用户名: 密码: 验证码:
Sn基钎料/Cu界面柯肯达尔空洞机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子产品的微型化和多功能化,电子封装的密度不断增加,封装芯片和焊点(钎焊接头)的尺寸越来越小,使得反应界面占整个接头的比例越来越大。因此,界面微观组织对接头可靠性的影响也越来越大。在固态热老化处理的过程中,接头的反应界面处常会出现密度较高的柯肯达尔空洞(Kirkendall Void),其对接头可靠性的影响不容忽视,这已引起国内外研究者的广泛关注。
     本文采用场发射扫描电镜(FESEM)、透射电镜(TEM)、X射线光电子能谱(XPS)和X射线衍射仪(XRD)等分析手段表征了接头反应界面的微观组织形貌、成分和物相结构;通过引入初始反应界面参照法研究了Cu和Sn元素在金属间化合物(Intermetallic compound,简称IMC)层中的扩散性质;利用磁控溅射和电镀技术制备了多种Cu基板以对比研究Sn/Cu界面处柯肯达尔空洞的形成机制;运用第一性原理方法计算了IMC晶体中空位的扩散性质,并采用有限元方法分析了反应界面处残余应力的分布,以共同研究柯肯达尔空洞与Cu_3Sn层的关联性;还向Sn/Cu体系中添加微量合金元素以研究其对柯肯达尔空洞的抑制机理。
     采用接头角部区域的初始反应界面(未反应Cu基板的上表面)作为参照面,观察分析了不同相界面的迁移规律。结果表明,随着热老化时间的延长,接头中钎料(Solder)/Cu_6Sn_5和Cu_3Sn/Cu界面分别向钎料基体和Cu基板两个方向迁移,而Cu_6Sn_5/Cu_3Sn界面的迁移方向与热老化温度相关。在150℃时,Cu_6Sn_5/Cu_3Sn界面向钎料基体方向迁移;165℃时,该界面向Cu基板方向迁移;升至180℃时,该界面的相对位置基本保持恒定(除Sn0.7Cu/Cu接头,其界面向Cu基板方向迁移)。根据每个相界面的相对位置,可以建立模型来计算研究Cu和Sn在IMC层中的扩散通量及其随热老化时间的演变趋势。计算结果表明,Cu和Sn处于不平衡扩散状态,Cu为主导扩散元素,这是柯肯达尔空洞形成的基础;Cu和Sn在两种IMC层(Cu_6Sn_5和Cu_3Sn)中的扩散通量均随热老化时间的延长而减小。在热老化处理的初始阶段,Cu的扩散通量大于Sn;随着热老化时间的延长,两者的扩散通量逐渐接近。
     构建了Sn/Cu体系,通过采用不同的Cu基板来对比分析影响Sn/Cu接头中柯肯达尔空洞形成的各种因素。柯肯达尔空洞没有在使用高纯基板的界面出现,而在使用真空溅射基板和电镀基板的反应界面处形成,故柯肯达尔空洞的形成与基板存在直接联系。真空溅射基板和电镀基板的晶粒尺寸很小,晶界内存储着大量能量,其中部分能量会在界面反应过程中释放并被引入界面,从而促进柯肯达尔空洞的形成。此外,电镀基板中还含有杂质,其可以降低柯肯达尔空洞的形成能。热老化过程中,界面柯肯达尔空洞的形成过程主要包括孕育期、形核期、生长期和愈合期四个阶段;柯肯达尔空洞全部在Cu_3Sn/Cu界面和Cu_3Sn层内形成,而没有在Cu_6Sn_5层出现。在Sn/Cu扩散偶中,Sn镀层内也存在多种杂质元素,但柯肯达尔空洞倾向于在Cu_6Sn_5/Cu_3Sn和Cu_3Sn/Cu界面形成,而没有在靠近Sn镀层的Cu_6Sn_5层和Sn(电镀)/Cu_6Sn_5界面出现。因此,柯肯达尔空洞与Cu_3Sn层存在很强的关联性。
     分别从微观和宏观角度研究了柯肯达尔空洞与Cu_3Sn层的关联性。采用第一性原理方法研究了Cu_3Sn和Cu_6Sn_5晶体的空位扩散性质,结果表明,两种晶体中Cu空位的形成能比较接近,它们均小于相应晶体内Sn空位的形成能;两种晶体内Sn原子的扩散能垒均高于Cu原子,Cu_6Sn_5晶体中Cu原子的扩散能垒高于Cu_3Sn晶体,这些扩散性质有利于柯肯达尔空洞在Cu_3Sn晶体内形核。在接头的反应界面处,形成IMC相会导致显著的局部体积收缩,从而引入残余应力。采用有限元方法计算了界面处相变残余应力的分布,结果表明,界面Cu_3Sn层处于较大的拉应力状态;Cu_3Sn/Cu界面处的应力梯度最大,Cu_6Sn_5/Cu_3Sn界面次之,Sn/Cu_6Sn_5界面最小;而界面柯肯达尔空洞分布在最大应力梯度所在区域。界面应力梯度加剧了界面组分元素的不平衡扩散,促进了柯肯达尔空洞的形核生长。相变残余应力通过Cu_3Sn层与柯肯达尔空洞联系起来。
     向Sn/Cu(电镀)体系添加微量的Cu或Zn或Ni元素均可以抑制柯肯达尔空洞的形成,但其抑制机理各异。添加Cu不会改变界面IMC层的物相和微观组织,但其会降低界面区域Cu的浓度梯度,从而阻缓Cu的扩散,减少Cu和Sn不平衡扩散的程度。添加Zn会改变界面IMC层的物相和微观组织,Zn含量较低(0.2和0.5wt.%)时,界面处形成Cu_6(Sn,Zn)_5层;含量增至0.8wt.%时,Zn在界面处出现了明显的富集,形成了(Cu,Zn)_6Sn_5、Cu_6(Sn,Zn)_5和Cu-Zn固溶合金三个层。(Cu,Zn)_6Sn_5和Cu_6(Sn,Zn)_5层的晶粒组织对界面扩散的影响不大,但富Zn的Cu-Zn固溶合金层有效地阻缓了Cu的扩散。Zn在很大程度上参与了界面扩散,其扩散方向与Sn一致,有效抑制了Cu的扩散,缓解了Cu和Sn不平衡扩散的程度。添加Ni也会改变界面IMC层的物相和微观组织,界面处形成了(Cu,Ni)_6Sn_5层,其由多层小尺寸晶粒组成。这种组织有利于界面Cu和Sn的互扩散,加速了(Cu,Ni)_6Sn_5层的生长,还缓解了Cu和Sn的不平衡扩散。三种合金元素均可以抑制Cu_3Sn层的形成,从而减少界面处杂质和相变残余应力的引入,抑制柯肯达尔空洞的形成。
With the miniaturization and multifunction of electronic products, the size of chips andsolder joints becomes smaller and smaller, which represents an increasing proportion ofinterface area in the joints. Therefore, the microstructure at the interface plays a more andmore important role in the reliability of joints. During the solid-state aging treatment of solderjoints, a large number of Kirkendall voids often appear at the reaction interface, the effect ofwhich on the reliability of joints can not be neglected and has drawn many attentions fromscholars both at home and abroad.
