用户名: 密码: 验证码:
基于多孔Al_2O_3的太阳光吸收/转化涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统化石能源使用导致的环境污染、全球变暖等问题已是全球环境工程中重中之重的首要问题。穷目前实际,罄所有可预见的替代能源中,即环保又可持续的太阳能已是唯一的选择。但目前当红的太阳能技术中,光伏电池、燃料敏化电池或因次生污染、能耗低,或因效率低等问题均难敷大用。因此更科学有效的利用太阳能并期望其从根本上替代化石能源已是人类生存与发展的不二选择。本课题-太阳能吸收转化涂层的研究因此而生,希望通过光热转化达到对太阳能的充分利用,提供人类所需的各种形式可直接利用的能量。光热系统中将太阳光转化为热能的吸收涂层是整个系统的核心部分。吸收涂层在高温环境下要求保持高的吸收率和低的热辐射损耗,一些在低温环境下表现良好的涂层在高温下由于热稳定性差,材料结构发生变化,致使吸收率下降。多孔氧化铝模板在构建复合纳米结构方面具有广泛的应用,由于其结构稳定,纳米孔尺寸可控,尤其氧化铝本身的低介电常数和对入射光弱反射性,是构建吸收涂层的良好模板。本文在研究多孔氧化铝膜结构特点和制备技术的基础上,探索了基于氧化铝膜的结构稳定的复合吸收涂层的制备。
     首先,考察铝片的前处理,电解液的种类,浓度,阳极电压及温度等因素对成孔效果的影响,利用两步阳极氧化法,常温范围内(15℃~ 25℃),在高纯铝上制备出孔径40 nm ~ 300 nm,厚度从几百纳米到几十微米的有序多孔氧化铝。在此基础上,探索了工业纯铝上制备有序多孔氧化铝膜的工艺参数,结合两步腐蚀方法,制备出有序性高,孔径40 ~ 100 nm,厚度几百纳米至几微米的氧化铝膜。
     接着,研究不同孔径、厚度的氧化铝膜的光学特征以及填充了金属颗粒构成的吸收涂层其光学吸收性,总结出适合用在构建选择性吸收涂层的薄膜特征。以氧化铝为模板,通过交流电沉积,制备出Cu-Al_2O_3,Ni-Al_2O_3,Cu-Mo-Al_2O_3,Ni-MoO_x-Al_2O_3复合吸收涂层。具有最好的吸收效率的涂层是Cu-Al_2O_3系列薄膜,吸收比α最高可达0.972,发射比ε= 0.105。Ni-Al_2O_3涂层具有最好的热稳定性,其涂层在300℃空气气氛中退火100小时反射曲线基本不变,吸收比α达0.928,发射比小于0.1,其吸收效率也达到目前商业应用的水平。合金氧化铝涂层在吸收比和热稳定方面的表现不如前两种涂层。
     同时,在多孔氧化铝模板中利用电化学方法原位沉积尖晶石CuAl_2O_4/Cu复合物纳米棒,利用SEM,TEM,XPS,EDS,DRS等检测手段分别对复合物的形貌,组成,结构作了分析。CuAl_2O_4/Cu复合物纳米棒的长度为600 ~ 700纳米,直径40 ~50纳米, CuAl_2O_4晶型为立方尖晶石结构,金属Cu粒子为多晶。由CuAl_2O_4/Cu/Al_2O_3构成的涂层表现出良好的太阳光选择性吸收,吸收比/发射比为0.92/0.06(T = 100℃),涂层在200℃下由于失去结合水造成结构发生变化,吸收比下降,但此后在300℃下保持不变。由于CuAl_2O_4/Cu复合物特殊的化学结构,对其在可见光驱动下的催化氧化作用也进行了研究,实验表明纳米棒阵列在可见光下具有良好的光催化性,3小时内降解目标污染物甲基橙60%以上。该复合结构是集光热/光催化为一体的多效吸收涂层。
     以多孔氧化铝为模板,利用电沉积手段在孔洞中“栽入”金属及金属-半导体复合物,植入纳米棒的尺寸更易控制,可利用其小尺寸效应达到光热、光催化效果,这种技术易于放大,也解决了催化剂的固定问题,对实际应用具有重要意义。
The use of fossil fuel lead to series of environmental problem such as acid rain, greenhouse effect etc, and depletion of this kind fuel itself raise question in front of the mankind development. Solar energy is without doubt the most extensive renewable energy in its class, and also is reseach on this field. Among different means of solar energy utilization, only photovoltaic and photothermal are performed in practice. Phtotovoltaic features high-cost and limited applicaition, while photothermal boost advantages of low-cost, easy scale-up, etc, especially solar thermal plant can provide electricity too. The receiver plays an important role in the solar thermal plant. Electricity generation demand the absorbing coating in the receiver performe in higher temperature, absorbs more and emmit less. Absorbing coating based on porous alumina features easy prepation and low energy consumption. Improvement of thermal stability and application of itself in constructing particular absorbing surface become two main development directions for this kind of absorber. Along this direction, focus is given on improving the absorber thermal stability based on a clear aware of the propety of porous alumina in this paper.
