用户名: 密码: 验证码:
特高压输电网架结构优化与未来电网结构形态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于能源资源和负荷需求逆向分布的国情,我国国家电网公司提出了建设“以特高压电网为骨干网架、各级电网协调发展”的战略目标。2009年1月6日,晋东南一南阳一荆门特高压交流试验示范工程正式投入运行,标志着我国在特高压输电核心技术以及设备国产化上取得重大突破。根据规划,到2020年,我国将建成由1000kV交流、±1100kV与±800kV直流构成的特高压电网,实施远距离、大规模、高效率输电,促进大煤电、大水电、大核电、大型可再生能源基地的集约化开发,在全国范围内实现资源优化配置。
     根据大电网发展规律,新的更高一级电压电网发展初期,将是系统安全稳定运行的高风险期。在构建特高压电网的过程中,我国电网将出现与输电网架结构密切相关的新的技术问题,典型的包括多级电磁环网问题、短路电流超标问题、多馈入直流相互影响问题和可再生能源大规模送出问题。如果解决不好这些问题,将给特高压电网的安全稳定运行带来严重的隐患。为避免不合理的输电网架结构所导致的稳定破坏事故,深入开展对特高压输电网架结构的研究,具有重要的理论意义和应用价值。
     在全面学习和借鉴已有研究工作的基础上,本文从输电网架结构的综合评价模型研究入手,深入到具体的多级电磁环网优化分区和多馈入直流系统限流优化问题,并对我国未来可再生能源电网进行了远景设想。整个研究引入了多属性决策理论、模糊理论、复杂网络理论、多目标优化理论等,涉及到模型建立、算法求解、约束校验、策略流程等多个方面的内容,针对输电网架结构问题建立了系统的研究体系和模型。论文的研究工作和创新成果如下:
     1)考虑提高系统安全稳定性与限制短路电流水平的相互制约关系,建立了一种适用于运行规划的输电网架结构综合评价模型。引入线路或变压器过负荷指标、母线电压越限指标、暂态发电机功角差指标、暂态电压安全裕度指标、短路电流越限指标、短路容量均衡指标及系统网损指标,应用模糊综合评价方法对不同的输电网架结构进行定量的评价。从功率转移和短路电流超标两方面对多级电磁环网运行方式进行了一定的理论分析,仿真计算了华北一华中特高压电网的多级电磁环网运行方式,指出了多级电磁环网存在的弊端和隐患,并应用综合评价模型对多级电磁环网开、合环方案进行了定量的评价。实际系统仿真验证了所建模型和方法的有效性。
     2)提出了一种基于网络社团结构特性量化分析的电磁环网分区方法,将复杂网络社团结构理论应用于电磁环网分区过程,为形成电磁环网分区方案提供理论依据。考虑电力网络的线路长度及参数特性,选取线路的导纳模值作为边权重,并以此为基础定义了加权边介数和加权模块度指标;对传统Floyd-Warshall算法进行了改进,使其能够适用于存在多条等长度最短路径的网络的边介数计算;根据枢纽变电站分布情况及网络拓扑结构特性,应用GN分裂算法将电磁环网运行方式下低电压等级网络划分成若干分区;依据电力网络分裂过程中各个分区被划分出来的先后顺序形成电磁环网分区方案集合,并利用加权模块度指标宏观地衡量电磁环网分区质量。标准算例和实际系统仿真验证了所建模型和方法的有效性。
     3)为了协调解决短路电流超标和多馈入直流相互影响问题,建立了一种适用于多馈入直流受端电网的限流方案多日标优化模型。通过分析各种限流措施对阻抗矩阵元素的影响,推导各种限流措施与超标站点白阻抗的灵敏度关系,提出了一种考虑限流措施灵敏度的支路筛选策略;通过分析多馈入短路比与网络结构的关系,推导出限流措施可能使多馈入短路比增大、也可能使其减小;采用开断线路和加装限流电抗器这两种典型的限流措施,以总投资成本最小、短路容量综合裕度最小、加权多馈入短路比最大为目标,应用带精英策略的快速非支配排序遗传算法(nondominated sorting genetic algorithm Ⅱ, NSGA-Ⅱ),结合支路筛选策略,寻找Pareto最优的限流方案。实际系统仿真验证了所建模型和方法的有效性。
     4)在分析欧洲‘'Super Grid2050"未来输电网架结构的基础上,提出了在我国“三北”地区建设可再生能源电网的远景设想。结合“三北”地区可再生能源发电基地规划,给出了2020年、2030年和2050年这3个时间节点的可再生能源电网目标网架;从交直流输电方式比较、新型直流输电技术特点、多端直流输电系统发展等方面对可再生能源电网的技术可行性进行了论证。“三北”可再生能源电网远景设想是在我国能源结构战略性调整的背景下提出的,根本目的是利用广域范围内的资源互补性平衡非水可再生能源的功率波动性和不确定性,减少“三北”地区储能系统的投资,为受端电网提供稳定可靠的注入电力。
Due to the inverse distribution between energy resources and load demands in China, the strategic objective of developing UHV transmission backbone coordinated with multi-level voltage grid was put forward by State Grid Corporation of China. The Jindongnan-Nanyang-Jingmen UHVAC demonstration project was officially put into operation on January6th,2009, which means significant breakthroughs in core technology of UHVAC transmission and equipment domesticization. According to the planning, UHV grid composed of1000kV UHVAC,±1100kV and±800kV UHVDC transmission lines will be constructed by2020, to realize long-distance, large-scale and highly-efficient transmission, and promote the intensive development of coal power, hydropower, nuclear power and renewable energy power.
     According to laws of development, it would be a high-risk period in the primary construction of higher voltage grid. During the development of UHV grid, many new technology problems closely related to the structure of transmission backbone may appear, typically including multi-level electromagnetic loop, short circuit current exceeding, multi-infeed DC interaction and integration of large-scale renewable energy. Potential dangers would threaten secure and stable performance of UHV grid if these problems could not be solved properly. In order to escape failures caused by unreasonable structures, it's theoretically and practically necessary to make further study on the structure of UHV transmission backbone.
