用户名: 密码: 验证码:
电子封装无铅钎料界面反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微电子封装领域向互连材料无铅化的方向发展及电子产品向小型化、多功能化的方向迈进,互连焊点的服役可靠性引起了人们的广泛关注。而互连焊点的界面反应是影响焊点可靠性最关键的因素,因此研究无铅钎料的界面反应是非常必要的。
     本文首先研究了添加Cu质点的Sn-9Zn复合钎料/Cu基体的界面反应;其次对Sn-Cu基钎料中添加微量合金元素Ti和Ni对界面反应的影响进行了研究,同时也实验研究了低Ag无铅钎料和不同表面处理的焊盘的界面反应;最后对外加电流载荷对无铅焊点界面IMC的生长动力学影响及力学性能损伤进行了探讨。
     实验结果表明:1)在Sn9-Zn钎料中添加Cu质点,能有效抑制Sn-9Zn/Cu焊点界面IMC(Cu_5Zn_8)的生长速率,同时焊点内的Cu质点和单质Zn反应,原位转化为Cu-Zn金属间化合物,从而减少了焊点内单质Zn的含量。在钎料中添加的Cu质点越多,界面IMC的生长速率下降得越多。由于在钎焊过程(液-固反应)焊点界面的IMC受到抑制,并且焊点内的Cu质点也消耗了大量单质Zn,因此在时效过程(固-固反应),界面IMC的生长同样受到抑制。2)在Sn-0.7Cu钎料中添加0.008wt%Ti合金元素,可降低Sn-0.7Cu/Cu焊点界面IMC的生长速率。但是,由于在界面IMC中没有检测到Ti的存在,表明Ti并没有参与界面反应。而IMC生长速率降低的原因是Ti的加入降低了界面IMC的形核率,使得IMC晶粒尺寸增加,晶界面积减少,从而导致扩散组元(Cu和Sn)晶间扩散速率减小。另一方面,由于钎料中添加的Ti极为微量,在现有实验条件下,没有检测到钎料中Ti的金属间化合物的存在,这预示Ti原子可能固溶于β-Sn相中或存在于β-Sn相的晶界之间。3)在Sn_(0.8)Ag_(0.5)Cu_2Bi钎料中添加0.05wt%Ni合金元素,其和Cu基体钎焊时的界面反应产物为(Cu,Ni)_6Sn_5,Ni的含量范围为3-4at%。由于(Cu,Ni)_6Sn_5相具有比Cu_6Sn_5相更为复杂的相结构,因此时效过程中界面IMC的生长得到抑制。通过实验计算,其激活能为111.62kJ/mol,大大高于Sn_(3.0)Ag_(0.5)Cu/Cu焊点界面IMC的激活能(75.03kJ/mol)。4)对于Sn_(0.3)Ag_(0.7)Cu钎料和OSP及HASL焊盘的液-固界面反应,其界面IMC为贝状Cu_6Sn_5相;而对于Sn_(0.3)Ag_(0.7)Cu钎料和/ElectrolyticNi/Au及ENIG焊盘来说,其界面IMC为层状和块状的(Cu,Ni)_6Sn_5+针状的(Ni,Cu)_3Sn_4。Sn_(0.3)Ag_(0.7)Cu/ENIG焊点的固-固反应,随着温度和时间的增加,针状(Ni,Cu)_3Sn_4逐渐减少直至最后消失,层状的(Cu,Ni)_6Sn_5增厚;而对于Sn_(0.3)Ag_(0.7)Cu/OSP焊点,其界面IMC-贝状Cu_6Sn_5逐渐变得平整,同时IMC按抛物线规律逐渐增厚。5)Sn3.0Ag0.5Cu/Cu焊点在电流载荷作用下,界面IMC的生长显现明显的极性效应。阳极界面IMC随时间的增加不断增厚,阴极不断减薄,并且阳极IMC的生长动力学符合抛物线生长规律,受扩散机制控制。阴极界面IMC的溶解虽然也符合抛物线规律,但存在一个阴极临界厚度。当阴极的原始厚度大于临界厚度时(电流加载初期),阴极IMC按抛物线规律溶解;当IMC的厚度达到临界厚度时,IMC的厚度几乎不变。另外,电迁移效应将对焊点的力学性能造成极大损伤。
Along with the development towards lead-free interconnection materials inmicro-electronic packaging industry and the progress towards miniaturization andmulti-functionalization for electronic products, the reliability issues of the interconnectionsolder joints as service have aroused the wide attention. However, the interfacial reactionbetween lead-free solder and substrate (including liquid-solid and solid-solid reaction) is themost key issue for the reliability of lead-free solder joint, so, it is necessary to research theinterfacial reaction mechanism for lead-free solder joints.