     In this paper, a necessary effort is given to analyze the influence of different parameters on the formation effect of AAO, including the pre-treatment of aluminum, electrolytes, concentration, applied potential, reaction temperature, etc. Optimization is done to the synthesis procedure in different electrolytes, and AAO of 40 nm ~ 300 nm diameters, hundreds of nanometer to micrometers length is successfully manufactured on the high-purity aluminum at room temperature. Then, we try the effort to use commercial aluminum to produce AAO template. Through two-step anodic process, AAO film of 40 ~ 100 nm diameter, hundreds of nanometer to several micrometers length has been available.
     Following, optical charactaristic of AAO film with different diameter and depth as well as metal pigmented ones were studied; proper AAO film was selected for construction of selective absorber. Cu-Al_2O_3, Ni-Al_2O_3, Cu-Mo-Al2O, Ni - MoO_x - Al_2O_3 was prepared through AC deposition in the AAO template. The best convertion efficiency was abtained on the Cu-Al_2O_3 film, with absorptionα= 0.972,ε= 0.105. Ni-Al_2O_3 film boasted the best thermal stability, optical properties was not changed after 100 h annealling at 300℃in air, the absorptionαreached 0.928,ε< 0.10, which is applicable for the practical use. Metal alloy pigmented alumina was less effective both in optical efficiency and thermal stability compared with the former ones, resonable explanation was proposed.
     A new selective solar absorber coating of Cu–CuAl_2O_4 hybrids deposited in anodic aluminum oxide (AAO) on aluminum substrate has been prepared through an electrochemical process. The structure, composit and morphology was investigated by SEM, TEM, XPS, EDS, DRS, the CuAl_2O_4 belongs to spinel class, while Cu is crystallines. The filled Cu–CuAl_2O_4 hybrids was 600 ~ 700 nm length, 40 ~ 50 nm diameter, of which an overall optical performance of absorptance (α= 0.923) and emittance (ε= 0.06) was achieved. The stability of the absorber was tested at high temperature and condensation at high humidity. While a decreased after annealing at 200 for 24h,εwas slightly in?uenced; the absorber showed high selectivity (α/ε) of 0.87/0.04. Even after exposing to 300℃for 48h, the optical property did not change. XRD analysis showed that crystalline structure of the hybrids did not change after annealing treatment; probable reasons for the optical degradation are presented.
     Using electro-deposition technique to implement metal and metal-semiconductor composite into porous anodic alumina realize the easy control of nanorods size, which can favor the photo-thermal, photocatalytic effect of nano-size materials. It’s more convenient for this technique to scale-up and to solve the immolization problem of catalyst, which contribute to the practical application of the nano materials.
引文
1. Inguanta, R.; Livreri, P.; Piazza, S.; Sunseri, C., Fabrication and Photoelectrochemical Behavior of Ordered CIGS Nanowire Arrays for Application in Solar Cells. Electrochemical and Solid State Letters 2010, 13, K22-K25.
