用户名: 密码: 验证码:
VSC-HVDC输电系统的协调控制与稳态分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电压源换流器型高压直流(VSC-HVDC)输电技术是一种基于电压源型换流器、全控型开关器件和脉冲宽度调制的新型直流输电技术。VSC-HVDC输电技术具有多种传统直流输电技术无法媲美的优点,如能够实现有功和无功功率的快速独立控制,具有一定的动态无功补偿能力,改善电能质量,向无源网络供电,容易实现潮流翻转和多端直流等等。因此,VSC-HVDC输电技术非常适用于可再生能源发电并网、城市电网和孤岛电网供电、交流系统的非同步互联以及电力市场交易等领域,具有广阔的应用前景和商业价值,受到了广大学者和工程师们的密切关注;世界范围内的工程实践正如火如荼地展开。控制策略是VSC-HVDC输电系统持续安全运行的关键。一方面,为了保证各种工况下直流系统的电压控制与功率平衡,必须对换流站的协调控制进行深入的研究,设计有效而可靠的本地直流电压控制器。另一方面,仅采用本地直流电压控制器难以保证VSC-HVDC系统在各种运行工况下的安全性和经济性,需要探索和设计基于远程通信的上层调度控制方法。
     正是在这样的背景下,本文围绕两端VSC-HVDC输电系统的故障控制、电压源换流器型多端直流(VSC-MTDC)输电系统协调控制与稳态分析方法等相关的若干问题展开研究工作。本文的主要内容包括:
     (1)基于滞环控制的VSC-HVDC输电系统模式切换控制策略。
     分析了VSC-HVDC系统在主导换流站交流侧电网故障下的模式切换控制策略,提出了基于滞环和本地直流电压检测的模式切换控制,并给出了该控制的实现方法。推导了正常运行时直流功率与两侧换流器直流电压的关系式,给出了定有功功率控制换流器的直流电压正常工作范围的计算方法,提出了模式切换控制策略中直流电压阈值和故障穿越期间直流电压参考值的确定方法。最后,PSCAD/EMTDC仿真验证了在不同故障类型和不同运行方式下VSC-HVDC系统模式切换控制策略的有效性;仿真结果表明,该直流电压闽值与参考值的确定方法能够为模式切换控制策略的指令值整定与配合提供可靠的参考。
     (2)基于附加信号的VSC-HVDC输电系统改进有功功率控制策略。
     给出了改进有功功率控制器的功率特性曲线,提出了外环有功功率控制器的设计方法,推导了有功功率修正值的计算公式,并分析了该控制器在正常运行和故障两种情况下的工作原理。PSCAD/EMTDC仿真研究表明,在电网电压跌落或主导换流站停运等暂态扰动情况下,本文提出的控制策略能够维持直流电压在安全运行范围内,保证系统的安全可靠运行。
     (3)四端VSC-MTDC输电系统的协调控制策略。
     针对典型的应用于风电并网的四端VSC-MTDC输电系统,分析了直流网络的潮流分布,推导了直流网络的潮流计算模型,提出了基于直流电压-有功功率下降调节特性的辅助换流站有功控制方法,推导了平均控制和优先控制两种模式下系统参数的整定与计算方法。给出了主导换流站或辅助换流站因故障停运时采用泄放回路实现故障穿越的方法。PSCAD/EMTDC仿真验证了在不同工况下协调控制策略的有效性,MATLAB编程验证了直流潮流计算模型的准确性。
     (4)五端VSC-MTDC输电系统的协调控制策略。
     针对典型的应用于风电并网的五端直流输电系统,提出了基于本地控制器的换流站间协调控制策略,基于直流电压-有功功率调节特性给出了辅助换流站的改进下降控制策略以及APC换流站的改进控制策略,分析了两种换流站的控制模式。根据直流网络的潮流分布和最大最小运行方式给出了辅助换流站和APC换流站参数选择的依据。PSCAD/EMTDC仿真验证了正常、主导站故障和辅助站故障工况下协调控制策略的有效性。
     (5) VSC-MTDC输电系统的直流侧运行特性分析与稳态工作点计算方法。
     由于换流站数目、控制模式以及指令值的不同,VSC-MTDC输电系统在实际运行中具有多种运行方式,并且随着电网运行条件的变化,VSC-MTDC输电系统的运行方式也随之改变。因此,直流运行中心需要根据换流站运行特性、电网条件和系统参数等快速确定VSC-MTDC输电系统运行控制模式与系统状态量,这对系统快速调控和安全运行具有重要意义。基于此,分析了主导换流站、辅助换流站、定有功功率控制换流站和风电场换流站的直流电压-电流运行特性,推导了各换流站在不同控制模式下的特性方程,给出了各换流站不同控制模式下的电气量范围。提出了VSC-MTDC输电系统稳态工作点的计算方法,完善了换流站的控制模式修正方法。以典型的五端直流输电系统为例,MATLAB编程验证了直流运行特性分析方法和稳态工作点计算方法的准确性;计算结果表明该稳态分析方法能够快速准确地计算出VSC-MTDC输电系统的稳态工作点。
     (6)基于N-1准则的VSC-MTDC输电系统稳态调控方案。
     分析了VSC-MTDC输电系统的安全稳定运行条件。提出了一种基于N-1准则的VSC-MTDC输电系统稳态调控方案;基于连续潮流计算和换流站的电压、功率限制,设计了应对主导站和非主导站停运的调控策略。提出了换流站停运调控策略无解情况下有功功率指令值的优化方法,定义了优化后有功功率指令值的评价指标以用于寻找最优解。以典型的五端VSC-MTDC输电系统为例,利用MATLAB编程验证了该调控方案的可行性和准确性。计算结果表明,该调控方案能够为VSC-MTDC输电系统提供可靠安全的指令值。该稳态调控方案可用于保证系统在正常运行和换流站N-1故障下的直流电压安全和功率平衡以及系统运行方式的最优化,为直流系统的运行调度与规划设计提供一些有益的参考。
Voltage source converter based high voltage dc (VSC-HVDC) transmission technology is a kind of new dc transmission based on voltage source converter, full controlled power electronics device and pulse width modulation. VSC-HVDC technology has lots of advantages, such as fast independent control of active and reactive power, dynamic reactive power compensation ability, power energy quality improving ability, passive network power supply capacity, unaltered voltage polarity when flow is turned, easy to form multi-terminal dc (MTDC) network, etc. Therefore, it's dramatically adapted to renewable generating integration, power supply of urban grids and island networks, asynchronous interconnection of ac system, electricity market trading, etc., which has a broad application prospect and business value. What's more, it is paid close attention by many scholars and engineers and its engineering practice is in full swing within the whole world scope. Control strategy is the key of VSC-HVDC transmission system. On one side, effective and reliable local dc voltage controllers need to be designed and the coordination control between converter stations should be researched, for ensuring dc system voltage control and power balance under all operation conditions. On the other one, only with the local dc voltage controller is difficult to guarantee the VSC-MTDC system safety and economy under various operation conditions, so the upper dispatching control based on remote communication needs to be explored.