     Firstly, the interfacial reaction between Sn-9Zn solder adding Cu-particle and Cusubstrate was researched in this work. The experimental results show that the growth rate ofthe interfacial IMC (Cu_5Zn_8) in the solder joints can be fully suppressed by addingCu-particle in the solder, meanwhile, Zn phase inside the solder joint is in situ transformedinto Cu-Zn intermetallic compounds due to its reaction with Cu-particle, resulting in Zn phasedecreasing. Since the growth rate of the interfacial IMC of the solder/Cu-substrate isobviously lower than the solder/Cu-particle, it is concluded that Cu-particle is able to“capture” the more Zn atom than Cu-substrate. This can be explained as that the quantities ofthe liquid solder reacting with Cu-particle are the more than Cu-substrate in the now reactionsystem by means of Dybkov’s interfacial reaction theory.
     Secondly, the effect of adding trace alloy elements Ti and Ni in Sn base solder on theinterfacial reaction was explored. The results indicate that the growth rate of the interfacialIMC between Sn-0.7Cu solder and Cu substrate can be decreased in some extent, and it is alsoobserved that the IMC grain size increases when0.008wt%Ti is added in the solder as alloyelement. However, since Ti element is not detected in the interfacial IMC, this concluded thatthere is not any reaction between Ti and other constituents forming the IMC. So, themechanism-controlled depressing the IMC growth rate may be considered that the boundarydiffusion of the constituents Cu and Sn is restrained due to decreasing the nucleation of theinterfacial IMC as adding Ti in the solder, resulting in the grain size increasing, meanwhile,the boundary area decreasing. When0.05wt%Ni is added in Sn_(0.8)Ag_(0.5)Cu_2Bi solder as alloy element, the interfacial reaction IMC between the solder and Cu substrate is (Cu,Ni)_6Sn_5assoldering, and Ni content in the IMC is about3-4at%by EDS. Since the (Cu,Ni)_6Sn_5configuration is more complex than Cu_6Sn_5, its growth rate is depressed as isothermal aging.The (Cu,Ni)_6Sn_5growth activation energy calculated by experimental data is about111.62kJ/mol, and it is more larger than Cu_6Sn_5(about75.03kJ/mol).
     Additionally, the interfacial reactions between Sn_(0.3)Ag_(0.7)Cu solder and dissimilar padsfinish (including OSP, HASL, Electrolytic Ni/Au and ENIG) were comparatively investigated.It is presented that scallop-shaped Cu_6Sn_5are formed between the solder and OSP as well asHASL pads finish as soldering, however, the interfacial IMC with Electrolytic Ni/Au andENIG pads finish are composed of layer-shaped and dollop-shaped (Cu,Ni)_6Sn_5as well asneedle-shaped (Ni,Cu)_3Sn_4. During isothermal aging, the needle-shaped (Ni,Cu)_3Sn_4gradually reduce till completely vanish and the thickness of layer-shaped (Cu,Ni)_6Sn_5,simultaneously, increases with aging time increasing. It is concluded that Cu atom in thesubstrate participates in the interfacial reaction and its diffusive rate through Ni layerdominates the IMC growth rate, therefore, the needle-shaped (Ni,Cu)_3Sn_4more slowly reduceas the Ni layer is more thick.
     Finally, the growth kinetics of the interfacial IMC of Sn_(3.0)Ag_(0.5)Cu/Cu solder joints wasalso explored under stressing electric current. It is indicated that the evolution on theinterfacial IMC between the solder and Cu substrate presents an obvious polarity effect atcathode and anode. The growth rate of the interfacial IMC is strengthened at anode andinhibited at cathode, and its growth kinetics at anode accords with parabolic relationship withstressing time. Although the dissolution rate of the interfacial IMC at cathode also isaccordance with parabolic rule, the IMC thickness exist a threshold value. When the IMCthickness is larger than the threshold value (early stage), the IMC dissolution followsparabolic rule, however, as the IMC thickness is equal to the threshold value, it is hardlychanged. This concludes that the driven forces acted on the diffusive atoms at cathode takebalance, namely, electronic wind force is equal to chemical potential energy.