     Based on current researches, a detailed study on the structure of transmission backbone has been carried out in this dissertation, which includes transmission backbone evaluation model, multi-level electromagnetic loop partitioning, current limiting schemes optimization and the vision of renewable energy power grid. The whole research introduces many theorys, such as multi-attribute decision making, fuzzy theory, complex network theory and multi-objective optimization, and refers to many specific aspects, such as mathematical models, solving algorithms, checking constraints and planning strategies. Main contributions and innovations are described as follows:
     1) Considering the restrictive relation between improving system stability and limiting short circuit current, a transmission backbone evaluation model for operation planning is built. The fuzzy comprehensive evaluation method executes a quantitative assessment of different transmission backbone schemes, with the introduction of branch overload index, bus voltage violation index, power angle difference index, voltage security margin index, short-circuit current exceeding index, short-circuit capacity balance index and active power loss index. Some theory analysis on multi-level electromagnetic loop is given from two sides involving power transfer and short circuit current exceeding. Multi-level electromagnetic loop of North and Central China UHV grid is simulated to point out the drawbacks of this operating mode, and the evaluation model is applied to assess both the opened and closed schemes of electromagnetic loop. Case studies performed on the actual power system demonstrate the effectiveness of this proposed model and method.
     2) A new method for electromagnetic loop partitioning based on quantitative analysis of network community structure characteristics is presented. Considering line length and parameter characteristics of power grid, admittance modulus is chosen as edge weight, then the weighted edge betweenness and the weighted modularity index are defined on that basis. The traditional Folyd-Warshall algorithm is improved to be suitable for the calculation of edge betweenness in that network, which has multiple shortest paths of the same length. According to the distribution of centre substation and system topology structure, several parts are separated from the low voltage level network using GN dividing algorithm. The partition scheme set could be determined depending on the sequence that every part separated from the network in the dividing process. The weighted modularity index is employed to evaluate the rationality of the dividing results. Case studies demonstrate that this proposed model and method can effectively provide theory basis for electromagnetic loop partitioning.