     Based on the above, the key of this paper is fault control of two-terminal VSC-HVDC system, coordination control and steady-state analysis method of VSC-MTDC system. The specific research works are as follows:
     (1) A hysteresis loop control based mode switching control strategy VSC-HVDC transmission system.
     Mode switching control strategy under ac system fault of DC voltage control side is analyzed. A mode switching control based on hysteresis loop and local DC voltage detection is proposed and implementation of this method is given. Then, relationship between DC power and voltages of both sides under steady state is derived and a method for calculating DC voltage working range of active power control converter is given. Based on the above, a method for determining DC voltage thresholds and references in the mode switching control strategy is put forward. Finally, simulations are undertaken in PSCAD/EMTDC to verify the validity of the mode switching control strategy under various faults and operating state, and results show that this determination method can provide mode switching control strategy of VSC-HVDC system with a reliable and accurate reference.
     (2) An advanced active power control strategy based on additional signal for VSC-HVDC transmission system.
     Power characteristics of the advanced controller are given. The outer-loop active power controller is designed and calculation formula of active power correction is derived. Operating principle of the controller is analyzed while VSC-HVDC system operates in both normal and fault states. Simulation studies are undertaken in PSCAD/EMTDC to verify that the proposed control strategy can guarantee DC voltage within safe range when AC voltage sags or the leading converter breaks down suddenly. Results show that the control strategy can improve system security and reliability.
     (3) Coordination control strategy of Four-terminal VSC-MTDC transmission system.
     Taking a typical four-terminal VSC-MTDC transmission system applied to wind power integration for example, dc power flow distribution is analyzed, dc flow calculation model is derived and active power control of assistant converter station with dc voltage-active power characteristic is proposed. A fault ride through method with damping circuit is given when master or assistant converter station outages. Simulations in PSCAD/EMTDC are conducted to verify the validity of coordination dc voltage control method under various operating state and MATLAB programming are undertaken to verify the accuracy of dc power flow model.
     (4) Coordination control strategy of Five-terminal VSC-MTDC transmission system.
     Using a typical five-terminal VSC-MTDC transmission system applied to wind power integration as an example, a coordination control strategy based on local controller among converter stations is proposed, improved control strategy for assistant and APC converter station are proposed respectively based on dc voltage-active power characteristic, and working modes of the two converter stations are analyzed. The parameter selection method of assistant and APC converter station is presented via dc power flow distribution and maximum/minimum operation mode. Simulations in PSCAD/EMTDC are conducted to validate the coordination dc voltage control method under normal, master converter station fault and assistant converter station fault conditions respectively.