引文
[1] Tummala R R, Rymaszewski E, Klopfenstein A. Microelectronic packagingHandbook[M]. New York: Chapman&Hall,1997
    [2] Tummala R R. Fundamentals of Microsystem Packaging[M]. New York: McGraw-Hill,2001
    [3] William J. Greig. Integrated Circuit Packaging, Assembly and Interconnections[M].New York: Springer Science+Business Media.2007
    [4] International technology roadmap for semiconductors[M](assembly and packaging).www.itrs.net.2007edition,3-12
    [5] Li Y, Moon K. S, Wong C. P. Electronics without lead[J]. Science,2005:308(5727),1419-1420
    [6] Ogunseitan O. A. Public hearth and environmental benefits of adopting lead-freesolders[J]. Journal of the Minerals, Metals and Materials Society,2007,59(7):12-17
    [7] Katsuaki. Suganuma. Advance in lead-free electronics soldering[J]. Current Opinion inSolid State Materials Science,2001,5(1):55-64
    [8] T. Laurila, V. Vuorinen, J.K. Kivilahti. Interfacial reactions between lead-free soldersand common base materials[J]. Materials Science and Engineering R,2005,49(1-2):1-60
    [9] T. Laurila, V. Vuorinen, M. Paulasto-Krockel. Impurity and alloying effects oninterfacial reaction layers in Pb-free soldering[J]. Materials Science and Engineering R,2010,68(4-6):1-38
    [10] K. Zeng, K. N. Tu. Six cases of reliability study of Pb-free soldering joints in electronicpackaging technology[J]. Materials Science and Engineering R,2002,38(2):55-105
    [11] K. N. Tu, A. M. Gusak, M. Li. Physics and materials challenges for lead-free solders[J].Journal of Applied Physics,2003,93(3):1335-1353
    [12] King-Ning Tu. Solder joint technology (materials, properties, and reliability)[M]. NewYork: Springer Science+Business Media,2007
    [13] Dongkai Shangguan. Lead-free solder interconnect reliability[M]. Ohio: ASMInternational,2005
    [14] Charles A. Harper. Electronic materials and processes handbook[M].3rd. New York:McGraw-Hill companies,2003
    [15] K.N. Subramanian. Lead-free electronic solders[M]. New York: SpringerScience+Business Media,2007
    [16]戴永年.二元合金相图集[M].北京,科学出版社,2009:909
    [17]菅沼克昭.无铅焊接技术[M].宁晓山译.北京,科学出版社,2004:22
    [18]邹僖.钎焊[M].北京,机械工业出版社,1989:26
    [19]张启运,庄鸿寿.钎焊手册[M].北京,机械工业出版社,1999:121
    [20] J. Shen, Y. C. Liu, H. X. Gao. Formation of bulk Cu6Sn5intermetallic compounds inSn–Cu lead-free solders during solidifcation[M]. Journal of Materials Science,2007,42:5375–5380
    [21]郭福等.无铅钎焊技术与应用[M].北京,科学出版社,2006:108
    [22] Toyoda Y. The latest trends in lead-free soldering[C]. Proceedings of InternationalSymposium on Electronic Packaging Technology, Beijing,2001:434-438
    [23] Loomans M E, Vaynman S, Ghosh G et al. Inverstigation of multi-component lead-freesolders[J]. Journal of Electronic Materials,1994,23(8):741-746
    [24] Kim K S, Huh S H, K. Suganuma. Effects of cooling speed on microstructure andtensile properties of Sn–Ag–Cu alloys[J]. Materials Science and Engineering A,2002,333(1-2):106-114
    [25] Moon K W, Boettinger W J. Accurately determining eutectic compositions: TheSn-Ag-Cu ternary eutectic[J]. JOM,2004,56(4):22-27
    [26] Glazer J. Metallurgy of low temperature Pb-free solders for electronic assembly[J].International Materials Reviews,1995,40(2):65-93
    [27] Baggio T. Turning a New leaf in a lead-free market[C]. Proceedings of IPC Works’99,Minneapolis, MN,1999:27-31
    [28] R.A. Islam, B. Y. Wu, M. O. Alam, Y. C.Chan, W. Jilek. Investigations onmicrohardness of Sn-Zn based lead-free solder alloys as replacement of Sn-Pb solder[J].Journal of Alloys and Compounds,392(2005),149-158
