用户名: 密码: 验证码:
VSC-MTDC并联运行及其电压控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着交流电网的不断扩大,交流输电的局限性愈发明显,而高压直流输电系统直作为一种新兴的输电技术具有明显的优势,直流输电具有响应速度快,系统稳定性较好,能量损耗少等优点,因此在风力发电、分布式发电、海上供电、城市中心配电、远距离输电以及电网互联等方面有着广泛的应用。
     本文对基于电压源变流器的辐射式并联多端直流输电系统进行了相关的研究,首先为电压源变流器建立了在abc和dq坐标系下的数学模型,并根据建立的数学模型为变流器设计了定直流(交流)电压定有功(无功)功率以及直流电压下降控制器和过电压控制器。本文论述了统一式(单点电压控制)以及电压下降式(多点电压控制)控制策略,在此基础上提出并设计出了一种应用于辐射式并联多端直流输电系统的新型混合式控制策略。该控制策略的可控性和稳定性均较好。并且本文还进行了辐射式并联多端系统的直流功率潮流和变流器直流电压、电流的计算方法的研究。在电磁暂态仿真软件PSCAD/EMTDC中搭建了一个辐射式并联五端直流输电系统,并进行了相应的仿真研究。
     仿真研究表明,采用新型混合式控制策略的多端系统具有可靠的运行特性和高度的可控制性。新型混合式控制策略在定电压变流器正常运行时,多端系统电压是由定电压变流器决定,此时是单点电压控制,在定电压变流器满载或者因故障被从多端系统中切除时,电压下降变流器承担起控制多端系统直流电压的责任,此时是多点电压控制,因此这种控制策略稳定性以及可控性要优于现有的控制策略,再结合本文提出的直流潮流计算方法,可以方便的预测多端系统的稳定运行状态,或通过逆向运算来控制多端系统的运行方式。
In recent years, with power grid expands, the limitation of ac power transmission is obvious. HVDC system, as a new transmission technology, has significant advantage. HVDC transmission has faster response, better system stability and less waste energy. It is in a wide range of applications such as wind power generation, distributed power generation, offshore power supply, urban power distribution, long-distance transmission and interconnection of synchronized AC system.
     This paper focus on the radial parallel multi-terminal HVDC system based on voltage source converters. In the first place, the mathematical model of VSC is established in different coordinate system. According to the mathematical model, constant voltage controller, constant power controller and voltage droop controller are proposed. This paper introduced the unified and voltage droop type control strategy. Based on this, the new hybrid control strategy is put forward. This new control strategy is better than the old ones in controllability and stability. This paper also carried out the dc power flow calculation method for the radial parallel multi-terminal HVDC system. A Five-terminal HVDC system is built in the electromagnetic transient simulation software PSCAD/EMTDC.
     The simulation results show that the parallel multi-terminal HVDC system with new hybrid control strategy has excellent reliability and controllability. The new hybrid control strategy can be split into two stages according to the load condition of the voltage regulator. Stage one is when the voltage regulator is in light load condition. System voltage is set by the voltage regulator. Stage two is when the voltage regulator is in full load condition or cut off from the system. The voltage regulator works as a normal power dispatcher. System voltage is set by voltage droop converters. So the reliability and controllability of the new control strategy is superior to the existing control strategies. Combining the proposed dc flow calculation method, it is pretty easy to predict the stable operation of the multi-terminal system. And through the reverse operations, it is also very convenient to control the stable operation of the multi-terminal system.
引文
[1]朱毅.直流输电的特点及与交流输电的经济性比较[c].福建省第十二届水利水电青年学术交流会论文集.福建省水利学会.2008.
    [2]李兴源.高压直流输电系统的运行与控制[M].北京:科学出版社,1998
    [3]杨晓萍.高压直流输电与柔性交流输电[M].北京:中国电力出版社,2010.
    [4]]袁旭峰,程士杰.多端直流输电技术及其发展[J].继电器,2006,34(19):61-67,70.
    [5]李兴源,鲜艳霞,洪敏,吴冲.高压直流输电技术及其展望[C].第五届输配电技术国际会议论文集.2005.63-69.
    [6]舒印彪.中国直流输电的现状及展望[J].高电压技术.2004,30(11),1-2.
    [7]李永坚,周友庆,宋强.轻型直流输电技术的发展与应用[J].高电压技术,2003,29(10):26-28
    [8]胡兆庆,毛承雄,陆继明.新型多端高压直流输电传输系统应用及其控制[J].高电压技术,2004,30(11):31-33
    [9]吴俊宏,艾芊.多端柔性直流输电系统在风电场中的应用[M].电网技术,2009,33(4):22-27.
    [10]陈谦.新型多端直流输电系统的运行与控制[D].南京:东南大学.2004.10
    [11]潘武略,徐政,张静.基于电压源变流器的高压直流输电系统混合调制方式[J].电力系统自动化,2008,32(5):54-58.
    [12]宋强.大容量多电平逆变器的控制方法及其系统设计[D].北京:清华大学,2002.
    [13]Weixing Lu, Boon Teck Ooi.Multiterminal LVDC System for Optimal Acquisition of Power in Wind-farm using Induction Generators[C].IEEE Power Engineering Society Winter Meeting, Jan 2002,(2):719-724.
    [14]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004.
    [15]张加胜,张磊.PWM逆变器的直流侧等效模型研究[J].中国电机工程学报,2007(4)
    [16]TANG, Lian-xiang,Ooi B T. Protection of VSC-Multi-Terminal HVDC against DC faults[C].IEEE 33rd Annual Power Electronics Specialists Conference.2002.719-724.