     In this dissertation, Field emission scanning electron microscope (FESEM), Transmissionelectron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-RayDiffractormeter (XRD) are applied to characterize the microstructure, composition and phasestructure at the reaction interface of joints. A new method using the original reaction interfaceas the reference is introduced to study the diffusion of Cu and Sn in the Intermetalliccompound (IMC) layers. Magnetron sputtering and electroplating technique are used toprepare different kinds of substrates, studying the formation mechanism of Kirkendall voids.The diffusion of vacancies in the IMC crystals and the distribution of residual stress at thereaction interface are investigated by using first-principles method and finite-element method,respectively. Then, the relationship between Kirkendall voids and Cu_3Sn is analyzed.
     The rules for the migration of phase interfaces are discovered by using the originalreaction interface (the upper surface of unreacted Cu substrate) in the corner of joints as thereference. The results show that, with the extension of aging period, the solder/Cu_6Sn_5andCu_3Sn/Cu interfaces move toward the solder and Cu substrate, respectively. The migration ofCu_6Sn_5/Cu_3Sn interface is greatly affected by the aging temperature. At150℃, theCu_6Sn_5/Cu_3Sn interface moves toward the solder; At165℃, the interface shifts toward the Cu substrate; At180℃, the interface keeps still except for that in Sn0.7Cu/Cu joints whichmoves toward the Cu substrate. Based on the relative positions of each phase interfaces, amodel can be build to calculate the diffusion fluxes of Cu and Sn in IMC layers and theirevolution trend with aging time. The calculated results indicate that the interfacial diffusion ofCu and Sn is unbalanced, and Cu is the dominant diffusing species, which is the basis of theformation of Kirkendall voids; the diffusion fluxes of Cu and Sn in the IMC layer decreasewith extension of aging period. In addition, the diffusion flux of Cu in the IMC layer is largerthan that of Sn at the initial stage of aging treatment, and then the diffusion fluxes of twodiffusing species are gradually close to each other.
     The Sn/Cu system is built, in which various effect factors of the formation of Kirkendallvoids are studied by using different substrate in Sn/Cu joints. Kirkendall voids appear at theinterface using electroplated and sputter deposited Cu substrate rather than the interface usinghigh-purity Cu substrate. Thus, there is a direct relationship between Kirkendall voids andsubstrate. The grain size of electroplated and sputter deposited substrates is very small, and alarge amount of energy is stored in the grain boundary. Part of the stored energy can beintroduced into the interface during the reaction, accelerating the formation of Kirkendallvoids. Besides, the electroplated substrate contains a certain amount of impurities which canreduce the nucleation energy of voids. During the aging treatment, the formation ofKirkendall voids mainly consists of four stages, inoculation, nucleation, growth and closure.Kirkendall voids are formed at the Cu_3Sn/Cu interface and in the Cu_3Sn layer, while not in theCu_6Sn_5layer. In electroplated Sn/Cu couples, many impurity elements are detected in theelectroplated Sn. However, Kirkendall voids tend to form at the Cu_6Sn_5/Cu_3Sn and Cu_3Sn/Cuinterfaces rather than in the Cu_6Sn_5layer and at the electroplated Sn/Cu_6Sn_5interface, both ofwhich are close to the electroplated Sn. Therefore, there is a great relationship betweenKirkendall voids and Cu_3Sn layer.
     The relationship between Kirkendall voids and Cu_3Sn layer is studied from the macro andmicro perspective, respectively. The diffusion of vacancies in Cu_6Sn_5and Cu_3Sn crystals arestudied by using first-principles method. The calculated results indicate that the vacancyformation energy of Cu in both crystals is close to each other, but is lower than that of Sn intheir corresponding crystals. In both crystals, the vacancy diffusion barrier of Sn is higherthan that of Cu, and the vacancy diffusion barrier of Cu in Cu_6Sn_5crystal is higher than that inCu_3Sn crystal. These diffusion properties are beneficial for the nucleation of Kirkendall voids in Cu_3Sn crystal. At the reaction interface, the formation of IMC phase will cause an obviousvolume contraction, and then the residual stress will be produced. The distribution of residualstress is analyzed by using finite element method. The calculated results show that the wholeCu_3Sn layer is in the state of tensive stress. The stress gradient at the Cu_3Sn/Cu layer is thesteepest, that at the Cu_6Sn_5/Cu_3Sn interface takes the second place and that at the Sn/Cu_6Sn_5interfaces the third place. The area Kirkendall voids located is consistent with that the steepeststress gradient located. The interfacial stress gradient aggravates the unbalanced diffusion ofcomponent elements, accelerating the formation of voids. The transformation residual stress isconnected to Kirkendall voids through Cu_3Sn layer.