    [29]郭福.无铅钎焊技术与应用[M].北京,科学出版社,2006:153-155
    [30] Zhou J, Sun Y S, Xue F. Properties of low melting point Sn–Zn–Bi solders[J]. Journalof Alloys and Compounds,2005,397(1-2):260-264
    [31] Loomans M E, Vaynman S, Ghosh G et al. Investigation of Multi-componentLead-Free Solders[J]. Journal of Electronic Materials,1994,23(8):741-746
    [32] Kim K S, Matsuura T, Suganuma K. Effects of Bi and Pb on Oxidation in Humidity forLow-Temperature Lead-Free Solder Systems[J]. Journal of Electronic Materials,2006,35(1):41-47
    [33] R. A. Lord, A. Umantsev. Early stages of soldering reactions[J]. Journal of AppliedPhysics.2005,98:063525(11)
    [34] V. I. Dybkov. Reaction diffusion and solid state chemical kinetics[M]. Ukraine: IPMSpublications kyiv,2002:197-210
    [35] V. I. Dybkov, K. Barmak, W. Lengauer, P. Gas. Interfacial interaction of solid nickelwith liquid bismuth and Bi–base alloys[J]. Journal of Alloys and Compounds,2005,389(1-2):61–74
    [36] V. I. Dybkov. Effect of dissolution on the Ni3Sn4growth kinetics at the interface of Niand liquid Sn-Base solders[J]. Solid State Phenomena,2008,1(138):153-158
    [37] V. I. Dybkov. Growth kinetics of the intermetallic layer at the interface of solid metalswith liquid soldering alloys[C]. Materials Research Society Proceedings,2007:993(0993-E03-02)
    [38] Jicheng Gong, Changqing Liu, Paul P. Conway, Vadim V. Silberschmidt. Evolution ofCuSn intermetallics between molten SnAgCu solder and Cu substrate[J]. ActaMaterialia,2008,56(1-2):4291-4297
    [39] Jicheng Gong, Changqing Liu, Paul P. Conway, Vadim V. Silberschmidt. Initialformation of CuSn intermetallic compounds between molten SnAgCu solder and Cusubstrate[J]. Scripta Materialia,2009,60(5):333-335
    [40] Chang-Ho Yu, Kwang-Lung Lin. The atomic-scale studies of the behavior of the crystaldissolution in a molten metal[J]. Chemical Physics Letters,2006,418(4-6):433-436
    [41] Yu-Wei Lin, Kwang-Lung Lin. The early stage dissolution of Ni and the nucleation ofNi-Sn intermetallic compound at the interface during the soldering of Sn-3.5Ag on a Nisubstrate[J]. Journal of Applied Physics,2010,108:063536(4)
    [42] Chang-Ho Yu, Kwang-Lung Lin. Early dissolution behavior of copper in a moltenSn-Zn-Ag solder[J]. Journal of Materials Research,2006,20(3):666-671
    [43] H. K. Kim, K. N. Tu. Rate of consumption of Cu in soldering accompanied byripening[J]. Applied Physics Letters,1995,67(140:2002-2004
    [44] H. K. Kim, K. N. Tu. Kinetic analysis of the soldering reaction between eutectic SnPballoy and Cu accompanied by ripening[J]. Physical Review B,1996,53(23):27-34
    [45] K. N. Tu, T. Y. Lee, J. W. Jang, L. Li, D. R. Frear, K. Zeng, J. K. Kivilahti. Wettingreaction versus solid state aging of eutectic SnPb on Cu[J]. Journal of Applied Physics,2001,89(9):4843-4849
    [46] A. M. Gusak, K. N. Tu. Kinetic theory of flux-driven ripening[J]. Physical Review B,2002,66:115403(14)
    [47] J. Gorlich, G. Schmitz, K. N. Tu. On the mechanism of the binary Cu/Sn solderreaction[J]. Applied Physics Letters,2005,86:053106(3)
    [48] Michel Perez. Gibbs-Thomson effects in phase transformations[J]. Scripta Materialia,2005,52(8):709-712
    [49] K. N. Tu, U. Gosele. Hollow nanostructures based on the Kirkendall effect: design andstability consideration[J]. Applied Physics Letters,2005,86:093111(3)
    [50] P. Swaminathan, S. Sivaramakrishnan, J. S. Palmer, J. H. Weaver. Size dependence ofnanoparticle dissolution in a matrix: Gold in bismuth[J]. Physical Review B,2009,79:144133(4)