    [17]韩民晓,肖湘宁,徐永海.柔性化供电技术[J].电力系统自动化,2002,(8):1-5,50.
    [18]严干贵,陈涛,穆刚.轻型高压直流输电系统的动态建模及非线性化解耦控制[J].电网技术.2007,31(6):45-50.
    [19]陈谦,唐国庆,潘诗锋.采用多点直流电压控制方式的VSC多端直流输电系统[J].电力自动化设备,2004,5:10-14.
    [20]刘凤君.正弦波逆变器[M].北京:科学出版社,2002.
    [21]张崇魏,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [22]张纯江,顾和荣,王宝诚,朱艳萍,刘彦民.基于新型相位幅值控制的三相PWM整流器数学模型[J].中国电机工程学报,2003(7)
    [23]陈谦,唐国庆,胡铭.采用dq0坐标的VSC-HVDC稳态模型与控制器设计[J].电力系统自动化,2004,28,(16):61-66
    [24]June Are Wold Suul. Control of Variable Speed Pumped Storage Hydro Power Plant for Increased Utilization
    [25]Ned Mohan. Advanced Electric Drives:Analysis, control and Modeling using Simulink.[C] MNPERE.2001.Minneapolis.
    [26]Jan Machowski; Janusz W.Bialek; James R. Bumby.Power system dynamics and stability[C]. John Wiley &Sons.1997
    [27]郭昆丽,VSC-HVDC系统的控制策略及其仿真研究[J].陕西科技大学学报(自然科学版)2009(3)
    [28]黎小林,黄莹,谢施君.基于PSCAD/EMTDC的锁相环建模与性能分析[J].南方电网技术,2008,2(4):42-46.
    [29]Moharana A, Dash P K.Input-output linearization and robust sliding mode controller for the VSC-HVDC transmission link[J].IEEE Transaction on Power Delivery 2010,25(3):1952-1961
    [30]陈海荣,徐政.向无源网络供电的VSC-HVDC系统仿真研究[J].电网技术,2005,29(8):45-50.
    [31]Shiguo Luo, Zhihong Ye, Ray-Lee Lin, et al. A Classification and Evaluation of Paralleling Methods for Power Supply Modules[J]. IEEE 1999 Power Electronics Specialists Conference, PESC99,30th Annual IEEE,1999,(2):901-908S
    [32]Chen Qian,Tang Guoqing,Hu Ming. Study of DC Voltage Control Scheme for VSC Based Multi-terminal HVDC[C].The Asian Conference on Power System Protection,2003,(2):464-470.
    [33]Nils H rle, Kjell Eriksson,Asmund Maeland, et al.Electrical Supply for Off shore Installations Made Possible by Use of VSC Technology [C]. CIGRE Session 2002. Paris.CIGRE,2002,14-117.
    [34]阮思烨,孙元章,李国杰.用电压源型高压直流输电解决高压电网中工业系统引起的电能质量问题[J].电网技术.2007,31(19):13-17.
    [35]B.T. Irving, M.M. Jovanovic. Analysis, Design, and Performance Evaluation of Droop Current-sharing Method[C]. IEEE 2000 Applied Power Electronics Conference and Esposition,APEC 2000.15th Annual IEEE 2000, (1):235-241
    [36]Weixing Lu; Boon-Teck Ooi. DC overvoltage control during loss of converter in multi-terminal voltage source converter based HVDC Power[C] Delivery.IEEE Transaction on Volume 18,Issue 3. July 2003 Page:915-920
    [37]郑继禹,万心平,张厥盛.锁相环路原理与应用[M].北京:人民邮电出版社,1984.
    [38]陈海荣,徐政.电压源换流器型直流输电技术综述[J].高电压技术,2007,33(1):1-10
    [39]Cuiqing Du.The control of VSC-HVDC and its use for large industrial power systems[D]. Chalmers University.2003. Gotborge.
    [40]殷自力,罗彦青.VSC-HVDC系统环流电抗器参数设计[J].电力科学与工程,2008,24(2):4042.
    [41]胡兆庆,基于VSC的HVDC控制及其动态特性研究[D].武汉:华中科技大学,2005.
    [42]Zhang Guibin,Xu Zheng,Shao Wei. Research on the Control and Simulation of HVDC-VSC[C].Proc of International Conference on Power System, Wuhan,2001,371-375.
    [43]Gengyin Li; Ming Yin; Ming Zhou; Chenyong Zhao. Modeling of VSC-HVDC and control strategies for supplying both active and passive systems[C]. Power Engineering Society General Meeting.2006. IEEE.
    [44]刘洪涛.新型直流输电的控制和保护策略研究[D].杭州:浙江大学,2003
    [45]陈海荣,徐政.适用于VSC-MTDC系统的直流电压控制策略[J].电力系统自动化,2006,30(19):28-33
    [46]Tashunito Nakajima. Shooihi Irokawa. A control system for HVDC transmission by voltage source converter[C]. IEEE Power Engineering Society Summer Meeting.1999.
    [47]R.L. Hendriks; G.c. Paap; W.L. Kling. Control of a multi-terminal VSC transmission scheme for connecting offshore wind farms[C]. EWEC 2007 proceedings. Milan. May 2007.
    [48]辛俊峰,韩金铜,康金良.基于直流电压下降特性的VSC-HVDC控制策略研究[J].电力科学与工程,2011,27(8):42-46.
    [49]陈谦,唐国庆,王浔.多端VSC-HVDC系统交直流潮流计算[J].电力自动化设备.2005,25(6):1-6.
    [59]郑超,周孝信,李若梅.电压源式高压直流输电系统的动态建模与暂态仿真[J].电网技术,2005,29(16):1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700