     The formation of Kirkendall voids can be inhibited by adding minor alloying elements (Cuor Zn or Ni) into the Sn/electroplated Cu system, but the inhibition mechanism of theseelements are different. The addition of Cu will not change the phases and microstructures ofIMC layers at the interface, but will decrease the concentration gradient, hampering thediffusion of Cu and reducing the unblanced diffusion of Cu and Sn. The addition of Zn canchange the phases and microstructures of IMC layers at the interface. When the content of Znin Sn solder is low (0.2and0.5wt.%), the Cu_6(Sn,Zn)_5layer is formed; when the content ofZn increases to0.8wt.%, three layers can be found,(Cu,Zn)_6Sn_5, Cu_6(Sn,Zn)_5and Cu-Znsolid-solution alloy. The microstructure of (Cu,Zn)_6Sn_5and Cu_6(Sn,Zn)_5layers has minoreffect on the interfacial diffusion, but the Cu-Zn solid-solution alloy can hamper the diffusionof Cu effectively. Zn participates in the interfacial diffusion largely, which has the samediffusion direction as Sn. Zn can suppress the diffusion of Cu effectively and reduce theunbalanced diffusion of Cu and Sn. The addition of Ni can also change the phases andmicrostructures of IMC layers at the interface. The (Cu,Ni)6Sn5layer is formed, whichcomposes of several layers of small-sized grains. This kind of structure is helpful for thediffusion of Cu and Sn, the growth of layer and the reduction of the unbalanced diffusion ofCu and Sn. All three kinds of alloy elements can suppress the growth of Cu_3Sn layer, reducingthe introduction of impurities and transformation residual stress to the interface and inhibitingthe formation of Kirkendall voids.
引文
[1]郭福.无铅钎焊技术与应用.北京:科学出版社,2005.
    [2]王春青.微电子焊接及微连接[J].电子科技导报,1995,4:30-31.
    [3] http://reefcafe.lt/electronics/litavimas/litavimas_oregon_chapter_presentation0905.pdf
    [4] K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, K. N. Tu. Kirkendall void formation ineutectic SnPb solder joints on bare Cu and its effect on joint reliability[J]. Journal of Applied Physics,2005,97(2):024508.
    [5] H. Y. Son, G. J. Jung, B. J. Park, K. W. Paik. A study on the thermal reliability of Cu/SnAgdouble-bump flip-chip assemblies on organic substrates[J]. Journal of Electronic Materials,2008,37(12):1832-1842.
    [6] L. Xu, J. Pang, F. Che. Impact of thermal cycling on Sn-Ag-Cu solder joints and board-levelreliability[J]. Journal of Electronic Materials,2008,37(6):880-886.
    [7] Kerstin Weinberg, Thomas B hme, Wolfgang H. Müller. Kirkendall voids in the intermetallic layersof solder joints in MEMS[J]. Computational Materials Science,2009,45(3):827-831.
    [8] J. Yu, J. Y. Kim. Effects of residual S on Kirkendall void formation at Cu/Sn-3.5Ag solder joints[J].Acta Materialia,2008,56(19):5514-5523.
    [9] Henning Galinski, Anja Bieberle-Hütter, Jennifer L.M. Rupp, Ludwig J. Gauckler. Nonlinearoxidation kinetics of nickel cermets[J]. Acta Materialia,2011,59(16):6239-6245.
    [10] http://emat.eng.hmc.edu/.
    [11]柳艳芳. Sn基无铅封装材料研究[硕士论文].哈尔滨:哈尔滨工业大学,2006.
    [12]秦晓英.纳米固体Ag在高温下的热膨胀行为[J].物理学报,1995,44(2):244-250.
    [13] I. Artaki, A. M. Jackson, P. T. Vianco. Evaluation of lead-free joints in electronic assemblies[J].Journal of Electronic Materials,1994,23(6):757-764.
    [14] J. Glazer. Metallurgy of low temperature Pb-free solders for electronic assembly[J]. InternationalMaterials Reviews,1995,40(2):65-93.
    [15] J. S. Kim, P. J. Wang, C. C. Lee. Ag-Copper structure for bonding large semiconductor chips[J]. IEEETransactions on Components and Packaging Technologies,2008,31(4):875-879.
    [16] H. J. Kao, W. C. Wu, S. T. Tsai, C.Y. Liu. Effect of Cu Additives on Sn whisker formation of Sn(Cu)finishes[J]. Journal of Electronic Materials,2006,35(10):1885-1891.
    [17] R. J. Fields, S. R. Low. Physical and mechanical properties of intermetallic compounds commonlyfound in solder joints. Metallurgy Division, NIST.
    [18] N. Jiang, J. A. Chromik, E. J. Cotts. Thermal expansion of several Sn-based intermetalliccompounds[J]. Scripta Materialia,1997,37(12):1851-1854.
    [19] L. J. Tai, I. Tsai, E. Wu. Mechanical properties of Ni3Sn4and Cu3Sn determined by inverse method[J].IEEE Transactions on Components and Packaging Technologies,2008,31(2):503-508.
    [20] C. Y. Liu, K. N. Tu, T. T. Sheng, C. H. Tung, D. R. Frear, P. Elenius. Electron microscopy study ofinterfacial reaction between eutectic SnPb and Cu/Ni(V)/Al thin film metallization[J]. Journal ofApplied Physics,2000,87(2):750-754.
    [21] D. Kim, J. H. Chang, J. Park, J. J. Pak. Formation and behavior of Kirkendall voids withinintermetallic layers of solder joints[J]. Journal of Materials Science: Materials in Electronics,2011,22(7):703-716.
    [22] W. Yang, R. W. Messler, L. E. Felton. Microstructure evolution of eutectic Sn-Ag solder joints[J].Journal of Electronic Materials,1994,23(8):765-772.
    [23] T. Laurila, V. Vuorinen, J. K. Kivilahti. Interfacial reactions between lead-free solders and commonbase materials[J]. Materials Science and Engineering R,2005,49(1-2):1-60.
    [24] Min-Seung Yoona, Young-Joon Park, Young-Chang Joo. Impurity redistributions in electroplated Cufilms during self-annealing[J]. Thin Solid Films,2002,408(1-2):230-235.
    [25] L. T. Koh, G. Z. You, C. Y. Li, P. D. Foo. Investigation of the effects of byproduct components in Cuplating for advanced interconnect metallization[J]. Microelectronics Journal,2002,33(3):229-234.
    [26] Jia-Min Shieh, Shih-Chieh Chang, Bau-Tong Dai, Ming-Shiann Feng. Investigation of superfilling andelectrical characteristics in low-impurity-incorporated Cu metallization[J]. Japanese Journal ofApplied Physics,2002,41(8):5104-5107.
    [27] M. Stangl, V. Dittel, J. Acker, V. Hoffmann, W. Gruner, S. Strehle, K. Wetzig. Investigation of organicimpurities adsorbed on and incorporated into electroplated copper layers[J]. Applied Surface Science,2005,252(1):158-161.