    2. Gupta, N.; Alapatt, G. F.; Podila, R.; Singh, R.; Poole, K. F., Prospects of Nanostructure-Based Solar Cells for Manufacturing Future Generations of Photovoltaic Modules. International Journal of Photoenergy 2009, 7, 223-225.
    3. Kislyuk, V. V.; Dimitriev, O. P., Nanorods and nanotubes for solar cells. J. Nanosci. Nanotechnol. 2008, 8, 131-148.
    4. Tripathi, M.; Pandey, K.; Kumar, S. D., Surface modification of semiconductor photoelectrode for improved solar cell performance. solar energy materials and solar cells 2007, 91, 1663-1668.
    5. Lin, S. Y.; Moreno, J.; Fleming, J. G., Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Applied Physics Letters 2003, 83, 380-382.
    6. Harder, N. P.; Wurfel, P., Theoretical limits of thermophotovoltaic solar energy conversion. Semiconductor Science and Technology 2003, 18, S151-S157.
    7. Bi, H.; LaPierre, R. R., A GaAs nanowire/P3HT hybrid photovoltaic device. Nanotechnology 2009, 20, 44-49.
    8. Tiwari, A. N.; Rudmann, D.; Bremaud, D.; da Cunha, A. F.; Bilger, G.; Strohm, A.; Kaelin, M.; Zogg, H., Sodium incorporation strategies for CIGS growth at different temperatures. Thin Solid Films 2005, 480-481, 55-60.
    9. Price, H., Field survey of parabolic trough receiver thermal performance. Proceeding of ISEC 2006, 52-59.
    10. Mills, D., Advances in solar thermal electricity technology. Solar Energy 2004, 76, 19-31.
    11. H.Price, D. K., Reducing the cost of energy from parabolic trough solar power plants. Proceeding of ISEC 2003, 198-200.
    12. Price, H.; Lupfert, E.; Kearney, D.; Zarza, E.; Cohen, G.; Gee, R.; Mahoney, R., Advances in parabolic trough solar power technology. Journal of Solar Energy Engineering-Transactions of theAsme 2002, 124, 109-125.
    13. Kennedy, C. E.; Swisher, R. L., Cost analysis of solar reflective hard-coat materials deposited by ion-beam-assisted deposition. Transactions of the ASME. Journal of Solar Energy Engineering 2005, 127, 270-276.
    14. Timothy J Coutts, G. G., An overview of the fifth conference on thermophotovoltaic generation of electricity. Semicondutor science and technology 2003, 18, 7-11
    15. O. P. Agnihotri , B. K. G., Solar Selective surface. Solar Selective Surfaces 1981, 215-210.
    16. Seraphin, B. O., Chemical vapor-deposition of spectrally selective surfaces for high-temperature phtothermal conversion, Thin Solid Films 1979, 57, 293-297.
    17. Pellegrini, G., Experimental methods for the preparation of selectively absorbing textured surfaces for photothermal solar conversion. Solar Energy Materials 1980, 3, 391-404.
    18. Meinel, B. O. S. a. A. B., a solar collector modeling technique for grain drying applications. Optical Properties of Solids: New Developments 1976, 561-569.
    19. Randich, E.; Allred, D. D., Chemically vapor-deposited ZRB2 as a selective solar absorber. Thin Solid Films 1981, 83, 393-398.
    20. Randich, E.; Pettit, R. B., Solar selective properties and high-temperature stability of CVD ZRB2. Solar Energy Materials 1981, 5, 425-435.
    21. Seraphin, H. E. a. B. O., Photothermal solar energy conversion and the optical properties of solids.Symposium on the fundamental Optical Properties of Solids Relevant to Solar Energy Conversion 1975.
    22. Y. S. Touloukian, D. P. D. e. a., Thermophysical Properties of Matter 1972, 9.
    23. Pettit, R. B.; Brinker, C. J.; Ashley, C. S., Sol-gel double-layer antirefflection coatings for silicon solar-cells. Solar Cells 1985, 15 267-278.