     3) A multi-objective optimization model of current limiting schemes is built to coordinate the problems of short circuit current exceeding and multi-infeed DC interaction. The influence on impedance matrix caused by each current limiting measure is analyzed, and a variable selection strategy considering sensitivity relation between current limiting measure and node self-impedance is proposed. The relation between multi-infeed short-circuit ratio and network structure is discussed, which brings a conclusion that current limiting measures may lead to a increase in multi-infeed short-circuit ratio, also may make it smaller. Opening lines and adding current-limiting reactors are chosen as decision variables in this model. To minimize total investments, to minimize short-circuit capacity margin and to maximize weighted multi-infeed short-circuit ratio, nondominated sorting genetic algorithm Ⅱ is used to find the Pareto optimal solutions. Case studies performed on the actual power system demonstrate the effectiveness of this proposed model and method.
     4) After introducing EU "Super Grid2050" transmission backbone, the vision of renewable energy power grid in Northwest, North and Northeast China is proposed. Considering renewable energy power base planning in this region, network structures of this vision in the year of2020,2030and2050are given. The technical feasibility of renewable energy power grid is demonstrated from the comparison of AC and DC transmission mode, technical features of new type DC transmission and the development of multi-terminal DC transmisson. This vision is presented under the background of strategic adjustments of energy structure in our country. The complementarity of renewable energy in the wide area, in some ways, can balance their fluctuation and uncertainty, accordingly to reduce the investment of energy storage system and provide stable and reliable power.
引文
[1]王梅义,吴竞吕,蒙定中.大电网系统技术.北京:水利电力出版社,1995.
    [2]Morin G. Service restoration following a major failure on the Hydro-Quebec power system. IEEE Transactions on Power Delivery,1987, PWRD-2(2): 454-463.
    [3]王梅义.有感于美国西部电网大停电.电网技术,1996,20(9):43-46.
    [4]Taylor C W.电力系统电压稳定.北京:中国电力出版社,2002.
    [5]薛禹胜.综合防御由偶然故障演化为电力灾难一北美“8.14”大停电的警示.电力系统自动化,2003,27(18):1-5,37.
    [6]李再华,白晓民,丁剑,等.西欧大停电事故分析.电力系统自动化,2007,31(1):1-3,32.
    [7]林伟芳,孙华东,汤涌,等.巴西“11·10”大停电事故分析及启示.电力系统自动化,2010,34(7):1-5.
    [8]中华人民共和国国家经济贸易委员会.电力系统安全稳定导则.2001.
    [9]刘振亚.特高压电网.北京:中国经济出版社,2005.
    [10]刘振亚.中国电力与能源.北京:中国电力出版社,2012.
    [11]国家电网公司.国家电网公司2009年调度运行方式专业会议报告.厦门,2009.
    [12]Falcone C A. Electric utility industry structure in the United States. IEEE Power Engineering Review,1992,12(4):13-17.
    [13]Bresesti P, Sforna M, Allegranza V, et al. Application of phase shifting transformers for a secure and efficient operation of the interconnection corridors. Proceedings of the IEEE Power Engineering Society General Meeting, Denver, Columbia, USA,2004,2:1192-1197.
    [14]Kim S Y, Yoon J S, Chang B H, et al. The operation experience of KEPCO UPFC. Proceedings of the 8th International Conference on Electrical Machines and Systems, Nanjing, China,2005,3:2502-2505.
    [15]Miller J M, Balmat B M, Morris K N, et al. Operating problems with parallel flows. IEEE Transactions on Power Systems,1991,6(3):1024-1034.
    [16]Granelli G, Montagna M, Zanellini F, et al. A genetic algorithm-based procedure to optimize system topology against parallel flows. IEEE Transactions on Power Systems,2006,21(1):333-340.
    [17]Rolim J G, Machado L J B. A study of the use of corrective switching in transmission systems. IEEE Transactions on Power Systems,1999,14(1): 336-341.