     (5) DC operation characteristic analysis and steady-state point calculation of VSC-MTDC transmission system.
     VSC-MTDC transmission system is of various operating mode in practice: because of different converter numbers, converter control mode and orders. As the change of power grid operation conditions, control mode of VSC-MTDC transmission system is changed accordingly. Thus, operation center in VSC-MTDC system needs determine converter station control modes and state variables quickly based on converter operating characteristic, power grid conditions and system parameters, which is of great significance to fast dispatching and operation security. This paper analyses dc voltage-current characteristic of the master converter, assistant converter, active-power-control converter and wind-farm-side converter, while characteristic equations of all converters in all control modes are derived and electric-parameter range under different control mode is given. Steady-state-point calculation method is proposed and the correction method of converter station control mode is completed. Taking a typical fiver-terminal dc transmission system for example, MATLAB programming is conducted to verify the validity of dc characteristic analysis and steady-state-point calculation method. Results show that the proposed method can get the steady state operation point quickly and accurately.
     (6) An N-1principle based steady-state control scheme of VSC-MTDC transmission system.
     The requirements for maintaining VSC-MTDC transmission system safe and stable are analyzed. An N-1principle based control strategy is proposed for guaranteeing steady-state safe. Basing on continuous dc power flow calculation method and considering dc voltage limit and real power limit, control strategy is designed in detail which copes with one-converter-lost fault. A method of optimizing real power references is illustrated when there is no solution in the steady-state control strategy. An evaluation index is defined for searching the best real power references after optimization. Finally, a typical five-terminal dc system is introduced to verify feasibility and accuracy of the proposed strategy using MATLAB programming. Results show that this method can provide VSC-MTDC transmission system with reliable and safe references. The proposed steady-state control scheme can keep dc voltage safe, balance dc power and realize optimization of system operation mode under normal and N-1fault conditions, which will supply a reliable reference for dc system operation and dispatching.
引文
[1]汤广福.基于电压源换流器的高压直流输电技术[M].北京:中国电力出版社,2009.
    [2]ABB. Technical description of HVDC Light technology-It's time to connect.
    [3]FLOURENTZOU N, AGELIDIS V G, DEMETRIADES G D. VSC-based HVDC power transmission systems:an overview[J]. IEEE Transaction on Power Electronics,2009,24(3):592-602.
    [4]李庚银,吕鹏飞,李广凯等.轻型高压直流输电技术的发展与展望[J].电力系统自动化,2003,27(4):77-81.
    [5]文俊,张一工,韩民晓等.轻型直流输电——一种新一代的HVDC技术[J].电网技术,2003,27(1):47-51.
    [6]胡兆庆,毛承雄,陆继明等.一种新型的直流输电技术——HVDC Light[J].电工技术学报,2005,20(7):12-16.
    [7]徐政,陈海荣.电压源换流器型直流输电技术综述[J].高电压技术,2007,33(1):1-10.
    [8]BAHRMAN M P, JOHNSON B K. The ABCs of HVDC transmission technologies:an overview of high voltage direct current systems and applications[J]. IEEE Power&energy Magazine,2007, march/april:32-44.
    [9]徐政,屠卿瑞,裘鹏.从2010国际大电网会议看直流输电技术的发展方向[J].高电压技术,2010,36(12):3070-3077.
    [10]汤广福,贺之渊,庞辉.柔性直流输电工程技术研究、应用及发展[J].电力系统自动化,2013,37(15):3-14.
    [11]胡兆庆,毛承雄,陆继明.新型多端高压直流传输系统应用及其控制[J].高电压技术,2004,30(11):31-33.
    [12]陈海荣,徐政,张静.一种基于电压源型多端直流输电的供电系统[J].高电压技术,2006,32(9):1-5.
    [13]袁旭峰,程时杰.多端直流输电技术及其发展[J].电力系统保护与控制,2006,34(19):61-70.
    [14]张文亮,汤涌,曾南超.多端高压直流输电技术及应用前景[J].电网技术, 2010,34(9):1-6.
    [15]汤广福,罗湘,魏晓光.多端直流输电与直流电网技术[J].中国电机工程学报,2013,33(10):8-17.
    [16]温家良,吴锐,彭畅等.直流电网在中国的应用前景分析[J].中国电机工程学报,2012,32(13):7-12.
    [17]周浩,沈杨,李敏等.舟山多端柔性直流输电工程换流站绝缘配合[J].电网技术,2013,37(4):879-890.
    [18]LI S H, HASKEW T A, XU L. Control of HVDC Light system using conventional and direct current vector control approaches [J]. IEEE Transactions on Power Electronics,2010,25(12):3106-3118.
    [19]尹明.基于VSC-HVDC的风电场联网技术研究[博士学位论文].北京:华北电力大学,2007.