    24. Perveev, A. F.; Frolova, N. P., Antireflecting coatings on light-absorbing materials for the 0.4-5 mu m spectral region. Soviet Journal of Optical Technology|Soviet Journal of Optical Technology|Optiko-Mekhanicheskaya Promyshlennost 1974, 41, (8|vol.41), ISSN 0038-5514 | 0030-4042.
    25. Skogman, T. J. M. a. R. A., U.S. Patent No. 4,176,208 1979.
    26. Gupta, O. P. A. a. B. K., solar selective surfaces. Solar Selective Surfaces 1981.215-218
    27. Seraphin, B. O., Chemical vapor-deposition of spectrally selective surfaces forhigh-temperature photothermal conversion. Thin Solid Films 1979, 57, 293-297.
    28. Andersson, A.; Hunderi, O.; Granqvist, C. G., Nickel pigmented anodic aluminum-oxide for selective absorption of solar-energy. Journal of Applied Physics 1980, 51, 754-764.
    29. Wolf, M. B. a. E., photothermal conversion of solar oxide for selective absorption of solar energy. Principles of Optics 1980.
    30. R. N. Schmidt, K. C. P. e. a., Thin film coatings in solar-thermal power systems. High Temperature Solar Coatings 1964, Part 1.
    31. Shuxi Zhao, Ewa Wackelgard, New method to optimize a solar absorber graded film profile. Solar Energy 2005, 78, 125-130
    32. T. Bostroma, E. W., Optical properties of solution-chemically derived thin film Ni–Al2O3 composites and Si Al and Si–Ti oxides. Journal Physics:Condensened Matterial 2006, 18, 15-20.
    33. Enrique Barrera, T. V., Ascencion Montoya, Mireya Ruiz, Titanium-tin oxide protective films on a black cobalt photothermal absorber. Solar Energy Materials & Solar Cells 1999, 57, 127-140.
    34. M.Zavracky, J. C. C. F. a. P., Selective black absorbers using MgO/Au cermet films. Applied Physics Letters 1976, 29, 478-480.
    35. Shpeizer, B. G.; Bakhmutov, V. I.; Clearfield, A., Supermicroporous alumina-silica zinc oxides. Microporous and Mesoporous Materials 2006, 90, 81-86.
    36. Y. Yin, L. H., S. Zhang, X.L. Bui, Thermal oxidation properties of titanium nitride and titanium–aluminum nitride materials—A perspective for high temperature air-stable solar selective absorber applications. Thin Solid films 2007, 515, 186-190.
    37. Ulises Morales-Ortiz, A. A.-G., Ruthenium oxide films for selective coatings. Solar Energy materials & Solar Cells 2006, 90, 66-70.
    38. Dong-Wook Lee, S.-K. I., Kew-Ho Lee, Mesostructure Control Using a Titania-Coated Silica Nanosphere Framework with Extremely High Thermal Stability. Chemistry of Materials 2005, 17, 55-60.
    39. Antoni Gil, M. M., State of the art on high temperature thermal energy storage for power generation Part 1—Concepts materials and modellization. Renewable and Sustainable Energy Reviews 2010, 14, 25-29.
    40. Mouhib, T.; Mouhsen, A.; Oualim, E. M.; Harmouchi, M.; Vigneron, J. P.; Defrance, P., Stainless steel/tin/glass coating as spectrally selective material for passive radiative coolingapplications. Optical Materials 2009, 31, 673-677.
    41. M.Voinea, Surface properties of copper based cermet materials. materials science and engineering B 2008.
    42. Rincon, M. E.; Molina, J. D.; Sanchez, M.; Arancibia, C.; Garcia, E., Optical characterization of tandem absorber/reflector systems based on titanium oxide-carbon coatings. Solar Energy Materials and Solar Cells 2007, 91, 1421-1425.
    43. Yu. P. Sukhorukov, B. A. G., E. V. Mostovshchikova, Nanocrystalline Copper Oxide for Selective Solar Energy Absorbers. Technical Physics Letters 2006, 32, 221-225.