    [18]Bacher R, Glavitsch H. Network topology optimization with security constraints. IEEE Transactions on Power Systems,1986,1(4):103-111.
    [19]Bacher R, Glavitsch H. Loss reduction by network switching. IEEE Transactions on Power Systems,1988,3(2):447-454.
    [20]Lobato E, Echavarren F, Rouco L, et al. A mixed-integer LP based network topology optimization algorithm for overload alleviation. Proceedings of the IEEE Power Tech Conference, Bologna, Italy,2003,2.
    [21]Granelli G, Montagna M, Zanellini F, et al. Optimal network reconfiguration for congestion management by deterministic and genetic algorithms. Electric Power Systems Research,2006,76(6-7):549-556.
    [22]Shao W, Vittal V. A new algorithm for relieving overloads and voltage violations by transmission line and bus-bar switching. Proceedings of the IEEE PES Power Systems Conference and Exposition, New York, USA,2004,1:322-327.
    [23]Arya L D, Choube S C, Kothari D P. Line switching for alleviating overloads under line outage condition taking bus voltage limits into account. Electric Power and Energy Systems,2000,22(3):213-221.
    [24]Chen L, Tozyo H, Tada Y, et al. Reconfiguration of transmission systems with transient stability constraints. Proceedings of the IEEE Power Engineering Society Winter Meeting, Singapore,2000,2:1320-1324.
    [25]侯春青,郑惠萍.2005年山西中南部500kV及220kV电网的电磁环网运行方式分析.电网技术,2005,29(10):80-84.
    [26]刘楠,唐晓骏,张文朝,等.特高压接入河南电网后电磁环网解环方案研究.电力系统保护与控制,2011,39(2):131-136,141.
    [27]孔涛,王洪涛,刘玉田,等.500kV-220kV电磁环网开环研究.电力自动化设备,2003,23(12):13-16.
    [28]段满银.电磁环网解环决策的分析和评断[硕士学位论文].北京:华北电力大学,2006.
    [29]叶华,刘玉田,牛新生.500kV-220kV电磁环网开环方案模糊综合评价.电力自动化设备,2006,26(7):1-5.
    [30]Zhang N, Ye H, Liu Y. Decision support for choosing optimal electromagnetic loop circuit opening scheme based on analytic hierarchy process and multi-level fuzzy comprehensive evaluation. Engineering Intelligent Systems for Electrical Engineering and Communications,2008,16(4):183-191.
    [31]杨以涵,艾琳,姜彤,等.基于效益风险函数的电磁环网风险评估与控制.电网技术,2009,33(7):65-70.
    [32]Sarmiento H G, Castellanos R, Pampin G, et al. An example in controlling short circuit levels in a large metropolitan area. Proceedings of the IEEE Power Engineering Society General Meeting, Toronto, Canada,2003:589-594.
    [33]Nagata M, Tanaka K, Taniguchi H. FCL location selection in large scale power system. IEEE Transactions on Applied Superconductivity,2001,11(1): 2489-2494.
    [34]Shahriari S A A, Yazdian A, Haghifam M R. Fault current limiter allocation and sizing in distribution system in presence of distributed generation. Proceedings of the IEEE Power and Energy Society General Meeting, Calgary, Alberta, Canada,2009:1-6.
    [35]Hongesombut K, Mitani Y, Tsuji K. Optimal location assignment and design of superconducting fault current limiters applied to loop power systems. IEEE Transactions on Applied Superconductivity,2003,13(2):1828-1831.
    [36]Teng J H, Lu C N. Optimum fault current limiter placement with search space reduction technique. IET Generaion, Transmission and Distribution,2010,4(4): 485-494.
    [37]Kim S Y, Bae I S, Kim J O. An optimal location for superconducting fault current limiter considering distribution reliability. Proceedings of the IEEE Power and Energy Society General Meeting, Minneapolis, Minnesota, USA, 2010:1-5.
