent,US6578753B1,2003
    [30] Charles J H K,Mach K J,Lehtonen S J,et al,Wire bonding at higherfrequencies:reliability and process implications,Microelectronics Reliability,2002,43(1):141-153
    [31] Narasimalu S,Balakrishnan S K,Bonding apparatus comprising improvedoscillation amplification device,U.S. Patent,US0084900AL,2007
    [32] Safabakhsh A R,Unibody ultrasonic transducer,U.S. Patent,US5469011,1995
    [33] Parrini L,New techniques for the design of advanced ultrasonic transducers forwire bonding,IEEE Transaction on Electronics Packaging Manufacturing,2003,26(1):37-45
    [34] Parrini L, Advanced process characterization for125kHz wire bonderultrasonic transducers,IEEE Transactions on Components and PackagingTechnologies,2002,25(3):486-494
    [35] Wang F J,Zhao X Y,Zhang D W,et al,Development of novel ultrasonictransducers for microelectronics packaging,Journal of Materials Processingtechnology,2009,209(3):1291-1301
    [36]张乐敏,并联复合式超声波能量传输机构的研究:[硕士学位论文],哈尔滨:哈尔滨工业大学,2007
    [37] Tsujino J,Yoshihara H,Sano T,et al,High-frequency ultrasonic wire bondingsystems,Ultrasonics,2000,38(1):77-80
    [38] Tsujino J,Uchida T and Yamano K,Ultrasonic plastic welding using two27kHz complex vibration systems,IEEE Ultrasonics Symposium,1997:855-860
    [39] Tsujino J and Yoshinara H,High frequency longitudinal-transverse complesvibration,IEEE Ultrasonics Symposium,1977:849-854
    [40] Li H L M,Hong K Y,Ng M W K,Ultrasonic transducer assembly,U.S.Patent,US0245893AL,2004
    [41] Li J H,Tan J P,Han L,et al,The characteristics of ultrasonic vibrationtransmission and coupling in bonding technology,Proceeding of6thIEEEConference on High Density Microsystem Design and Packaging andComponent Failure Analysis,2004,(6):311-315
    [42] Konno M and Nakamura H,Equivalent electrical network for the transverselyvibration uniform bar, J.Acoust.Soc.of America,1965,38(2):614-622
    [43] Mohammed A, Equivalent circuit of solid for undergoing Longitudinalvibrations, J.Acoust.Soc.of America,1965,38(6):862-866
    [44] Krimholtz R,Leedom D A and Matthaei G L,New equivalent circuits forelementary piezoelectric transducers,Electr.Lett,1970,6(13):398-399
    [45] Chen Y C and Wu S,The impedance-matching design and simulation on highpower elctro-acoustical transducer,Sensors and Actuators A,2004,115:38-45
    [46] Xing F,Dong B and Li Z J,Impedance spectroscopic studies of cement-basedpiezoelectric ceramic composites,Composites Science and Technology,2008,68:2456-2460
    [47] Martin G,Determination of equivalent circuit constants of piezoelectricresonators of moderately low Q by absolute-admittance measurements,J.Acoustic.Soc.Am,1954,26:413-420
    [48] Terunuma K and Nishigaki S,A method for measuring the equivalent circuitelements for a piezo-resonator Japan,J.Phys,1983,22(3):143-145
    [49] Gregory A and Andersen J,Computer-aided design of ultrasonic transducerbroadband matching networks,IEEE Transactions on Sonics and Ultrasonics,1974,21(4):302-312
    [50] Coats R and Mathams R F, Design of maching networks for acoustictransducer,Ultrasonic,1988,13(2):59-64
    [51]林书玉,张福成,压电超声换能器的电端匹配电路及分析,压电与声光,1992,14(4):29-38
    [52]鲍善慧,压电换能器的动态匹配,应用声学,1998,17(2):16-20
    [53]郭建中,林书玉,高伟,超声换能器电感电容匹配电路的改进,压电与声光,2005,27(3):257-260