    [20]李广凯.VSC-HVDC系统及其在电网恢复中的应用研究[博士学位论文].北京:华北电力大学,2007.
    [21]殷自力,李庚银,李广凯等.柔性直流输电系统运行机理分析及主回路相关参数设计[J].电网技术,2007,31(21):16-26.
    [22]张静.VSC-HVDC控制策略研究[博士学位论文].杭州:浙江大学,2009.
    [23]梁海峰.柔性直流输电系统控制策略研究及其实验系统的实现[博士学位论文].北京:华北电力大学,2009.
    [24]梁海峰,李庚银,王松等.VSC-HVDC系统控制体系框架[J].电工技术学报,2009,24(5):141-147.
    [25]董云龙,包海龙,田杰等.柔性直流输电控制及保护系统[J].电力系统自动化,2011,35(19):89-92.
    [26]汤广福.高压直流输电装备核心技术研发及工程化[J].电网技术,2012,36(1):1-6.
    [27]胡静,赵成勇,赵国亮等.换流站通用集成控制保护平台体系结构[J].中国电机工程学报,2012,32(22):133-140.
    [28]梁少华,田杰,曹冬明等.柔性直流输电系统控制保护方案[J].电力系统自动化,2013,37(15):59-65.
    [29]HERTEM D V, GHANDHARI M. Multi-terminal VSC HVDC for the European supergrid:Obstacles[J]. Renewable and Sustainable Energy Reviews,2010,14(9):3156-3163.
    [30]胡静.基于MMC的多端直流输电系统控制方法研究[博士学位论文].北京:华北电力大学,2013.
    [31]郑超,滕松,宋新立等.百万千瓦级柔性直流接入大连电网后的系统特性分析[J].电力系统自动化,2013,37(15):15-26.
    [32]陈谦,唐国庆,胡铭.采用dq0坐标的VSC-HVDC稳态模型与控制器设计[J].电力系统自动化,2004,28(16):61-66.
    [33]胡兆庆.基于VSC的HVDC控制及其动态特性研究[博士学位论文].武汉:华中科技大学,2005.
    [34]尹明,李庚银,牛同义等.VSC-HVDC连续时间状态空间模型及其控制策略研究[J].中国电机工程学报,2005,25(18):34-39.
    [35]陈海荣,徐政.基于同步坐标变换的VSC-HVDC暂态模型及其控制器[J].电工技术学报,2007,22(2):121-126.
    [36]魏晓光,汤广福,郑健超.电压源高压直流输电离散模型及其控制策略[J].中国电机工程学报,2007,27(28):6-11.
    [37]魏晓光,汤广福.基于电压源换流器的高压直流输电系统离散化建模与仿真研究[J].电网技术,2006,30(20):34-39.
    [38]梁海峰,李庚银,周明等.电压源换流器高压直流输电的动态等效电路及其特性分析[J].中国电机工程学报,2010,30(13):53-60.
    [39]李爽,王志新,王国强.基于改进粒子群算法的PIDNN控制器在VSC-HVDC中的应用[J].中国电机工程学报,2013,33(3):14-21.
    [40]何大清,蔡旭.柔性直流输电的动态电流限幅控制[J].电网技术,2012,36(1):135-139.
    [41]何大清,蔡旭.基于平坦系统的VSC-HVDC控制[J].电工技术学报,2012,27(12):233-239.
    [42]郑连清,池俊锋.新型VSC-HVDC控制器设计[J].电网技术,2012,36(3):210-216.
    [43]FLOURENTZOU N, AGELIDIS V G. Optimized modulation for AC-DC harmonic immunity in VSC HVDC transmission[J]. IEEE Transaction on Power Delivery,2010,25(3):1713-1720.
    [44]MOHARANA A, DASH P K. Input-output linearization and robust sliding-mode controller for the VSC-HVDC transmission link[J]. IEEE Transaction on Power Delivery,2010,25(3):1952-1961.
    [45]LEON A E, MAURICIO J M, SOLSONA J A, et al. Adaptive control strategy for VSC-based systems under unbalanced network conditions[J]. IEEE Transaction on Smart Grid,2010,1(3):311-319.
    [46]XU L, ANDERSEN B R, CARTWRIGHT P. VSC transmission operating under unbalanced AC conditions-analysis and control design[J]. IEEE Transaction on Power Delivery,2005,20(1):427-434.
    [47]XU L, AGELIDIS V G. VSC transmission system using flying capacitor multilevel converters and hybrid PWM control [J]. IEEE Transaction on Power Delivery,2007,22(1):693-702.
    [48]张桂斌.新型直流输电及其相关技术研究[博士学位论文].杭州:浙江大学,2001.
    [49]AL-HADIDI H K, GOLE A M, JACOBSON D A. A novel configuration for a cascade inverter-based dynamic voltage restorer with reduced energy storage requirements [J]. IEEE Transaction on Power Delivery,2008,23(2):881-888.