    44. M.Reza Nejati, V. F., M. Khalaji Asadi, Computer simulation of the optical properties of high-temperature cermet solar selective coatings. Solar Energy 2005, 78, 89-92.
    45. Lira-Cantu, M.; Sabio, A. M.; Brustenga, A.; Gomez-Romero, P., Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells. Solar Energy Materials and Solar Cells 2005, 87, 685-694.
    46. S.Music, synthesis and characterization of nanocrystalline RuO2 powders. Materrial Letters. 2004, 58, 198-201.
    47. Aravinda, XPS and XAES investigations of electrochemically deposited Cu-Ni solar selected black coatings on molybdenum substrate. Journal of materials science letters 2002, 19, 234-237.
    48. V. Teixeira, E. S., M.F. Costaa, C. Nunes, L. Rosa, M.J. Carvalho,, Spectrally selective composite coatings of Cr-Cr2O3 and Mo-Al2O3 for solar energy applications. Thin Solid films 2001, 19, 392-396.
    49. Maruyama, S.; Kashiwa, T.; Yugami, H.; Esashi, M., Thermal radiation from two-dimensionally confined modes in microcavities. Applied Physics Letters 2001, 79, 1393-1395.
    50. Granqvist, G. A. N. a. C. G., Materials Science for Solar energy convesion Systems 1991, Chap.4.
    51. Arancibia-Bulnes, C. A.; Estrada, C. A.; Ruiz-Suarez, J. C., Solar absorptance and thermal emittance of cermets with large particles. Journal of Physics D-Applied Physics. 2000, 33, 2489-2496.
    52. Tesfamichael, T.; Andersson, S.; Chibuye, T.; Wackelgard, E., Study of oxidation kinetics for metal-dielectric films using IR optical measurements. Optical Materials Technology for Energy Efficiency and Solar Energy Conversion Xv 1997, 12, 146-153.
    53. Karmhag, R.; Tesfamichael, T.; Niklasson, G. A.; Wackelgard, E.; Nygren, M., Oxidation kinetics of nickel solar absorber nanoparticles. Journal of Physics D-Applied Physics 2001, 34, 400-406.
    54. Tesfamichael, T., Characterization of selective solar absorbers; experimental and theoretical modeling. Ph.D thesis. 2001, chap.4.
    55. Gao, P. T.; Meng, L. J.; dos Santos, M. P.; Teixeira, V.; Andritschky, M., Characterisation of ZrO2 films prepared by rf reactive sputtering at different O-2 concentrations in the sputtering gases. Vacuum 2000, 56, 143-148.
    56. Gao, P. T.; Meng, L. J.; dos Santos, M. P.; Teixeira, V.; Andritschky, M., Study of ZrO2-Y2O3 films prepared by rf magnetron reactive sputtering. Thin Solid Films 2000, 377, 32-36.
    57. Zhang, Q. C.; Mills, D. R., High solar performance selective surface using bi-sublayer cermet film structures. Solar Energy Materials & Solar Cells 1992, 27, 273-290.
    58. Kussmaul, M.; Mirtich, M. J.; Curren, A., Ion-beam treament of potential space materials at the NASA Lewis Research-center. Surface & Coatings Technology 1992, 51, 299-306.
    59. Cuomo, J. J.; Ziegler, J. F.; Woodall, J. M., New concept for solar-energy thermal conversion. Applied Physics Letters 1975, 26, 557-559.
    60. Granqvist, C. G., Spectrally selective surfaces for heating and cooling applications Tutorial Texts in Optical Engineering 1989.
    61. John, S., Strong localization of photons in certain disordered dilectric superlattices. Physical Review Letters 1987, 58, 2486-2489.
    62. Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters 1987, 58, 2059-2062.
    63. Masuda, H.; Ohya, M.; Nishio, K.; Asoh, H.; Nakao, M.; Nohtomi, M.; Yokoo, A.; Tamamura, T., Photonic band gap in anodic porous alumina with extremely high aspect ratio formed in phosphoric acid solution. Japanese Journal of Applied Physics Part 2-Letters 2000, 39, L1039-L1041.