    [38]Tanaka K, Takahashi K. An efficient method of modifying Z-matrix elements in short-circuit capacity calculations. Electrical Engineering in Japan,1994,114(2): 48-56.
    [39]Tada Y, Okamoto H, Kurita A, et al. Analytical methods for determining a system configuration acceptable from viewpoints of both short circuit current and voltage stability. Electrical Engineering in Japan,1998,124(3):30-39.
    [40]张永康,蔡泽祥,李爱民,等.限制500kV电网短路电流的网架调整优化算法.电力系统自动化,2009,33(22):34-39.
    [41]徐贤,丁涛,万秋兰.限制短路电流的220kV电网分区优化.电力系统自动化,2009,33(25):98-101.
    [42]杨雄平,李力,李扬絮,等.限制广东500kV电网短路电流运行方案.电力系统自动化,2009,33(7):104-107.
    [43]陈丽莉,黄民翔,张弘,等.电网限流措施的优化配置.电力系统自动化, 2009,33(11):38-42.
    [44]陈丽莉,黄民翔,许诺,等.考虑潮流约束的限流措施优化配置.高电压技术,2010,36(6):1572-1576.
    [45]杨冬,刘玉田,牛新生.分区电网限流运行方式的综合决策方法.电力系统自动化,201 0,34(12):34-38.
    [46]陈修宇.多馈入直流系统电压相互作用及其影响[博士学位论文].北京:华北电力大学,2012.
    [47]KundurP. (?)电力系统稳定与控制.北京:中国电力出版社,2001.
    [48]CIGRE Working Group B4.41. Systems with multiple DC infeed. Paris,2008.
    [49]Bui L X, Sood V K, Laurin S. Dynamic interactions between HVDC systems connected to AC buses in close proximity. IEEE Transactions on Power Delivery,1991,6(1):223-230.
    [50]Davies J B. Systems with multiple DC infeed. Electra,2007,233:14-19.
    [51]金小明,周保荣,管霖,等.多馈入直流交互影响强度的评估指标.电力系统自动化,2009,33(15):98-102.
    [52]de Toledo P F, Bergdahl B, Asplund G. Multiple infeed short circuit ratio aspects related to multiple HVDC into one AC network. Proceedings of the IEEE Transmission and Distribution Conference and Exhibition:Asia and Pacific, Dalian, China,2005:1-6.
    [53]林伟芳,汤涌,卜广全.多馈入交直流系统短路比的定义和应用.中国电机工程学报,2008,28(31):1-8.
    [54]Fernando I T, Kent K L, Davies J B, et al. Parameters for planning and evaluation of multi-infeed HVDC schemes. Proceedings of the CIGRE Symposium, Osaka, Japan,2007:1-8.
    [55]林伟芳,汤涌,郭小江.多馈入交直流系统短路比影响因素分析.电网技术,2011,35(8):64-68.
    [56]洪潮,饶宏.多馈入直流系统的量化分析指标及其应用.南方电网技术,2008,2(4):37-41.
    [57]Aik D L H, Andersson G. Power stability analysis of multi-infeed HVDC Systems. IEEE Transactions on Power Delivery,1998,13(3):923-931.
    [58]Aik D L H, Andersson G. Use of participation factors in modal voltage stability analysis of multi-infeed HVDC Systems. IEEE Transactions on Power Delivery, 1998,13(1):203-211.
    [59]陈虎,张英敏,贺洋,等.多馈入直流输电系统功率稳定性分析.电网技术,2011,35(6):50-54.
    [60]Aik D L H, Andersson G. Voltage stability analysis of multi-infeed HVDC Systems. IEEE Transactions on Power Delivery,1997,12(3):1309-1318.
    [61]林伟芳,汤涌,卜广全.多馈入交直流系统电压稳定性研究.电网技术,2008,32(11):7-12.
    [62]邵瑶,汤涌,郭小江,等.多直流馈入华东受端电网暂态电压稳定性分析.电网技术,2011,35(12):50-55.
    [63]欧开健,荆勇,任震.多馈入直流输电系统换流母线电压稳定性评估模型和算法.电力自动化设备,2003,23(9):23-26.