    [51] D. Ma, W. D. Wang, S. K. Lahiri. Scallop formation and dissolution of Cu–Snintermetallic compound during solder reflow[J]. Journal of Applied Physics,2002,91(5):3312-3317
    [52] K.N Tu. Interdiffusion and reaction in bimetallic Cu-Sn thin films[J]. Acta Metallurgica,1973,21(4):347-354
    [53] K. N. Tu, R. D. Thompson. Kinetics of interfacial reaction in bimetallic Cu-Sn thinfilms[J]. Acta Metallurgica,1982,30(5):947-952
    [54] K. N. Tu. Cu/Sn interfacial reactions: thin-film case versus bulk case[J]. MaterialsChemistry and Physics,1996,46(2-3):217-223
    [55] B. F. Dyson, T. R. Anthony, D. Turnbull. Interstitial Diffusion of Copper in Tin[J].Journal of Applied Physics,1967,38(4):3408
    [56] H. Bhedwar, K. Ray, S. Kulkarni, V. Balasubramanian. Kirkendall effect studies incopper-tin diffusion couples[J], Scripta Metallurgica.1972,6(10):919-922
    [57] L. Revay. Interdiffusion and formation of intermetallic compounds in tin-copper alloysurface coatings[J]. Surface Technology,1977,5(1):57-63
    [58] Masami Onishi, Hideo Fujibuchi. Reaction-diffusion in the Cu-Sn system[J].Transactions of the Japan Institute of Metals,1975,16(9):539-548
    [59] Z. Mei, A. Sunwoo, J. Morris. Analysis of low-temperature intermetallic growth incopper-tin diffusion couples[J]. Metallurgical and Materials Transactions A,1992,23(3):857-864
    [60] C. Wagner. The evaluation of data obtained with diffusion couples of binarysingle-phase and multiphase systems[J]. Acta Metallurgica,1969,17(2):99-107
    [61] K. J. Ronka, F. J. J. Vanloo, J. K. Kivilahti. A Diffusion-Kinetic Model for PredictingSolder/Conductor Interactions in High Density Interconnections[J]. Metallurgical andMaterials Transactions A,1998,29(12):2951-2956
    [62] Zeng Kejun, Stierman Roger, Chiu Tz-Cheng, Edwards Darvin, Ano Kazuaki, Tu K. N.Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect onjoint reliability[J]. Journal of Applied Physics,2005,97(2):024508(8)
    [63] M. J. H. van Dal, A. M. Gusak, C. Cserháti, A. A. Kodentsov, and F. J. J. van Loo.Microstructural Stability of the Kirkendall Plane in Solid-State Diffusion[J]. PhysicalReview Letters,2011,86(15):3352-3355
    [64] A. Paul. The Kirkendall Effect in Solid State Diffusion[D]. Technical University ofEindhoven.2004:79-96
    [65] S. Bader, W. Gust, H. Hieber. Rapid formation of intermetallic compoundsinterdiffusion in the Cu-Sn and Ni-Sn systems[J]. Acta Metallurgica et Materialia,1995,43(1):329-337
    [66] D. Gur, M. Bamberger. Reactive isothermal solidification in the Ni–Sn system[J]. ActaMaterialia,1998,46(14):4917-4923
    [67] M. Oh. Solid diffusion reaction between Sn and Cu(Ni) substrate[D]. LehighUniversity,1994
    [68] Riet Labie, Wouter Ruythooren, Jan Van Humbeeck. Solid state diffusion in Cu-Sn andNi-Sn diffusion couples with flip-chip scale dimensions[J]. Intermetallics,2007,15(9):396-403
    [69] Masazumi Amagai. A study of nanoparticles in Sn–Ag based lead free solders[J].Microelectronics Reliability,2008,48(1):1-16
    [70] F. Gao, T. Takemoto, H. Nishikawa. Effects of Co and Ni addition on reactivediffusion between Sn–3.5Ag solder and Cu during soldering and annealing[J]. MaterialsScience and Engineering A,2006,420(1-2):39-46
    [71] Kazuhiro Nogitaa, Tetsuro Nishimura. Nickel-stabilized hexagonal (Cu,Ni)6Sn5inSn–Cu–Ni lead-free solder alloys[J]. Scripta Materialia,2008,59(2):191-194