    64. Masuda, H.; Ohya, M.; Asoh, H.; Nishio, K., Photonic band gap in naturally occurring ordered anodic porous alumina. Japanese Journal of Applied Physics Part 2-Letters 2001, 40, L1217-L1219.
    65. Masuda, H.; Yamada, M.; Matsumoto, F.; Yokoyama, S.; Mashiko, S.; Nakao, M.; Nishio, K., Lasing from two-dimensional photonic crystals using anodic porous alumina. Advanced Materials 2006, 18, 213-215.
    66. Choi, J.; Luo, Y.; Wehrspohn, R. B.; Hillebrand, R.; Schilling, J.; Gosele, U., Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers. Journal of Applied Physics 2003, 94, 4757-4762.
    67. Lutich, A. A.; Danailov, M. B.; Volchek, S.; Yakovtseva, V. A.; Sokol, V. A.; Gaponenko, S. V., Birefringence of nanoporous alumina: dependence on structure parameters. Applied Physics B-Lasers and Optics 2006, 84, 327-331.
    68. Gaponenko, N. V., Sol-gel derived films in meso-porous matrices: porous silicon, anodic alumina and artificial opals. Synthetic Metals 2001, 124, 125-130.
    69. Salavati-Niasari, M.; Davar, F.; Mir, N., Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron 2008, 27, 3514-3518.
    70. Choi, J.; Wehrspohn, R. B.; Gosele, U., Mechanism of guided self-organization producing quasi-monodomain porous alumina. Electrochimica Acta 2005, 50, 2591-2595.
    71. Nielsch, K.; Muller, F.; Li, A. P.; Gosele, U., Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Advanced Materials 2000, 12, 582-586.
    72. Routkevitch, D.; Chan, J.; Davydov, D.; Avrutsky, I.; Xu, J. M.; Yacaman, M. J.; Moskovits, M., Electrochemical fabrication of the nano-wire arrays: template, materials and applications. Electrochemical Synthesis and Modification of Materials. Symposium|Electrochemical Synthesis and Modification of Materials. Symposium 1997, 367-376.
    73. Montero-Moreno, J. M.; Belenguer, M.; Sarret, M.; Mueller, C. M., Production of alumina templates suitable for electrodeposition of nanostructures using stepped techniques. Electrochimica Acta 2009, 54, 2529-2535.
    74. Rahman, I. Z.; Boboc, A.; Razeeb, K. M.; Rahman, M. A., Analysis of magnetic interaction in Ni nanowire array grown using electrodeposition process. Journal of Magnetism and Magnetic Materials 2005, 290, 246-249.
    75. Zhang, X. Y.; Wen, G. H.; Chan, Y. F.; Zheng, R. K.; Zhang, X. X.; Wang, N., Fabrication and magnetic properties of ultrathin Fe nanowire arrays. Applied Physics Letters 2003, 83, 3341-3343.
    76. Garcia, J. M.; Asenjo, A.; Velazquez, J.; Garcia, D.; Vazquez, M.; Aranda, P.; Ruiz-Hitzky, E.,Magnetic behavior of an array of cobalt nanowires. Journal of Applied Physics 1999, 85, 5480-5482.
    77. Melle, S.; Menendez, J. L.; Armelles, G.; Navas, D.; Vazquez, M.; Nielsch, K.; Wehrspohn, R. B.; Gosele, U., Magneto-optical properties of nickel nanowire arrays. Applied Physics Letters 2003, 83, 4547-4549.
    78. Sellmyer, D. J.; Zheng, M.; Skomski, R., Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. Journal of Physics-Condensed Matter 2001, 13, R433-R460.
    79. Almawlawi, D.; Coombs, N.; Moskovits, M., magnetic-properties of Fe deposited into anodic aluminum-oxide pores as a function of partical-size. Journal of Applied Physics 1991, 70, 4421-4425.
    80. Routkevitch, D.; Bigioni, T.; Moskovits, M.; Xu, J. M., Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. Journal of Physical Chemistry 1996, 100, 14037-14047.