    [64]European Commission. European SmartGrids technology platform-vision and strategy for Europe's electricity networks of the future [EB/OL]. http://www. smartgrids.eu/documents/vision.pdf.
    [65]Chebbo M. EU SmartGrids framework-electricity networks of the future 2020 and beyond. Proceedings of the IEEE Power Engineering Society General Meeting, Tampa, USA,2007.
    [66]Office of Electric Transmission and Distribution, United States Department of Energy. The smart grid:an introduction [EB/OL]. http://www.oe.energy.gov/ DocumentsandMedia/DOE_SG_Book_Single_Pages(1).pdf.
    [67]EPRI. Profiling and mapping of intelligent grid R&D programs. Palo Alto, CA, USA,2006.
    [68]舒印彪,张文亮,周孝信,等.特高压同步电网安全性评估.中国电机工程学报,2007,27(34):1-6.
    [69]何大愚.印度电力建设及其特高压交直流输电规划.中国电力,2008,41(2):65-68.
    [70]DESERTEC Foundation. Clean power from deserts-the DESERTEC concept for energy, water and climate security [EB/OL]. http://www.desertec.org/ fileadmin/downloads/DESERTEC-WhiteBook_en_small.pdf.
    [71]DESERTEC Foundation. Red paper-an overview of the DESERTEC concept [EB/OL]. http://www.desertec.org/fileadmin/downloads/desertec-foundation_redpaper_3rd-edition_english.pdf.
    [72]蒙定中.建议直流远送/稳控互联各大区强化的同步网,避免全国1000kV联网.电力自动化设备,2007,27(5):13-22.
    [73]Office of Electric Transmission and Distribution, United States Department of Energy. "Grid 2030"-a national vision for electricity's second 100 years [EB/OL]. http://www.energetics.com/resourcecenter/products/plans/samples/ Documents/electric_vision.pdf.
    [74]Office of Electric Transmission and Distribution, United States Department of Energy. National electric delivery technologies roadmap-transforming the grid to revolutionize electric power in North America [EB/OL]. http://www. energetics.com/resourcecenter/products/roadmaps/Documents/electric roadmap .pdf.
    [75]张运洲,吕健.我国未来同步电网的战略构想.中国电力,2006,39(3):5-7.
    [76]国家电网公司.电网发展专家咨询座谈会报告.北京,2011.
    [77]黄弘扬,徐政,林晞.基于故障限流器的直流多馈入受端系统动态分区技术.中国电机工程学报,2012,32(19):58-64.
    [78]王锡凡.电力系统优化规划.北京:水利电力出版社,1990.
    [79]中华人民共和国国家经济贸易委员会.电力系统安全稳定控制技术导则.2000.
    [80]程浩忠.电力系统规划.北京:中国电力出版社,2008.
    [81]Stefopoulos G K, Yang F, Cokkinides G J, et al. Advanced contingency selection methodology. Proceedings of the 37th Annual North American Power Symposium, Ames, USA,2005:67-73.
    [82]Chen Y, Bose A. Security analysis for voltage problems using a reduced model. IEEE Transactions on Power Systems,1990,5(3):933-940.
    [83]薛禹胜,徐泰山,刘兵,等.暂态电压稳定性及电压跌落可接受性.电力系统自动化,1999,23(14):4-8.
    [84]吴际舜.电力系统静态安全分析.上海:上海交通大学出版社,1985.
    [85]Wood A J, Wallenberg B F.发电、运行与控制.北京:清华大学出版社,1996.
    [86]赵焕臣,许树柏,和金生.层次分析法.北京:科学出版社,1986.
    [87]陈水利,李敬功,王向功.模糊集理论及其应用.北京:科学出版社,2005.
    [88]Watts D J, Strogatz S H. Collective dynamics of 'small-world'networks. Nature, 1998,393:440-442.
    [89]Barabasi A L, Albert R. Emergence of scaling in random networks. Science, 1999,286:509-512.