    [54]周培源,谢瑞和,280MHz超声换能器输入阻抗特性分析及其声电匹配网络设计,华中理工大学学报,1996,32(3):25-28
    [55]武剑,董慧娟,张松伯等,压电超声换能器初级串联匹配新方法,吉林大学学报(工学版),2009,39(6):1640-1645
    [56]朱武,张佳民,基于数字电感的压电换能器动态匹配的研究,应用声学,2000,14(4):29-38
    [57]武一民,引线键合系统设计理论与关键技术:[博士学位论文],天津:天津大学,2008
    [58]孙云超,引线键合高频超声换能系统的研究:[硕士学位论文],天津:天津大学,2008
    [59]陈邦媛,射频通讯电路,北京:科学出版社,2002,1-20
    [60] Golderberg B G,Reviewing various techniques for synthesizing signals,microwaves&RF,1996,5:181-185
    [61]远坂俊昭,锁相环电路设计与应用,北京:科学出版社,2006:30-75
    [62] Tierney J and Rader C M,A digital frequency synthesizer,IEEE Trans.AudioElectroacoust,1971,19(8):48-57
    [63] Nicholas H T and Samueli H,An analysis of the output spectrum of DirectDigital Frequency Synthesizers in the presence of phase-accumulatortruncation, IEEE Proc41thAFCS,1987:495-502
    [64] Nicholas H T and Samueli H,A150MHz direct digital frequency synthesizerin1.25um CMOS with90dBc spurious performance,Solid-State Circuits,1991,26(12):1959-1960
    [65] Nakagawa H and Nosaka, Adirect digital synthesizer with interpolationcircuits,Solid-State Circuits,1997,32(5):766-770
    [66] Nosaka H,A fast frequency switching synthesizer with an intergrated circuit,IEEE Transactions on Microwave Theory and Techniques,1998,46(12):2233-2239
    [67] Mortimer B,High resonant tracking amplifier using admittance locking,Ultrasonics,2011,39:257-261
    [68] Vladimir N K and Roman V,Adaptive phase lock system of ultrasonicelectronic generators,International Siberian workshop and tutorials EDM,2006,5(7):229-231
    [69] Vladimir N K and Alexey N, Tchyganok system of phase-locked-loopfrequency control of ultrasonic generatiors,International Siberian workshopand tutorials EDM,2001,5(7):56-57
    [70] Pons J L,Ochoa P,Villegas M,et al,Self-tuned driving of piezoelectricactuators the case of ultrasonic motors, Journal of the European Society,2007,27:4163-4167
    [71] Pons J L and Villegas M,Tuned driving of piezoelectric resonators:impedancematching,Bol.Soc.Esp.Ceram,2006,45(3):178-183
    [72] Khmelev V N,Barsukov R V,Tsyganok S N,Adaptive phase lock system ofultrasonic electronic generators,Electron Devices and Materials,2006:229-231
    [73] Parrini L,New techniques for the design of advanced ultrasonic transducers forwire bonding,IEEE Transaction on Electronics Packaging Manufacturing,2003,26(1):37-45
    [74] Or S W and Chan H L W,Piezocomposite ultrasonic transducer for highfrequency wire bonding of microelectronics devices,Sensors and Actuators A,2007,13:195-199
    [75]张镜澄,差动变量桥式自动频率跟踪电路,应用声学,1988,7(4):12-15
    [76]董慧娟,张广玉,董玮等,压电超声换能器电端匹配下的电流反馈式频率跟踪,哈尔滨工业大学学报,2000,32(3):21-25
    [77]鲍善慧,超声波发生器的最大输出功率和效率,应用声学,2003,22(5):12-17
    [78]鲍善慧,用锁相环电路跟踪压电换能器的并联谐振频率区,应用声学,2001,14(4):30-34
    [79]王艳东,李赫,鲍善慧等,锁相环跟踪超声振动系统谐振频率的改进,声学技术,2007,26(2):252-256
    [80]戴向国,傅水根,王先奎,旋转超声加工机床的研究,中国机械工程,2003,14(4):37-42
    [81]李尧,董妹敏,乔双,锁相环的改进及仿真,东北师范大学学报自然科学版,2005,37(4):53-56
    [82] Woo Y S and Young M J, A novel method for high performance phase-lockedloop, Journal of Circuits, Systems, and Computer,2004,13:53-63
    [83] Daniel T R,Dee P N and David G,Evaluation of wire bonding performance,process conditions,and metallurgical integrity of chip on board wire bonds,Microelectronics Reliability,2005(45):379-390