    [50]AL-HADIDI H K, GOLE A M, JACOBSON D A. Minimum power operation of cascade inverter-based dynamic voltage restorer[J]. IEEE Transaction on Power Delivery,2008,23(2):889-898.
    [51]HAGIWARA M, AKAGI H. Control and experiment of pulsewidth-modulated modular multilevel converters [J]. IEEE Transaction on Power Electronics, 2009,24(7):1737-1746.
    [52]GNANARATHNA U N, GOLE M A, JAYASINGHE R P. Efficient modeling of modular multilevel HVDC converters(MMC) on electromagnetic transient simulation programs[J]. IEEE Transaction on Power Delivery,2011,26(1): 316-324.
    [53]朱晋,韦统振,霍群海.一种新型全桥变桥臂型VSC-HVDC变流拓扑[J].中国电机工程学报,2013,33(3):52-61.
    [54]吴亚楠,吕天光,汤广福等.模块化多电平VSC-HVDC换流阀的运行试验方法[J].中国电机工程学报,2012,32(30):8-15.
    [55]孔明,邱宇峰,贺之渊等.模块化多电平式柔性直流输电换流器的预充电控制策略[J].电网技术,2011,35(11):67-73.
    [56]赵成勇,陈晓芳,曹春刚等.模块化多电平换流器HVDC直流侧故障控制保护策略[J].电力系统自动化,2011,35(23):82-87.
    [57]李强,贺之渊,汤广福等.新型模块化多电平换流器空间矢量脉宽调制方法[J].电力系统自动化,2010,34(22):75-79.
    [58]丁冠军,汤广福,丁明等.新型多电平电压源换流器模块的拓扑机制与调制策略[J].中国电机工程学报,2009,29(36):1-8.
    [59]丁冠军,丁明,汤广福等.新型多电平VSC子模块电容参数与均压策略[J].中国电机工程学报,2009,29(36):1-8.
    [60]屠卿瑞,徐政,管敏渊等.模块化多电平换流器换流抑制控制器设计[J].电力系统自动化,2010,34(18):57-62.
    [61]管敏渊,徐政,屠卿瑞等.模块化多电平换流器型直流输电的调制策略[J].电力系统自动化,2010,34(2):48-52.
    [62]管敏渊,徐政,潘伟勇等.模块化多电平换流器型直流输电的建模与控制[J].电力系统自动化,2010,34(19):64-68.
    [63]赵成勇,孙营,李广凯.双馈入直流输电系统中VSC-HVDC的控制策略[J].中国电机工程学报,2008,28(7):97-103.
    [64]袁旭峰,程时杰,文劲宇.基于CSC和VSC的混合多端直流输电系统及其仿真[J].电力系统自动化,2006,30(20):32-36.
    [65]袁旭峰.新型混合多端直流输电系统理论及其若干关键问题研究[博士学位论文].武汉:华中科技大学,2007.
    [66]GUO C Y, ZHAO C Y. Supply of an entirely passive ac network through a double-infeed HVDC system[J]. IEEE Transactions on Power Electronics, 2010,24(11):2835-2841.
    [67]CHEN X, SUN HS, LEE W J, et al. Interating wind farm to the grid using hybrid multiterminal HVDC technology[J]. IEEE Transactions on Industry Applications,2011,47(2):965-972.
    [68]常勇,徐政,郑玉平.大型风电场接入系统方式的仿真比较[J].电力系统自动化,2007,31(14):70-75.
    [69]杨思祥,李国杰,阮思烨等.应用于DFIG风电场的VSC-HVDC控制策略[J].电力系统自动化,2007,31(19):64-67.
    [70]李国杰,阮思烨.应用于并网风电场的有源型电压源直流输电系统控制策略[J].电网技术,2009,33(1):52-55.
    [71]赵成勇,胡东良,李广凯等.多端VSC-HVDC用于风电场联网时的控制策略[J].电网技术,2009,33(17):135-140.
    [72]朱晓东,周克亮,程明等.大规模近海风电场VSC-HVDC并网拓扑及其控制[J].电网技术,2009,33(18):17-24.
    [73]LU W X, Ooi B T. Optimal acquisition and aggregation of offshore wind power by multiterminal voltage-source HVDC[J]. IEEE Transaction on Power Delivery,2003,18(1):201-206.
    [74]KOUTIVA X I, VRIONIS T D, VOVOS N A, et al. Optimal integration of an offshore wind farm to a weak ac grid[J]. IEEE Transaction on Power Delivery,2006,21(2):987-994.
    [75]MEYER C, HOING M, PETERSON A, et al. Control and design of DC grids for offshore wind farms[J]. IET Generation, Transmission & Distribution, 2007,43(6):1475-1482.
    [76]ROBINSON J, JOVCIC D, JOOS G. Analysis and design of an offshore wind farm using a MV DC grid[J]. IEEE Transaction on Power Delivery,2010, 25(4):2164-2173.