    81. Sun, M.; Zangari, G.; Metzger, R. M., Cobalt island arrays with in-plane anisotropy electrodeposited in highly ordered alumite. IEEE Transactions on Magnetics 2000, 36, 3005-3008.
    82. Hava, S.; Auslender, M., Design and analysis of low-reflection grating microstructures for a solar energy absorber. Solar Energy Materials and Solar Cells 2000, 61, 143-151.
    83. Kanamori, Y.; Hane, K.; Sai, H.; Yugami, H., 100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask. Applied Physics Letters 2001, 78, 142-143.
    84. Rephaeli, E.; Fan, S., Tungsten black absorber for solar light with wide angular operation range. Applied Physics Letters 2008, 92, 115-119.
    85. Diem, M.; Koschny, T.; Soukoulis, C. M., Wide-angle perfect absorber/thermal emitter in the terahertz regime. Physical Review B 2009, 79, 033101-033106.
    86. Sergeant, N. P.; Pincon, O.; Agrawal, M.; Peumans, P., Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks. Optics Express 2009, 17, 22800-22812.
    87. Hitoshi Sai, H. Y., Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion. Solar Energy Materials & Solar Cells 2003, 79, 56-61.
    88. Sai, H.; Yugami, H.; Akiyama, Y.; Kanamori, Y.; Hane, K., Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region. Journal of the OpticalSociety of America a-Optics Image Science and Vision 2001, 18, 1471-1476.
    89. Keller, F.; Hunter, M. S.; Robinson, D. L., Structural features of oxide coatings on aluminum. Electrochem. Soc. 1953, 100, 411-419.
    90. J.F.Murphy, C. E. M., A theory for the formation of anodic coatings on aluminum. A.D.A. Conference on anodizing of aluminium. 1961, P11-P23.
    91. Thompson, G. E.; Furneaux, R. C.; Wood, G. C.; Richardson, J. A.; Goode, J. S., Nucleation and growth of porous anodic films on aluminium. Nature 1978, 272, 433-435.
    92. Wood, G. C.; O'Sullivan, J. P., The anodizing of aluminium in sulphate solutions. Electrochimica Acta 1978, 15, 1865-1876.
    93. K. Wada, T. S., Microstructure of porous anodic oxide films on aluminum. J. Mater. Sci. 1986, 56-61.
    94. Masuda, H.; Fukuda, K., Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995, 268, 1466-1468.
    95. Routkevitch, D.; Tager, A. A.; Haruyama, J.; Almawlawi, D.; Moskovits, M.; Xu, J. M., Nonlithographic nano-wire arrays: Fabrication, physics, and device applications. Ieee Transactions on Electron Devices 1996, 43, 1646-1658.
    96. Li, F. Y.; Metzger, R. M.; Doyle, W. D., Influence of particle size on the magnetic viscosity and activation volume of alpha-Fe nanowires in alumite films. IEEE Transactions on Magnetics 1997, 33, 3715-3717.
    97. Choi, J., Controlled growth of Cu2O particles on a hexagonally nanopatterned aluminium substrate. Nanotechnology 2007, 12, 551-554.
    98. Ko, Cu2O Nanowires in an Alumina Template-Electrochemical Conditions for the Synthesis and Photoluminescence Characteristics. ChemPhysChem 2006, 9, 44-49.
    99. Liu, Electrochemical deposition and characterization of Cu2O nanowires. App.Phys.A, 2005, 3, 22-26.
    100.Andersson, Nickel pigmented anodic aluminum oxide for selective absorption of solar energy. JAP 1979, 5, 198-201.
    101. Salmi, J.; Bonino, J. P.; Bes, R. S., Nickel pigmented anodized aluminium as solar selective absorbers. Journal of materials science 2000, 35, 1347-1351.
    102. Wackelgard, E., A study of the optical properties of nickel-pigmented anodic alumina in theinfrared region. Journal of Physics-Condensed Matter 1996, 8, 5125-5138.