    [28] Steffen Strehle, Rainer Reiche, Volker Hoffmann, J rg Acker, Thomas Gemming, KlausWetzig. Sulfurincorporation in electroplated Cu(Ag) thin films[J]. Microchimica Acta,2006,156(1-2):167-172.
    [29] M. Stangl, J. Acker, V. Hoffmann, W. Gruner, K. Wetzig. Segregation of organic impurities in thinelectroplated Cu metallizations[J]. Microchimica Acta,2006,156(1-2):159-162.
    [30] M. Stangl, J. Acker, S. Oswald, M. Uhlemann, T. Gemming, S. Baunack, K. Wetzig. Incorporation ofsulfur, chlorine, and carbon into electroplated Cu thin films[J]. Microelectronic Engineering,2007,84(1):54-59.
    [31] Jongsoo Kim, Heesan Kim. Effects of organic additives on preferred plane and residual stress of coppeelectroplated on polyimide[J]. Materials Chemistry and Physics,2010,120(2-3):341-347.
    [32] Ryan P. Birringer, Roey Shaviv, Roy H. Geiss, David T. Read, Reinhold H. Dauskardt. Effects ofbarrier composition and electroplating chemistry on adhesion and voiding in copper/dielectricdiffusion barrier films[J]. Journal of Applied Physics,2011,110(4):044312.
    [33] J. Y. Kim, J. Yu. Effects of residual impurities in electroplated Cu on the Kirkendall void formationduring soldering[J]. Applied Physics Letters,2008,92(9):092109.
    [34] J. Y. Kim, J. Yu, S. H. Kim. Effects of sulfide-forming element additions on the Kirkendall voidformation and drop impact reliability of Cu/Sn–3.5Ag solder joints[J]. Acta Materialia,2009,57(17):5001-5012.
    [35] S. H. Kim, J. Yu. Effects of Ag on the Kirkendall void formation of Sn-xAg/Cu solder joints[J].Journal of Applied Physics,2010,108(8):083532.
    [36] S. H. Kim, J. Yu. Secondary IMC formation induced by Kirkendall voiding in Cu/Sn-3.5Ag solderjoints[J]. Journal of Materials Research,2010,25(9):1854-1858.
    [37] Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen, D. W. Henderson, E. J. Cotts, N. Dimitrov.Influence of plating parameters and solution chemistry on the voiding propensity at electroplatedcopper-solder interface[J]. Journal of Applied Electrochemistry,2008,38(12):1695-1705.
    [38] F. Wafula, Y. Liu, L. Yin, S. Bliznakov, P. Borgesen, E. J. Cotts, N. Dimitrov. Impact of key depositionparameters on the voiding sporadically occurring in solder joints with electroplated copper[J]. Journalof the Electrochemical Society,2010,157(2):D111-D118.
    [39] F. Wafula, Y. Liu, L. Yin, P. Borgesen, E. J. Cotts, N. Dimitrov. Effect of the deposition parameters onthe voiding propensity of solder joints with Cu electroplated in a Hull cell[J]. Journal of AppliedElectrochemistry,2011,41(4):469-480.
    [40] L. Yin, P. Borgesen. On the root cause of Kirkendall voiding in Cu3Sn[J]. Journal of MaterialsResearch,2011,26(3):455-466.
    [41] P. Borgesen, L. Yin, P. Kondos. Assessing the risk of “Kirkendall voiding” in Cu3Sn[J].Microelectronics Reliability,2011,51(4):837-846.
    [42] R. Labie, W. Ruythooren, J. V. Humbeeck. Solid state diffusion in Cu-Sn and Ni-Sn diffusion coupleswith flip-chip scale dimensions[J]. Intermetallics,2007,15(3):396-403.
    [43] A. Paul. Growth mechanism of phases, Kirkendall voids, marker plane position, and indication of therelative mobilities of the species in the interdiffusion zone[J]. Journal of Materials Science: Materialsin Electronics,2011,22(7):833-837.
    [44] Santosh Kumar, Joseph Smetana, David Love, James Watkowski, Richard Parker, Carol Handwerker.Microvoid formation at solder-copper interfaces during annealing: a systematic study of the rootcause[J]. Journal of Electronic Materials,2011,40(12):2415-2424.
    [45] Santosh Kumar, Carol Handwerker, Mysore Dayananda. Intrinsic and interdiffusion in Cu-Snsystem[J]. Journal of Phase Equilibria and Diffusion,2011,32(4):309-319.
    [46] X. Q. Lin, L. Luo. Void evolution in sub-100-micron Sn-Ag solder bumps during multi-reflow andaging and its effects on bonding reliability[J]. Journal of Electronic Materials,2008,37(3):307-313.
    [47] F. Gao, H. Nishikawa, T. Takemoto. Additive effect of Kirkendall void formation in Sn-3.5Ag solderjoints on common substrates[J]. Journal of Electronic Materials,2008,37(1):45-50.
    [48] M. G. Cho, S. K. Kang, D. Y. Shih, H. M. Lee. Effects of minor additions of Zn on interfacialreactions of Sn-Ag-Cu and Sn-Cu Solders with various Cu substrates during thermal aging[J]. Journalof Electronic Materials,2007,36(11):1501-1509.
    [49] Y. W. Wang, Y. W. Lin, C. R. Kao. Inhibiting the formation of microvoids in Cu3Sn by additions ofCu to solders[J]. Journal of Alloys and Compounds,2010,493(1-2):233-239.
    [50] P. T. Vianco, J. A. Rejent, P. F. Hlava. Solid-state intermetallic compound layer growth between copperand95.5Sn-3.9Ag-0.6Cu solder[J]. Journal of Electronic Materials,2004,33(9):991-1004.
    [51] W. Q. Peng, M. E. Marques. Effect of thermal aging on drop performance of chip scale packages withSnAgCu solder joints on Cu pads[J]. Journal of Electronic Materials,2007,36(12):1679-1690.
    [52] L. H. Xu, John H. L. Pang, F. X. Che. Impact of thermal cycling on Sn-Ag-Cu solder joints andboard-level drop reliability[J]. Journal of Electronic Materials,2008,37(6):880-886.
    [53] W. Zhang, C. Z. Liu, D. X. Li, M. L. Sui. Novel crosslinking of high-order and multiple copper twinsin advanced microelectronics packaging[J]. Advanced Engineering Materials,2004,6(4):232-234.