    [72] Luhua Xu, John H. L. Pang. Nano-indentation characterization of Ni–Cu–Sn IMC layersubject to isothermal aging[J]. Thin Solid Films,2006,504(2):362-366
    [73] C.M. Gourlay, K. Nogita, S.D. McDonald, T. Nishimura, K. Sweatman, A.K. Dahle. Arheological assessment of the effect of trace level Ni additions on the solidification ofSn-0.7Cu[J]. Scripta Materialia,2006,54(9):1557-1562
    [74] Tina Ventura, Christopher M. Gourlay, Kazuhiro Nogita et al. The influence of0–0.1wt.%Ni on the microstructure and fluidity length of Sn-0.7Cu-xNi[J]. Journal ofElectronic Materials,2008,37(1):32-39
    [75] Hiroshi Nishikawa, Jin Yu Piao, Tadashi Takemoto. Interfacial Reaction betweenSn-0.7Cu (-Ni) Solder and Cu Substrate[J]. Journal of Electronic Materials,2006,35(5):1127-1132
    [76] Petr Harcuba, Milos Janecek. Microstructure changes and physical properties of theintermetallic compounds formed at the interface between Sn-Cu solders and a Cusubstrate due to a minor addition of Ni[J]. Journal of Electronic Materials,2010,39(12):2553-2557
    [77] Tsutomu Sasaki, Masamoto Tanaka, Yasuhide Ohno. Intermetallic compoundformation between lead-free solders (Sn) and Cu or Ni electrodes[J]. Materials Letters,2007,61(10):2093-2095
    [78] Y.W.Wang, C.C. Chang, C.R. Kao. Minimum effective Ni addition to SnAgCu soldersfor retarding Cu3Sn growth[J]. Journal of Alloys and Compounds,2009,478(1-2):1-4
    [79] Xinjiang Zhang, Yongzhong Zhan, Qinghua Guo, Guanghua Zhang, Jing Hu.The473K isothermal section of the Cu–Ti–Sn ternary system[J]. Journal of Alloys andCompounds,2009,480(2):382-385
    [80] Ronald W. Smith. Active solder joining of metals, ceramics and composites[J].Welding Journal,2001,(10):30-35
    [81] Erich Lugscheider, Stefania Ferrara. Characterisation and optimisation of innovativesolders for transient liquid phase bonding and active soldering[J]. AdvancedEngineering Materials,2004,6(3):160-163
    [82] S. Y. Chang, L. C. Tsao, M. J. Chiang, C. N. Tung, G. H. Pan, T. H. Chuang. Activesoldering of indium tinoxide (ITO) with Cu in air using an Sn3.5Ag4Ti (Ce, Ga)filler[J]. Journal of Materials Engineering and Performance,2003,12(4):383-389
    [83] Li-Wei Lin, Jenn-Ming Song, Yi-Shao Lai et. al. Alloying modification of Sn–Ag–Cusolders by manganese and titanium[J]. Microelectronics Reliability,2009(3):235-241
    [84] K.S. Kim, S.H. Huh, K. Suganuma. Effects of fourth alloying additive onmicrostructures and tensile properties of Sn-Ag-Cu alloy and joints with Cu[J].Microelectronics Reliability,2003,43(2):259–267
    [85] Weiping Liu, Ning-Cheng Lee. The Effects of Additives to SnAgCu Alloys onMicrostructure and Drop Impact Reliability of Solder Joints[J]. JOM (Journal of theMinerals, Metals and Materials Society),2007,59(7):26-31
    [86] Weiping Liu, Bachorik. P, Ning-Cheng Lee. The Superior Drop Test Performance ofSAC-Ti Solders and Its Mechanism[C].10th Electronics Packaging TechnologyConference,2008, EPTC2008:1046-1053
    [87] V. Vuorinen, H. Q. Dong, T. Laurila. Effect of Ti on the interfacial reaction betweenSn and Cu[J]. Journal of Materials Science: Materials in Electronics,2012,23(1):68-74
    [88] T. Laurila, D. Hongqun, V. Vuorinen. Interfacial reactions between SnAg1.0Ti and Nimetallization[J]. Journal of Materials Science: Materials in Electronics,2012, DOI:10.1007/s10854-012-0698-5
    [89] S. Vaynman, M.E. Fine. Development of fluxes for lead-free solders containing zinc[J].Scripta Materialia,1999,41(12):1269-1271