    [84] Clark D K and Alireza K,Adaptive fuzzy process control of integrated circuitwire bonding,IEEE Transactions on Electronics Packaging Manufacturing,1999,22(3):232-242
    [85] Montealegre N,Process integrated wire-bond quality control by means ofcytokine-formal immune networks,J Intell Manuf,2010
    [86] Or S W,Chan H L W,Lo V C,Ultrasonic wire bond quality monitoring usingpiezoelectric sensor,Sensors and Acutators:A,1998,65(1):69-75
    [87] Or S W,Chan H L W,Lo V C,Sensors for automatic process control of wirebonding,The Proceeding of the10thIEEE International Symposium andFerroelectric,Chengdu,China,1996,2:991-994
    [88] Feng W W,Meng Q F,Xie Y B,et al,On-line quality detection of ultrasonicwire bonding via refining analysis of electrical signal from ultrasonicgenerator,Journal of Electronic Packaging,2010,132(4):1-11
    [89] Feng W W,Meng Q F,Xie Y B,et al,Wire bonding quality monitoring viarefining process of electrical signal form ultrasonic generator,MechanicalSystem and Signal Processing,2010,7:3-16
    [90] Hu S J,Lim G E,Study of temperature parameter on the thermosonic goldwire bonding of high speed CMOS,IEEE Transactions on Components,Hybrids,and Maunufacturing,1991,4:855-858
    [91] Zhang D and Ling S F,Monitoring wire bonding via time-frequency analysisof horn vibration,IEEE Transaction on Electronic Packaging Manufacture,2003,26:216-220
    [92]高健,刘长宏,面向引线焊线工艺的参数预测模型与规律分析,机械工程学报,2010,46(15):185-190
    [93] Han L, Gao R and Zhong J, Wire bonding dynamics monitoring by waveletanalysis, Sensors and Actuators:A,2007,137:41-50
    [94] Han L and Zhong J, Effect of tightening torque on transducer dynamics andbond strength in wire bonding,Sensors and Acturators:A,2008,141:695-702
    [95]隆志力,韩雷,周宏权,不同温度对热超声键合工艺连接强度的影响,焊接学报,2005,26(8):23-26
    [96] Wu Y X,Long Z L,Han L and Zhong J,Temperature effect in thermosonicwire bonding,Transaction of Nonferrous Metals Society of China,2006:618-622
    [97]夏建全,刘燕,基于PWM技术的电加热系统控制算法研究,兰州大学学报,2004,40(2):43-46
    [98]杨树亮,林行新,模糊PID在恒温箱温度控制中的应用,自动化仪表学报,2006,(21):149-151
    [99] Parrini L,New techniques for the design of advanced ultrasonic transducers forwire bonding,IEEE Transaction on Electronics Packaging Manufacturing,2003,26(1):37-45
    [100]赵福令,冯冬菊,郭东明等,超声变幅杆的四端网络法设计,声学学报,2002,27(6):554-558
    [101]林仲茂,超声变幅杆的原理与设计,北京:科学出版社,1987
    [102]林书玉,压电超声换能器的原理与设计,北京:科学出版社,2004
    [103] Wang F J,Zhao X Y,Zhang D W and Wu Y M,Development of novelultrasonic transducers for microelectronics packaging,Journal of MaterialsProcessing Technology,2009,209(3):1291-1301
    [104]王福军,芯片键合高速精密定位系统设计与控制:[博士学位论文],天津:天津大学,2010
    [105] Gyimesi M,Ostergaard D,Avdeev I,Triangular transducer for micro electromechanical systems(MEMS) simulation in ANSYS finite element program,International Conference on Modeling and Simulation of Microsystems,SanJuan,Puerto rico,2002,380-383
    [106] Lin S Y,Load characteristics of high power sandwich piezoelectric ultrasonictransducers,Ultrasonics,2005,43(5):365-373
    [107] Hu C M,Guo N,Du H,Dynamic characteristics of stacked piezoelectrictransducers of ultrasonic wire bonders used in integrated circuit packaging,Proceedings of IMechE,Part C:Journal of Mechanical Engineering Science,2003,217(3):341-352
    [108] Chen Y C and Wu S,The impedance-matching design and simulation on highpower elctro-acoustical transducer,Sensors and Actuators A,2004,115:38-45