    [54] P. L. Liu, J. K. Shang. Segregant-induced cavitation of Sn/Cu reactive interface[J]. Scripta Materialia,2005,53(6):631-634.
    [55] P. J. Shang, Z. Q. Liu, D. X. Li, J. K. Shang. Bi-induced voids at the Cu3Sn/Cu interface in eutecticSnBi/Cu solder joints [J]. Scripta Materialia,2008,58(5):409-412.
    [56] T. C. Chang, M. C. Wang, M. H. Hon. Crystal growth of the intermetallic compounds at theSn-9Zn-xAg/Cu interface during isothermal aging[J]. Journal of Crystal Growth,2003,252(1-3),401-412.
    [57] M. H. Hon, T. C. Chang, M. C. Wang. Phase transformation and morphology of the intermetalliccompounds formed at the Sn-9Zn-3.5Ag/Cu interface in aging[J]. Journal of Alloys and Compounds,2008,458(1-2):189-199.
    [58] C. H. Lee, C. O. Park. Residual stress effect on self-annealing of electroplated copper[J]. JapaneseJournal of Applied Physics,2003,42(7A):4484-4488.
    [59] S. Cogan, D. S. Holmes, R. M. Rose. On the elimination of Kirkendall voids in superconductingcomposites[J]. Applied Physics Letters,1979,35(7):557-559.
    [60] T. Laurila, V. Vuorinen, M. Paulasto-Kr ckel. Impurity and alloying effects on interfacial reactionlayers in Pb-free soldering[J]. Materials Science and Engineering R,2010,68(1):1-38.
    [61] J. Y. Tsai, Y. C. Hu, C. M. Tsai, C. R. Kao. A study on the reaction between Cu and Sn3.5Ag solderdoped with small amounts of Ni[J]. Journal of Electronic Materials,2003,32(11):1203-1208.
    [62] I. E. Anderson, J. L. Harringa. Suppression of void coalescence in thermal aging of tin-silver-copper-Xsolder joints[J]. Journal of Electronic Materials,2006,35(1):94-106.
    [63] C. E. Ho, S. C. Yang, C. R. Kao. Interfacial reaction issues for lead-free electronic solders[J]. Journalof Materials Science: Materials in Electronics,2007,18(1-3):155-174.
    [64] Y. W. Wang, Y. W. Lin, C. R. Kao. Kirkendall voids formation in the reaction between Ni-doped SnAglead-free solders and different Cu substrates[J]. Microelectronics Reliability,2009,49(3):248-252.
    [65] S. H. Brongersma, E. Kerr, I. Vervoort, A. Saerens, K. Maex. Grain growth, stress, and impurities inelectroplated copper[J].Journal of Materials Research,2002,17(3):582-589.
    [66] Rui Huang, Werner Robl, Hajdin Ceric, Thomas Detzel, and Gerhard Dehm. Stress, sheet resistance,and microstructure evolution of electroplated Cu films during self-annealing[J]. IEEE Transactions onDevice and Materials Reliability,2010,10(1):47-54.
    [67] Jian Zou, Liping Mo, Fengshun Wu, Bo Wang, Hui Liu, Jun Zhang, Yiping Wu. Effect of Cu substrateand solder alloy on the formation of Kirkendall voids in the solder joints during thermal aging[J].201011th International Conference on Electronic Packaging Technology&High Density Packaging(ICEPT-HDP),2010,944-948.
    [68] B. F. Dvson, T. R. Anthony, D. Turnbull. Interstitial diffusion of copper in tin[J]. Journal of AppliedPhysics,1967,38(8):3408.
    [69] A. Zribi, R. R. Chromik, R. Presthus, K. Teed, L. Zavalij, J. DeVita, J. Tova, Eric J. Cotts, James A.Clum, Robert Erich, A. Primavera, G. Westby, R. J. Coyle, G. M. Wenger. Solder metallizationinterdiffusion in microelectronic interconnects[J]. IEEE Transactions on Components and PackagingTechnologies,2000,23(2):383-387.
    [70] X. Deng, G. Piotrowski, J. J. Williams, N. Chawla. Influence of initial morphology and thickness ofCu6Sn5and Cu3Sn intermetallics on growth and evolution during thermal aging of Sn-Ag solder/Cujoints[J]. Journal of Electronic Materials,2003,32(12):1403-1413.
    [71] H. Bhedwar, K. Ray, S. Kulkarni, V. Balasubramanian. Kirkendall effect studies in copper-tindiffusion couples[J]. Scripta metallurgica,1972,6(10):919-922.
    [72] M. Onishi, H. Fujibuchi. Reaction-diffusion in the Cu-Sn system[J]. Transactions of the Japan Instituteof Metals,1975,16(9):539-547.
    [73] K. N. Tu, R. D. Thompson. Kinetic of interfacial reaction in bimetallic Cu-Sn thin films[J]. ActaMetallurgica,1982,30(5):947-952.
    [74] H. Oikawa, A. Hosoi. Interdiffusion in Cu-Sn solid solutions. Confirmation of anomalously largeKirkendall effect[J]. Scripta metallurgica,1975,9(8):823-828.
    [75] K. Hoshino, Y. lijima, K. Hirano. Interdiffusion and Kirkendall effect in Cu-Sn alloys[J]. Transactionsof the Japan Institute of Metals,1980,21(10):674-682.
    [76] J. F. Li, S. H. Mannan, M. P. Clode, D. C. Whalley, D. A. Hutt. Interfacial reactions between moltenSn-Bi-X solders and Cu substrates for liquid solder interconnects[J]. Acta Materialia,2006,54(11):2907-2922.
    [77] K. Zeng, K. N. Tu. Six cases of reliability study of Pb-free solder joints in electronic packagingtechnology[J]. Materials Science and Engineering R,2002,38(2):55-105.
    [78] S. J. Kim, K. S. Bae. Interdiffusion between Cu and Sn-rich solder: dominant diffusion species[J].Proceedings of3rd Electronics Packaging Technology Conference,2000,81-85.
    [79] A. Paul, A. Kodentsov, F. J. J. van Loo. Intermetallic growth and Kirkendall effect manifestations inCu/Sn and Au/Sn diffusion couples[J]. International Journal of Materials Research,2004,95(10):913-920.