    [77]ORIOL G B, LIANG J, EKANAYAKE J, et al. Topologies of multiterminal HVDC-VSC transmission for large offshore wind farms[J]. Electric Power Systems Research,2011,81:271-281.
    [78]陈霞.基于多端直流输电的风电并网技术研究[博士学位论文].武汉:华中科技大学,2012.
    [79]李爽,王志新,王国强等.三电平海上风电柔性直流输电变流器的PID神经网络滑模控制[J].中国电机工程学报,2012,32(4):20-28.
    [80]赵伟然,李光辉,何国庆等.光伏电站经VSC-HVDC并网拓扑及其控制 策略[J].电网技术,2012,36(11):41-45.
    [81]DU C Q. VSC-HVDC for industrial power systems[博士学位论文].Sweden: Chalmers University of Technology,2007.
    [82]DU C Q, BOLLEN H J, AGNEHOLM E, et al. Anew control strategy of a VSC-HVDC system for high-quality supply of industrial plants[J]. IEEE Transaction on Power Delivery,2007,22(4):2386-2394.
    [83]DU C Q, AGNEHOLM E, OLSSON G. Use of VSC-HVDC for industrial systems having onsite generation with frequency control [J]. IEEE Transaction on Power Delivery,2008,23(4):2233-2240.
    [84]DU C Q, AGNEHOLM E, OLSSON G. VSC-HVDC system for industrial plants with onsite generators[J]. IEEE Transaction on Power Delivery,2009, 24(3):1359-1366.
    [85]李胜.柔性直流技术在城市电网中应用研究[博士学位论文].北京:华北电力大学,2009.
    [86]梁海峰,李庚银,李广凯等.向无源网络供电的VSC-HVDC系统仿真研究[J].电网技术,2005,29(8):45-50.
    [87]陈海荣,徐政.向无源网络供电的VSC-HVDC系统的控制器设计[J].中国电机工程学报,2006,26(23):42-48.
    [88]邹超,王奔,李泰.向无源网络供电的VSC-HVDC系统控制策略[J].电网技术,2009,33(2):84-110.
    [89]GUO C Y, ZHAO C Y. Supply of an Entirely Passive AC Network through a Double-Infeed HVDC System[J]. IEEE Transaction on Power Electronics, 2010,24(11):2835-2841.
    [90]ZHANG L D, HARNEFORS L, NEE H P. Interconnection of Two Very Weak AC Systems by VSC-HVDC Links Using Power-Synchronization Control[J]. IEEE Transaction on Power Systems,2011,26(1):344-355.
    [91]ZHANG L D, HARNEFORS L, NEE H P. Modeling and Control of VSC-HVDC Links Connected to Island Systems[J]. IEEE Transaction on Power Systems,2011,26(2):783-793.
    [92]马锋,李国杰,阮思烨等.基于线性变参数方法的VSC-HVDC变增益附 加阻尼控制器设计[J].电网技术,2009,33(2):73-77.
    [93]PRABHU N, PADIYAR K R. Investigation of subsynchronous resonance with VSC-based HVDC transmission systems[J]. IEEE Transaction on Power Delivery,2009,24(1):433-440.
    [94]ZHANG L D, HARNEFORS L, NEE H P. Power-Synchronization Control of Grid-Connected Voltage-Source Converters[J]. IEEE Transaction on Power Systems,2010,25(2):809-820.
    [95]郑超,周孝信.基于普罗尼辨识的VSC_HVDC附加阻尼控制器设计[J].电网技术,2006,30(17):25-30.
    [96]宋瑞华,周孝信.基于LMI方法的VSC-HVDC多重模型阻尼控制器设计[J].电力系统自动化,2007,31(18):16-20.
    [97]宋瑞华,周孝信.基于电压源换流器的高压直流输电系统的阻尼特性与阻尼控制[J].电网技术,2008,32(5):17-21.
    [98]陈蔓,陆继明,毛承雄等.一种利用VSC_HVDC提高发电机阻尼的新控制策略[J].电网技术,2006,30(9):62-67.
    [99]李国杰,马锋.PSS与VSC-HVDC附加阻尼控制器参数协调优化设计[J].电网技术,2009,33(11):39-43.
    [100]阮思烨,孙元章,李国杰.用电压源型高压直流输电解决高压电网中工业系统引起的电能质量问题[J].电网技术,2007,31(19):13-17.
    [101]魏晓光,汤广福,魏晓云等.VSC-HVDC控制器抑制风电场电压波动的研究[J].电工技术学报,2007,22(4):150-156.
    [102]邱大强,李群湛,南晓强.电网不对称故障下VSC-HVDC系统的直接功率控制[J].高电压技术,2012,38(4):1012-1018.