    [90] S.Vaynman, G. Ghosh, M. Fine. Some fundamental issues in use of Zn-containinglead-free solders for electronic packaging[J]. Materials Transactions,2004,45(3):630-636
    [91] Katsuaki Suganuma, Koichi Niihara. Wetting and interface microstructure betweenSn-Zn binary alloys and Cu[J]. Journal of Materials Research,1998,13(10):2859-2865
    [92] S.C. Yang, C.E. Ho, C.W. Chang. Strong Zn concentration effect on the solderingreactions between Sn-based solders and Cu[J]. Journal of Materials Researches,2006,21(10):2436-2439
    [93] Chang-Ho Yu, Kwang-Lung Lin. Early stage soldering reaction and interfacialmicrostructure formed between molten Sn-Zn-Ag solder and Cu substrate[J]. Journalof Materials Researches,2005,20(5):1242-1249
    [94] Chang-Ho Yu, Kwang-Lung Lin. Early dissolution behavior of copper in a moltenSn-Zn-Ag solder[J]. Journal of Materials Researches,2005,20(3):666-671
    [95] Po-Yi Yeh, Jenn-Ming Song, Kwang-Lung Lin. Dissolution Behavior of Cu and AgSubstrates in Molten Solders[J], Journal of Electronic Materials,2006,35(5):978-987
    [96] Yee-Wen Yen, Weng-Ting Chou, Yu Tseng, Chiapyng Lee, Chun-Lei Hsu. Investigationof Dissolution Behavior of Metallic Substrates and Intermetallic Compound in MoltenLead-free Solders[J]. Journal of Electronic Materials,2008,37(1):73-83
    [97] Tadashi Takemoto, Makoto Miyazaki. Effect of excess temperature above liquidus oflead-free solders on wetting time in a wetting balance test[J]. Materials Transactions,2011,42(5):745-750
    [98] C. S. Lee, F. S. Shieu. Growth of Intermetallic Compounds in the Sn-9Zn/Cu Joint[J].Journal of Electronic Materials,2006,35(8):1660-1665
    [99] Chia-Wei Huang, Kwang-Lung Lin. Morphology of Intermetallic Compounds Formedbetween Lead-Free Sn-Zn Based Solders and Cu Substrates[J]. Journal of ElectronicMaterials,2006,35(12):2135-2141
    [100] Chih-Ming Chen, Chih-Hao Chen. Interfacial Reactions between Eutectic SnZnSolder and Bulk or Thin-Film Cu Substrates[J]. Journal of Electronic Materials,2007,36(10):1363-1371
    [101] Ikuo Shohji, Takao Nakamura, Fuminari Mori, Shinichi Fujiuchi. Interface reactionand mechanical properties of lead-free Sn-Zn alloy/Cu joints[J]. MaterialsTransactions,2002,43(8):1797-1801
    [102] Akio Hirose, Hiroto Yanagawa, Eiichi Ide, Kojiro F. Kobayashi. Joint strength andinterfacial microstructure between Sn–Ag–Cu and Sn–Zn–Bi solders and Cusubstrate[J]. Science and Technology of Advanced Materials,2004,5(1-2):267–276
    [103] D. Q. Yu, H. P. Xie, L. Wang. Investigation of interfacial microstructure and wettingproperty of newly developed Sn-Zn-Cu solders with substrate[J]. Journal of Alloysand Compounds,2004,385(1-2):119-125
    [104] Tetsu Ichitsuboa, Eiichiro Matsubara, Kozo Fujiwara et al. Control of compoundforming reaction at the interface between SnZn solder and Cu substrate[J]. Journal ofAlloys and Compounds,2005,392(1-2):200-205
    [105] S. Yagi, T. Ichitsubo, E. Matsubara et al. Interfacial reaction of gas-atomized Sn–Znsolder containing Ni and Cu additives[J]. Journal of Alloys and Compounds,2009,484(1-2):185-189
    [106] S. K. Das, A. Sharif, Y. C. Chan, N. B. Wong, W. K. C. Yung. Effect of Agmicro-particles content on the mechanical strength of the interface formed betweenSn–Zn binary solder and Au/Ni/Cu bond pads[J]. Microelectronic Engineering,2009,86(10):2086-2093
    [107] Asit Kumar Gaina, Y.C. Chan, Winco K.C. Yung. Effect of nano Ni additions on thestructure and properties of Sn–9Zn and Sn–Zn–3Bi solders in Au/Ni/Cu ball grid arraypackages[J]. Materials Science and Engineering B,2009,162(2):92-98