    [80] M. Oh. Growth kinetics of intermetallic phases in the Cu-Sn binary and the Cu-Ni-Sn ternary systemsat low temperatures [Doctoral Dissertation]. Bethlehem: Lehigh University,1994.
    [81] A. Paul, C. Ghosh, W. J. Boettinger. Diffusion parameters and growth mechanism of phases in theCu-Sn system[J]. Metallurgical and Materials Transactions A,2011,42(4):952-963.
    [82] C. Y. Liu, L. Ke, Y. C. Chuang, S. J. Wang. Study of electromigration-induced Cu consumption in theflip-chip Sn/Cu solder bumps[J]. Journal of Applied Physics,2006,100(8):083702.
    [83] Z. Mei, A. J. Sunwoo, J. W. Morris, Jr.. Analysis of low-temperature intermetallic growth in copper-tindiffusion couples[J]. Metallurgical and Materials Transactions A,1992,23(3):857-864.
    [84] P. J. Shang, Z. Q. Liu, D. X. Li, J. K. Shang. TEM observations of the growth of intermetalliccompounds at the SnBi/Cu interface[J]. Journal of Electronic Materials,2009,38(12),2579-2584.
    [85] P. J. Shang, Z. Q. Liu, X. Y. Pang, D. X. Li, J. K. Shang. Growth mechanisms of Cu3Sn onpolycrystalline and single crystalline Cu substrates[J]. Acta Materialia,2009,57(16):4697-4706.
    [86] Y. W. Wang, Y. W. Lin, C. T. Tu, C. R. Kao. Effects of minor Fe, Co, and Ni additions on thereaction between SnAgCu solder and Cu[J]. Journal of Alloys and Compounds,2009,478(1-2):121-127.
    [87] Y. W. Wang, C. C. Chang, C. R. Kao. Minimum effective Ni addition to SnAgCu solders for retardingCu3Sn growth [J]. Journal of Alloys and Compounds,2009,478(1-2):L1-L4.
    [88] T. Laurila, J. Hurtig, V. Vuorinen, J. K. Kivilahti. Effect of Ag, Fe, Au and Ni on the growth kineticsof Sn-Cu intermetallic compound layers[J]. Microelectronics Reliability,2009,49(3)242-247.
    [89] V. Vuorinen, T. Laurila, T. Mattila, E. Heikinheimo, J. K. Kivilathi. Solid-state reactions betweenCu(Ni) alloys and Sn[J]. Journal of Electronic Materials,2007,36(10):1355-1362.
    [90] V. Vuorinen, H. Yu, T. Laurila, J. K. Kivilahti. Formation of intermetallic compounds between liquidSn and various CuNixmetallizations[J]. Journal of Electronic Materials,2008,37(6):792-805.
    [91] A. Paul. The Kirkendall effect in solid state diffusion[Doctoral Dissertation]. Eindhoven: TechnicalUniversity of Eindhoven,2004.
    [92] F. Gao, T. Takemoto, H. Nishikawa. Effects of Co and Ni addition on reactive diffusion betweenSn-3.5Ag solder and Cu during soldering and annealing[J]. Materials Science and Engineering: A,2006,420(1-2):39-46.
    [93] C. Y. Chou, S. W. Chen. Phase equilibria of the Sn-Zn-Cu ternary system[J]. Acta Materialia,2006,54(9):2393-2400.
    [94] Y. M. Kim, K. M. Harr, Y. H. Kim. Mechanism of the delayed growth of intermetallic compound atthe interface between Sn-4.0Ag-0.5Cu and Cu-Zn substrate[J]. Electronic Materials Letters,2010,6(4):151-154.
    [95] S. C. Yang, C. E. Ho, C. W. Chang, C. R. Kao. Strong Zn concentration effect on the solderingreactions between Sn-based solders and Cu[J]. Journal of Materials Research,2006,21(10):2436-2439.
    [96] S. K. Kang, D. Leonard, D.Y. Shih, L. Gignac, D.W. Henderson, S. Cho, J. Yu. Interfacial reactions ofSn-Ag-Cu solders modified by minor Zn alloying addition[J]. Journal of Electronic Materials,2006,35(3):479-485.
    [97] C. Y. Yu, K. J. Wang, J. G. Duh. Interfacial reaction of Sn and Cu-xZn substrates after reflow andthermal aging[J]. Journal of Electronic Materials,2010,39(2):230-237.
    [98] H. F. Zou, Q. K. Zhang, Z. F. Zhang. Interfacial microstructure and growth kinetics of intermetalliccompound layers in Sn-4wt.%AgCu-X (X=Zn, Ag, Sn) couples[J]. Journal of Electronic Materials,2011,40(7):1542-1548.
    [99] M. Y. Tsai, S. C. Yang, Y. W. Wang, C. R. Kao. Grain growth sequence of Cu3Sn in the Cu/Sn andCu/Sn–Zn systems[J]. Journal of Alloys and Compounds,2010,494(1-2):123-127.
    [100] M. Marlo, V. Milman. Density-functional study of bulk and surface properties of titanium nitrideusing different exchange-correlation functionals[J]. Physical Review B,2000,62(4):2899-2907.
    [101] C. J. Pickard, R. J. Needs. Structure of phase III of solid hydrogen[J]. Nature Physics,2007,3(7):473-476.
    [102] G. Ghosh, M. Asta. Phase stability, phase transformations, and elastic properties of Cu6Sn5: Abinitio calculations and experimental results[J]. Journal of Materials Research,2005,20(11):3102-3117.
    [103] C. Yu, J. Liu, H. Lu, P. Li, J. Chen. First-principles investigation of the structural and electronicproperties of Cu6-xNixSn5(x=0,1,2) intermetallic compounds[J]. Intermetallics,2007,15(11):1471-1478.
    [104] F. Gao, J. M. Qu, T. Takemoto. Additive occupancy in the Cu6Sn5-Based intermetallic compoundbetween Sn-3.5Ag solder and Cu studied using a first-principles approach[J]. Journal of ElectronicMaterials,2010,39(4):426-432.
    [105] N. T. S. Lee, V. B. C. Tan, K. M. Lim. First-principles calculations of structural and mechanicalproperties of Cu6Sn5[J]. Applied Physics Letters,2006,88(3):031913.
    [106] N. T. S. Lee, V. B. C. Tan, K. M. Lim. Structural and mechanical properties of Sn-basedintermetallics from ab initio calculations[J]. Applied Physics Letters2006,89(14):141908.