    [103]周国梁,石新春,魏晓光等.电压源换流器高压直流输电不平衡控制策略研究[J].中国电机工程学报,2008,28(22):137-143.
    [104]皇甫成,贺之渊,汤广福等.交流电网不平衡情况下电压源换相直流输电系统的控制策略[J].中国电机工程学报,2008,28(22):144-151.
    [105]VRIONIS T D, KOUTIVA X I, VOVOS N A, et al. Control of an HVdc link connecting a wind farm to the grid for fault ride-though enhancement[J]. IEEE Transaction on Power Systems,2007,22(4):2039-2047.
    [106]XU L, ANDERSEN B R. Grid connection of large offshore wind farms using HVDC[J]. Wind Energy,2006,9:371-382.
    [107]XU L, YAO L Z, SASSE C. Grid integration of large DFIG-based wind farms using VSC transmission[J]. IEEE Transaction on Power Systems,2007,22(3): 976-984.
    [108]FELTES C, WREDE H, KOCH F W, et al. Enhanced fault ride-through method for wind farms connected to the grid through VSC-based HVDC transmission[J]. IEEE Transaction on Power Systems,2009,24(3): 1537-1546.
    [109]赵静,赵成勇,孙一莹.模块化多电平直流输电联网风电场时的低电压穿越技术[J].电网技术,2013,37(3):726-732.
    [110]张静,徐政,潘武略.VSC-HVDC系统新型广义直流电压控制策略[J].电力系统自动化,2008,32(21):46-50.
    [111]张静,徐政,王峰.包含VDCCOL的VSC-HVDC改进控制策略[J].电力系统自动化,2008,32(22):41-46.
    [112]陈海荣.交流系统故障时VSC-HVDC系统的控制与保护策略研究[博士学位论文].杭州:浙江大学,2007.
    [113]周国梁.基于电压源换流器的高压直流输电系统控制策略研究[博士学位论文].北京:华北电力大学,2009.
    [114]孙晓云,同向前,尹军.电压源换流器高压直流输电系统中换流器故障仿真分析及其诊断[J].高电压技术,2012,38(6):1383-1390.
    [115]杨杰,郑健超,汤广福等.电压源换相HVDC站内交流母线故障特性及保护配合[J].中国电机工程学报,2009,29(36):1-8.
    [116]YANG J, FLETCHER J E, REILLY J O. Multiterminal DC wind farm collection grid internal fault analysis and protection design[J]. IEEE Transaction on Power Delivery,2010,25(4):2308-2318.
    [117]YANG J. Fault analysis and protection for wind power generation systems[博士学位论文].Glasgow:Glasgow University,2011.
    [118]BARAN M E, MAHAJAN N R. Overcurrent protection on voltage-source-converter based multiterminal DC distribution systems[J]. IEEE Transaction on Power Delivery,2007,22(1):406-412.
    [119]KERF K D, SRIVASTAVA, REZA M. Wavelet-based protection strategy for DC faults in multi-terminal VSC HVDC systems[J]. IET Generation, Transmission & Distribution,2010,5(4):496-503.
    [120]宋国兵,李德坤,褚旭等.基于参数识别原理的VSC-HVDC输电线路单端故障定位[J].电网技术,2012,36(12):94-99.
    [121]TANG L X, Ooi B T. Locating and isolating DC faults in multi-terminal DC systems[J]. IEEE Transaction on Power Delivery,2007,22(3):1877-1884.
    [122]NAKAJIMA T, IROKAWA S. A control system for HVDC transmission by voltage sourced converters[J]. Power Engineering Society Summer Meeting, 1999,2:1113-1119.
    [123]LU W X, OOI B T. DC overvoltage control during loss of converter in multiterminal voltage-source converter-based HVDC (M-VSC-HVDC) [J]. IEEE Transaction on Power Delivery,2003,18(3):915-920.
    [124]陈海荣,徐政.适用于VSC-MTDC系统的直流电压控制策略[J].电力系统自动化,2006,30(19):28-33.
    [125]吴俊宏,艾芊.多端柔性直流输电系统在风电场中的应用[J].电网技术,2009,33(4):22-27.
    [126]陈谦,唐国庆.采用多点直流电压控制方式的VSC多端直流输电系统[J].电力系统自动化,2004,24(5):10-14.
    [127]DIERCKXSENS C, SRIVASTAVA K, REZA M, et al. A distributed DC voltage control method for VSC MTDC system[J]. Electric Power Systems Research,2012,82(1):54-58.
    [128]唐庚,徐政,刘异等.适用于多端柔性直流输电系统的新型直流电压控制策略[J].电力系统自动化,2013,37(15):125-132.
    [129]孙文博,徐华利,付媛等.应用于大型风电基地功率外送的多端直流输电系统协调控制[J].电网技术,2013,37(6):1596-1601.