    [108] Asit Kumar Gain, Y.C. Chan, Ahmed Sharif. Interfacial microstructure and shearstrength of Ag nano particle doped Sn–9Zn solder in ball grid array packages[J].Microelectronics Reliability,2009,49(7):746-753
    [109] Jin-Yi Wang, Chih-Fan Lin, Chih-Ming Chen. Retarding the Cu5Zn8phase fracture atthe Sn-9wt%Zn/Cu interface[J]. Scripta Materialia,2011,64(7):633–636
    [110] H. B. Huntington, A. R. Grone. Current-induced marker motion in gold wires[J].Journal of Physics and Chemics of Solids,1961,20(1-2):76-87
    [111] S. Brandenburg, S. Yeh. Electromigration studies of flip chip bump solder joints[C].Proceedings of the surface mount international conference, San Jose, CA,1998:337-344
    [112] H. Gan, K. N. Tu. Polarity effect of electromigration on kinetics of intermetalliccompound formation in Pb-free solder Vgroove samples[J]. Journal of AppliedPhysics,2005,97(6):063514(10)
    [113] C. M. Chen, S. W. Chen. Electric current effects on Sn/Ag interfacial reactions[J].Journal of Electronics Materials,1999,28(7):902-907
    [114] C. M. Chen, S. W. Chen. Electromigration effect upon the Sn-0.7wt%Cu/Ni andSn-3.5wt%Ag/Ni interfacial reactions[J]. Journal of Applied Physics,2001,90(3):1208-1222
    [115] S. W. Chen, C. M. Chen. Electromigration effects upon interfacial reactions[J]. JOM,2003,55(2):62-69
    [116] S. W. Chen, C. H. Wang. Effects of electromigration on interfacial reactions in castSn/Cu joints[J]. Journal of Materlas Research,2007,22(3):695-702
    [117] C. C. Chen, S. W. Chen. Electromigration effects upon the Sn/Ni-7wt%V interfacialreactions[J]. Journal of Applied Physics,2008,103:063518(4)
    [118] H. L. Xu, H. L. Pang, F. Ren, K. N. Tu. Electromigration effect on intermetallicgrowth and Young’s modulus in SAC solder joint[J]. Journal of Electronics Materials,2006,35(12):2116–2125.
    [119] K. P. Gurov, A.M. Gusak. On the theory of phase growth in the diffusion zone duringmutual diffusion in an external electric field[J]. The Physics of Metals andMetallography,1981,52(4):75-81
    [120] S. H. Chae, X. F. Zhang, K. H. Lu et al. Electromigration statistics and damageevolution for Pb-free solder joints with Cu and Ni UBM in plastic flip-chippackages[J]. Journal of Materials Science: Materials in Electronics,2007,18():247-258
    [121] B. Chao, S. H. Chae, X. F. Zhang et al. Investigation of diffusion and electromigrationparameters for Cu–Sn intermetallic compounds in Pb-free solders using simulatedannealing[J]. Acta Materiallia,2007,55(8):2805-2814
    [122] B. Chao, X. F. Zhang, S. H. Chae, P. S. Ho. Recent advances on kinetic analysis ofelectromigration enhanced intermetallic growth and damage formation in Pb-freesolder joints[J]. Microelectronics Reliability,2009:49(3):253–263
    [123] Z. Mei, A. J. Sunwoo, J. W. Morris. Analysis of low-temperature intermetallic growthin copper-tin diffusion couples[J]. Metallurgical and Materials Transactions A.1992,23(3):857-864
    [124] C. Y. Liu, L. Ke, Y. C. Chuang. Study of electromigration-induced Cu consumptionin the flip-chip SnCu solder bumps[J]. Journal of Applies Physicis,2006,100(8):083702(8)
    [125] H. T. Orcharda, A. L. Greer. Electromigration effects on compound growth atinterfaces[J]. Applies Physics Letters,2005,86(23):231906(3)
    [126] C. H. Lin, S. W. Chen, C. H. Wang. Phase equilibria and solidification properties ofSn-Cu-Ni alloys[J]. Journal of Electronic Materials,2002,31(9):907-915

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700