    [107] Qingchuan Xu, Anton Van der Ven. The effect of large vacancy concentration on intrinsicand interdiffusion coefficients: A first-principle study of B2-NiAl[J]. Acta Materialia,2011,59(3):1095-1104.
    [108] Christian M. Ulrich, Adham Hashibon, Ji í Svoboda, Christian Els sser, Dirk Helm,Hermann Riedel. Diffusion kinetics in aluminium-gold bond contacts from first-principlesdensity functional calculations[J]. Acta Materialia,2011,59(20):7634-7644.
    [109] L. H. Thomas. The calculations of atomic fields[J]. Mathematical Proceedings of the CambridgePhilosophical Society,1927,23(5):542-598.
    [110] E. Fermi. Eine statistiche Methode zur Bestimmung einiger Eigenschaften des Atoms und ihreAnwendung auf die Theorie des periodischen Systems der Elemente[J]. Zeitschrift für Physik AHadrons and Nuclei,1928,48(1-2):73-79.
    [111] P. Hohenberg, W. Kohn. Inhomogeneous electron gas[J]. Physical Review B,1964,136(3):864-871.
    [112] W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects[J].Physical Review A,1965,140(4):1133-1138.
    [113] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple[J].Physical Review Letters,1996,77(18):3865-3868.
    [114] K. N. Tu, A. M. Gusak, M. Li. Physics and materials challenges for lead-free solders[J]. Journalof Applied Physics,2003,93(3):1335-1353.
    [115] T. Y. Lee, W. J. Choi, K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, D. R. Frear, K. Zeng, J. K.Kivilahti. Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-freesolders [J]. Journal of Materials Research,2002,17(2):291-301.
    [116] D. Q. Yu, L. Wang, C. M. L. Wu, C. M. T. Law. The formation of nano-Ag3Sn particles on theintermetallic compounds during wetting reaction[J]. Journal of Alloys and Compounds,2005,389(1-2):153-158.
    [117] F. Gao, T. Takemoto, H. Nishikawa, and A. Komatsu. Microstructure and mechanical propertiesevolution of intermetallics between Cu and Sn-3.5Ag solder doped by Ni-Co additives[J]. Journal ofElectronic Materials,2006,35(5):905-911.
    [118] T. Takenaka, S. Kanoa, M. Kajihara, N. Kurokawa, K. Sakamoto. Growth behavior of compoundlayers in Sn/Cu/Sn diffusion couples during annealing at433-473K[J]. Materials Science andEngineering A,2005,396(1-2):115-123.
    [119] P. T. Vianco, P. F. Hlava, A. C. Kilgo. Intermetallic compound layer formation between copperand hot-dipped100In,50In-50Sn,100Sn, and63Sn-37Pb coatings[J]. Journal of Electronic Materials,1994,23(7):583-594.
    [120] Y. Wu, J. A. Sees, C. Pouraghabagher, L. A. Foster, J. L. Marshall, E. G. Jacobs, R. F. Pinizzotto.The formation and growth of intermetallics in composite solder[J]. Journal of Electronic Materials,1993,22(7):769-777.
    [121] P. T. Vianco, K. L. Erickson, P. L. Hopkins. Solid state intermetallic compound growth betweencopper and high temperature, tin-rich solders-part I: Experimental analysis[J]. Journal of ElectronicMaterials,1994,23(8):721-727.
    [122] D. R. Flanders, E. G. Jacobs, R. F. Pinizzoito. Activation energes of intermetallic growth ofSn-Ag eutectic solder on copper substrates[J]. Journal of Electronic Materials,1997,26(7):883-887.
    [123] S. Choi, T. R. Bieler, J. P. Lucas, K. N. Subramanian. Characterization of growth of intermetallicinterfacial layers of Sn-Ag and Sn-Pb eutectic solders and their composite solders on Cu substrateduring long-term aging[J]. Journal of Electronic Materials,1999,28(11):1209-1215.
    [124] J. W. Yoon, C. B. Lee, D. U. Kim, S. B. Jung. Reaction diffusions of Cu6Sn5and Cu3Snintermetallic compound in the couple of Sn-3.5Ag eutectic solder and copper substrate[J]. Metals andMaterials International,2003,9(2):193-199.
    [125] D. Q. Yu, C. M. L. Wu, C. M. T. Law, L. Wang, J. K. L. Lai. Intermetallic compounds growthbetween Sn-3.5Ag lead-free solder and Cu substrate by dipping method[J]. Journal of Alloys andCompounds,2005,392(1-2):192-199.
    [126] C. M. Liu. Master Thesis. National Central University, Taiwan,2000.
    [127] Ahmed Sharif, Y. C. Chan. Comparative study of interfacial reactions of Sn-Ag-Cu and Sn-Agsolders on Cu pads during reflow soldering[J]. Journal of Electronic Materials,2005,34(1):46-52.
    [128] L. Lu, N. R. Tao, L. B. Wang, B. Z. Ding, K. Lu. Grain growth and strain release innanocrystalline copper [J].2001, Journal of Applied Physics,89(11):6408-6414.
    [129] S. Sim es, R. Calinas, M. T. Vieira, M. F. Vieira, P. J. Ferreira. In situ TEM study of grain growthin nanocrystalline copper thin films[J]. Nanotechnology,2010,21(14):145701.
    [130] M. Dittes, P. Oberndorff, P. Crema, and P. Su. Tin whisker formation-A stress relievephenomenon[J]. AIP Conference Proceedings,2006,817:348-359.
    [131] K. N. Tu, Chih Chen, Albert T. Wu. Stress analysis of spontaneous Sn whisker growth[J]. Journalof Materials Science: Materials in Electronics,2006,18(1-3):269-281.
    [132] Wan Zhang, Felix Schwager. Effects of lead on tin whisker elimination[J]. Journal of theElectrochemical Society,2006,153(5):C337-C343.
    [133] W. M. Tang, A. Q. He, Q. Liu, D. G. Ivey. Solid state interfacial reactions in electrodepositedCu/Sn couples[J]. Transactions of Nonferrous Metals Society of China,2010,20(1):90-96.
    [134] A. Gangulee, G. C. Das, M. B. Bever. An X-ray diffraction and calometric investigation of thecompound Cu6Sn5[J]. Metallurgical Transactions,1973,4(9):2063-2066.