    [130]阮思烨,李国杰,孙元章.多端电压源型直流输电系统的控制策略[J].电力系统自动化,2009,33(12):57-60,96.
    [131]丁涛,张承学,孙元博.基于本地信号的VSC-MTDC输电系统控制策略 [J].电力系统自动化,2010,34(9):44-48.
    [132]XU L, YAO L. DC voltage control and power dispatch of a multi-terminal HVDC system for integrating larger offshore wind farms [J]. IET Renewable Power Generation,2011,5(3):223-233.
    [133]JOVCIC D, STRACHAN N. Offshore wind farm with centralised power conversion and DC interconnection[J]. IET Generation, Transmission & Distribution,2009,3(6):586-595.
    [134]郑超,周孝信,李若梅等.VSC-HVDC稳态特性与潮流算法的研究[J].中国电机工程学报,2005,25(6):1-5.
    [135]季聪,卫志农,汤涌等.基于自动微分技术的VSC-HVDC内点法最优潮流[J].电网技术,2012,36(10):184-189.
    [136]卫志农,季聪,孙国强等.含VSC-HVDC的交直流系统内点法最优潮流计算[J].中国电机工程学报,2012,32(19):89-95.
    [137]陈谦,唐国庆,王浔.多端VSC-HVDC系统交直流潮流计算[J].电力自动化设备,2005,25(6):1-6.
    [138]ZHANG X P. Multiterminal volatge-source converter-based HVDC models for power flow analysis[J]. IEEE Transactions on Power Systems,2004, 19(4):1877-1884.
    [139]BEERTEN J, COLE S, BELMANS R. Generalized steady-state VSC MTDC model for sequential AC/DC power flow algorithms [J]. IEEE Transactions on Power Systems,2012,27(2):821-829.
    [140]孙国强,李育燕,卫志农等.含VSC-HVDC的交直流混合系统状态估计[J].电力自动化设备,2010,30(9):6-12.
    [141]DING Q F, CHUNG T S, ZHANG B M. An improved sequential method for AC/MTDC power system state estimation[J]. IEEE. Transactions on Power Systems,2001,16(3):506-512.
    [142]COLE S, BEERTEN J, BELMANS R. Generalized dynamic VSC MTDC model for power system stability studies [J]. IEEE Transaction on Power Systems,2010,25(3):1655-1662.
    [143]ARAUJO E P, BIANCHI F D, FERRE A J. Methodology for droop control dynamic analysis of multiterminal VSC-HVDC grids for offshore wind farms[J]. IEEE Transaction on Power Delivery,2010,26(4):2476-2485.
    [144]COLE S, BELMANS R. A proposal for standard VSC HVDC dynamic models in power system stability studies[J]. Electric Power Systems Research,2011, 81:967-973.
    [145]ZHANG L D, NEE H P, HARNEFORS L. Analysis of Stability Limitations of a VSC-HVDC Link Using Power-Synchronization Control[J]. IEEE Transaction on Power Systems,2011,26(3):1326-1337.
    [146]KARAWITA C, ANNAKKAGE U D. Multi-Infeed HVDC Interaction Studies Using Small-Signal Stability Assessment[J]. IEEE Transaction on Power Delivery,2009,24(2):910-918.
    [147]CHAUDHURI N R, MAJUMDER R, CHAUDHURI B, et al. Stability analysis of VSC MTDC grids connected to multimachine AC systems[J]. IEEE Transaction on Power Delivery,2011,26(4):2774-2784.
    [148]ORIOL G B, LIANG J, EKANAYAKE J, et al. Voltage-current characteristics of multiterminal HVDC-VSC for offshore wind farms[J]. Eletric Power Systems Research,2011,81(2):440-450.
    [149]陈谦.新型多端直流输电系统的运行与控制[博士学位论文].南京:东南大学,2005.
    [150]吴俊宏,艾芊,章健等.基于多代理技术的VSC-MTDC控制系统[J].电力系统自动化,2009,33(19):85-89.
    [151]MONICA A P, AGUSTI E A, Oriol G B, et al. Optimum voltage control for loss minimization in HVDC multi-terminal transmission systems for large offshore wind farms [J]. Electric Power Systems Research,2012,89:54-63.
    [152]CAO J, DU W J, WANG H F, et al. Minimization of transmission loss in meshed AC/DC grids thie VSC-MTDC networks[J]. IEEE Transaction on Power Systems,2013,28(3):3047-3055.
    [153]LU W X. Control and application of multi-terminal HVDC based on voltage-source converter[博士学位论文].Montreal, Canada: McGill University,2003.
    [154]LU W X,OO1 B T. DC voltage limit compliance in voltage-source converter based multi-terminal HVDC[C]. IEEE Power Engineering Society General Meeting, June 12-16,2005, USA.
    [155]GB/T 19963-2011,中华人民共和国国家质量监督检验检疫总局.风电场接入电力系统技术规定[S].2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700