    [90]汪小帆,李翔,陈关荣.复杂网络理论及其应用.北京:清华大学出版社,2006.
    [91]倪向萍,阮前途,梅生伟,等.基于复杂网络理论的无功分区算法及其在上海电网中的应用.电网技术,2007,31(9):6-12.
    [92]林振智,文福拴,周浩.基于复杂网络社团结构的恢复子系统划分算法.电力系统自动化,2009,33(12):12-16,42.
    [93]Dijkstra E W. A note on two problems in connexion with graphs. Numerische Mathematik,1959,1(1):269-271.
    [94]Bellman R. On a routing problem. Quarterly of Applied Mathematics,1958, 16(1):87-90.
    [95]Ford L R, Fulkerson D R. Maximal flow through a network. Canadian Journal of Mathematics,1956,8:399-404.
    [96]段凡丁.关于最短路径的SPFA快速算法.西南交通大学学报,1994,29(2):207-212.
    [97]Floyd R W. Algorithm 97:shortest path. Communications of the ACM,1962, 5(6):345.
    [98]Warshall S. A theorem on boolean matrices. Journal of the ACM,1962,9(1): 11-12.
    [99]Johnson D B. Efficient algorithms for shortest paths in sparse networks. Journal of the ACM,1977,24(1):1-13.
    [100]Kernighan B W, Lin S. An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal,1970,49(2):291-307.
    [101]Pothen A, Simon H D, Liou K P. Partitioning sparse matrices with eigenvectors of graphs. SI AM Journal on Matrix Analysis and Applications,1990,11(3): 430-452.
    [102]Girvan M, Newman M E J. Community structure in socail and biological networks. Proceedings of the National Academy of Sciences of the United States of America,2002,99(12):7821-7826.
    [103]Newman M E J, Girvan M. Finding and evaluating community structure in networks. Physical Review E,2004,69(2):26113.
    [104]Fortunato S, Barthelemy M. Resolution limit in community detection. Proceedings of the National Academy of Sciences of the United States of America,2007,104(1):36-41.
    [105]Clauset A, Newman M E J, Moore C. Finding community structure in very large networks. Physical Review E,2004,70(6):66111.
    [106]Newman M E J. Analysis of weighted networks. Physical Review E,2004, 70(5):56131.
    [107]山东电力集团公司.“外电入鲁”及山东特高压电网规划研究报告.济南,2009.
    [108]陈丽莉.大电网限流措施的优化配置研究[博士学位论文].杭州:浙江大学,2011.
    [109]Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation,2002, 6(2):182-197.
    [110]中国电力报.我国七座千万千瓦级风电基地建设调查[EB/OL]. http://www. chinaero.com.cn/nyygd/08/43864.shtml.
    [111]周孝信,曹一家.我国发展大规模非水可再生能源发电的前景.电力科学与技术学报,2008,23(1):2-7.
    [112]严陆光,周孝信,张楚汉,等.关于筹建青海大规模光伏发电与水电结合的国家综合能源基地的建议.电工电能新技术,2010,29(4):1-9.
    [113]严陆光,周孝信,张楚汉,等.关于筹建青海大规模光伏发电与水电结合的国家综合能源基地的建议(续).电工电能新技术,2011,30(1):8-11.
    [114]肖立业,林良真.构建全国统一的新能源电网,推进我国智能电网的建设.电工电能新技术,2009,28(4):54-59.
    [115]李炳坤,唐元,董忠.关于研究实施“海水西送工程”的建议.高科技与产业化,2008,Z1:75-78.
    [116]国家电网公司.±1100kV特高压直流工作启动动员会在京召开[EB/OL]. http: //www.sgcc.com.cn/xwzx/gsyw/2011/01/240598.shtml.
    [117]徐政.交直流电力系统动态行为分析.北京:机械工业出版社,2004.
    [118]Sood V K.高压直流输电与柔性交流输电控制装置一静止换流器在电力系统中的应用.北京:机械工业出版社,2006.
    [119]赵畹君.高压直流输电工程技术.北京:中国电力出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700