    [135] A. K. Larsson, L. Stenberg, S. Lidin. The superstructure of domain-twinned η'-Cu6Sn5[J]. ActaCrystallographica Section B: Structural Science,1994,50(6):636-643.
    [136] J. D. Bernal. The complex structure of the Copper-Tin intermetallic compounds[J]. Nature,1928,122:54.
    [137] K. Schubert, B. Kiefer, M. Wilkens, R. Haufler. On some metallic ordered phases with longperiod[J]. Zeitschrift Für Metallkunde,1955,46(9):692-715.
    [138] Y. Watanabe, Y. Fujinaga, H. Iwasaki.[J]. Acta Crystallographica Section B: Structural Science,1983,39(3):306-311.
    [139] W. Burkhardt, K. Schubert. About brassy phases with A3-related structure[J]. Zeitschrift fürMetallkunde,1959,50(8):442-452.
    [140] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne.First principles methods using CASTEP[J]. Zeitschrift für Kristallograhie,2005,220(5-6):567-570.
    [141] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J].Physical Review B,1990,41(11):7892-7895.
    [142] H. J. Monkhorst, J. D. Pack. Special points for brillouin-zone integrations[J]. Physical Review B,1976,13(12):5188-5192.
    [143] T. H. Fischer, J. Alml f. General methods for geometry and wave function optimization[J].Journal of Physical Chemistry,1992,96(24):9768-9774.
    [144] H. Flandorfer, U. Saeed, C. Luef, A. Sabbar, H. Ipser. Interfaces in lead-free solder alloys:Enthalpy of formation of binary Ag-Sn, Cu-Sn and Ni-Sn intermetallic compounds[J]. ThermochimicaActa,2007,459(1-2):34-39.
    [145] X. Zhang, C. Y. Wang. First-principles study of vacancy formation and migration in clean andRe-doped γ-Ni3Al[J]. Acta Materialia,2009,57(1):224-231.
    [146] R. O. Simmons, R. W. Balluffi. Measurement of equilibrium concentrations of vacancies incopper[J]. Physical Review,1963,129(4):1533-1544.
    [147] H. Mehrer, A. Seeger. Interpretation of self-diffusion and vacancy properties in copper[J].Physica Status Solidi,1969,35(1):313-328.
    [148] G. Neumann, V. T lle, C. Tuijn. Monovacancies and divacancies in copper: Reanalysis ofexperimental data[J]. Physica B: Condensed Matter,1999,271(1-4):21-27.
    [149] H. Deng, D. J. Bacon. Simulation of point defects and threshold displacements in pure Cu and adilute Cu-Au alloy[J]. Physical Review B,1993,48(14):10022-10030.
    [150] N. Sandberg, G. Grimvall. Anharmonic contribution to the vacancy formation in Cu[J]. PhysicalReview B,2001,63(18):184109.
    [151] B. J. Lee, J. H. Shim, M. I. Baskes. Semiempirical atomic potentials for the fcc metals Cu, Ag,Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atommethod [J]. Physical Review B,2003,68(14):144112.
    [152] D. A. Andersson, S. I. Simak. Monovacancy and divacancy formation and migration in copper: Afirst-principles theory[J]. Physical Review B,2004,70(11):115108.
    [153] A. R. Akbarzadeh, Z. Z. Chen, Nicholas Kioussis. Crucial role of surface in stability and mobilityof vacancy clusters in metals[J]. Physical Review B,2009,79(19):195404.
    [154] X. J. Yuan, N. X. Chen, J. Shen, W. Y. Hu. Embedded-atom-method interatomic potentials fromlattice inversion[J]. Journal of Physics: Condensed Matter,2010,22(37):375503.
    [155] I. Shishido, H. Yasueda, M. Mizuno, H. Araki, Y. Shirai. Thermal formation of vacancies inCu3Sn[J]. Physica Status Solidi (c),2007,4(10):3563-3566.
    [156] S. Belyakov, H. V. Atkinson, S. P. A. Gill. Crystallographically faceted void formation in thematrix of lead-free solder joints[J]. Journal of Electronic Materials,2010,39(8):1295-1297.
    [157] J. Y. Song, Jin Yu. Solid-state reactions and stress evolutions between SnAg and Ni(P) thinfilms[J]. Journal of Materials Research,2009,24(2):482-486.
    [158] Zhen Liu, Hong-Hui Yu. Stress relaxation of thin film due to coupled surface and grain boundarydiffusion[J]. Thin Solid Films,2010,518(20):5777-5785.
    [159] Eric Buchovecky, Nitin Jadhav, Allan F. Bower, Eric Chason. Finite element modeling of stressevolution in Sn films due to growth of the Cu6Sn5intermetallic compound[J]. Journal of ElectronicMaterials,2009,38(12):2676-2684.
    [160] Can Ayas, Erik van der Giessen. A continuum framework for grain boundary diffusion in thinfilm/substrate systems[J]. Journal of applied physics,2010,108(7):073511.
    [161] B. Lebedev, Yu. A. Burenkov, S. A. Pulnev, V. V. Vetrov, V. I. Kopylov. Recovery of Young'sModulus during annealing of submicrocrystalline Cu and Cu: ZrO2composite[J]. Journal de Physique,1996,6:365-368.
    [162] Emmanuel Fraizier, Marie-Hélène Nadal, and Roland Oltra. Noncontact determination of theelastic moduli of β-Sn up and through the melting point [J]. Journal of Applied Physics,2003,93(1):649-654.
    [163] Wolfgang H. Müller, Taoufiq Hannach, H.-J. Albrecht. FE-investigation of the stress/strain andfracture mechanics properties of intermetallic phase regions in leadfree solder interconnects[J].2006Electronics Packaging Technology Conference,2006,114-120.
    [164]吴振宇,杨银堂,柴常春,李跃进,汪家友,刘静.互连应力迁移温度特性研究[J].物理学报,2009,58(4):2625-2630.
    [165]张文钺.焊接冶金学-基本原理.北京:机械工业出版社,1999.
    [166] Y. Wang, K. N. Tu. Ultrafast intermetallic compound formation between eutectic SnPb and Pdwhere the intermetallic is not a diffusion barrier[J]. Applied Physics Letters,1995,67(8):1069-1071.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700