    [109] Mcbrearty M and Kim L H,Analysis of impedance loading in ultrasonictransducer systems,IEEE Proceeding of2006Ultrasonic Sysposium,2006:497-502
    [110] Rajeswari M and Rodd M G, Real time analysis of an IC wire bondinginspection system,Real Time Imaging,1999,5:409-421
    [111] KLIENE G D,Direct digital synthesis-DDS,Elektor Electronics,1992:92-98
    [112] Golderberg B G,Reviewing various techniques for synthesizing signals,microwaves&RF,1996,5:181-185
    [113] Torosyan Arthur, Direct digital frequency synthesizers: complete analysis anddesign guidelines:[Doctor degree dissertation],Los Angeles:University ofCalifornia,2003
    [114]远坂俊昭,锁相环电路设计与应用,北京:科学出版社,2006:30-75
    [115] Gardner F M, Phase lock techniques, John Wiley&Sons, New York,1979
    [116] Gardner F M, Charge-pump phase-lock loops, IEEE Journal of Communi–cations,1980,28:1849-1858
    [117] Gardner F M, Phase accuracy of charge pump PLL’s, IEEE Journal ofCommunication,1982,30:2362-2369
    [118] Paemel M V, Analysis of a charge pump PLL:a new model,IEEE Jouranl ofCommunication,1994,42:2490-2498
    [119] Mirabbasi S and Martin K,Design of loop filter in phase-locked loops,Electronics Letters,1999,35(10):1801-1803
    [120] Datasheet of the Microcontroller ATmega128,http://www.atmel.com
    [121] Datasheet of the Complete DDS Device:AD9851,http://www.analog.com
    [122] Datasheet of the Analog Device:AD8361,http://www.analog.com
    [123] Datasheet of the Analog Device:AD8302,http://www.analog.com
    [124] Datasheet of the ADC Device:MAX1280,http://www.maxim-ic.com
    [125] Datasheet of the ADC Device:TLC2543,http://www.ti.com
    [126] Datasheet of the Microcontroller ATmega16,http://www.atmel.com
    [127]王晓东,算法设计与分析,北京:清华大学出版社,2008
    [128] Shigeo H, On the tracking of resonance and antiresonance of a piezoelectricresonator,IEEE transactions on Ultrasonics, Ferroelectrics and FrequencyControl,1991,38(3):231-236
    [129]刘金琨,先进PID控制Matlab仿真,北京:电子工业出版社,2007
    [130]陶永华,新型PID控制技术及其应用,北京:机械工业出版社,2002
    [131]李世勇,模糊控制、神经网络控制和智能控制论,哈尔滨:哈尔滨工业大学出版社,1999
    [132] Passion K M,模糊控制,北京:清华大学出版社,2001
    [133] Passino K M,模糊控制,北京:清华大学出版社,2001
    [134]杨树亮,模糊PID在恒温箱温度控制系统中的应用,自动化仪表学报,2006,21(4):149-151
    [135]陈树学,刘萱,Labview宝典,北京:电子工业出版社,2011
    [136] Chance E,Vipin V,Wesley Z,et al, National Instruments LabVIEW:aprogramming environment for laboratory automation and measurement,Journal of the Association for Laboratory Automation,2007,12(1):17-24
    [137] Jimenez F J and Frutos J D,Virtual instrument for measurement,processingdata, and visualization of vibration patterns of piezoelectric devices,ComputerStandards&Interfaces,2005,27(6):653-663
    [138]王福亮、刘少华,超声引线键合过程的信号采集及分析系统,中南大学学报(自然科学版),2010,41(6):2189-2193
    [139] Farhad F, Wire bonding ultrasonic control system responsive to wiredeformation, U.S.Patent, US5314105,1994
    [140] Gibson O E,Gleeson W J,Burkholder L D,et al,Bond signature analyzer,U.S.Patent,USA4998664,1989
    [141]薛年喜,Matlab在数字信号处理中的应用,北京,清华大学出版社,2003
    [142] Mallat S, A theory for multiresolution signal decomposition: waveletrepresentation,IEEE Pattern Anal.Machine Intell,1989,11(7):674-693
    [143]高成,董长虹,郭磊等,Matlab小波分析与应用,北京:国防工业出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700