    103. Subramanian, M., Pulsed electrodeposition of cobalt and nickel alloy. Transactions of the Institute of Metal Finishing 2007, 12, 556-558.
    104. Xia, X. H.; Gao, Y.; Wang, Z.; Jia, Z. J., Structure and photocatalytic properties of copper-doped rutile TiO2 prepared by a low-temperature process. Journal of physics and chemistry of solids 2008, 69, 2888-2893.
    105. Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K., Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible. Chemistry of Materials 2008, 20, 110-117.
    106. Parkhutik, V. P.; Shershulsky, V. I., Theroretical modeling of porous oxide-growth on aluminum. Journal of Physics D-Applied Physics 1992, 25, 1258-1263.
    107. Xu, Y.; Thompson, G. E.; Wood, G. C., Mechanism of anodic film growth on aluminium. Transactions of the Institute of Metal Finishing|Transactions of the Institute of Metal Finishing 1985, 63, pt.3-4, 98-103.
    108. Jessensky, O.; Muller, F.; Gosele, U., Self-organized formation of hexagonal pore arrays in anodic alumina. Applied Physics Letters 1998, 72, 1173-1175.
    109. Shuxi Zhao, C. G. R., Ewa Wackelgard, Optical constants of sputteredNi/NiO solar absorber film—depth-profiled characterization. solar Energy Materials & Solar Cells 2004, 84, 321-325.
    110. Shuxi Zhao, E. W., Optimization of solar absorbing three-layer coatings. Solar Energy Materials & Solar Cells 2006, 90, 44-48.
    111. M. Farooq, Z. H. L., Computations of the optical properties of metal/insulator-composites for solar selective absorbers. Renewalbe Energy 2003, 28, 445-451.
    112. M. Farooq, M. G. H., A novel design in composities of various materials for solar selective coatings. Solar Energy Materials & Solar Cells 2002, 71, 66-70.
    113. M. Farooq, M. G. H., Optical properties of higher and lower refractive index composites in solar selective coatings. Solar Energy Materials & Solar Cells 2002, 71, 36-41.
    114. Peterson, R. E.; Ramsey, J. W., Thin-film coating in solar-thermal power systems. Journal of Vacuum Science & Technology 1975, 12, 174-181.
    115. Eisenhammer, T.; Haugeneder, A.; Mahr, A., High-temperature optical properties and stability of selective absorbers based on quasicrystalline AlCuFe. Solar Energy Materials and Solar Cells1998, 54, 379-386.
    116. C.E.Kennedy, H. P., Progress in development of high-temperature solar-selective coating. Proceeding of ISEC 2005, p22-24.
    117. Tesfamichael, T., Treatment of antireflection on tin oxide coated anodized aluminum selective absorber surface. Solar energy materials and solar cells 1998, 5, 13-17.
    118. M.Lundh, T. B., E. Wackelgard, Antireflection treatment of Thickness Sensitive Spectrally Selective (TSSS) paints for thermal solar absorbers. Solar Energy 2010, 84, 6-10.
    119. M.C.Bautista, A. M., Silica antireflective films on glass produced by the sol–gel method. Solar energy materials and solar cells 2003, 8, 99-102.
    120. A. Gombert, W. G., K. Rose, J. Dreibholz, B. Bla Si, A. Heinzel, D. Sporn, W. Doll and V. Wittwer, Antireflective transparent covers for solar devices Solar Energy 2000, 5, 68-72.
    121. Lee, W.; Ji, R.; Gosele, U.; Nielsch, K., Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Materials 2006, 5, 741-747.
    122. Chung, C. K.; Zhou, R. X.; Liu, T. Y.; Chang, W. T., Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature. Nanotechnology 2009, 20, 78-82.
    123. Lo, D.; Budiman, R. A., Fabrication and characterization of porous anodic alumina films from impure aluminum foils. Journal of the Electrochemical Society 2007, 154, C60-C66.
    124. Masuda, H.; Fukuda, K., Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995, 268, 1466-1468.
    125. Li, A. P.; Muller, F.; Gosele, U., Polycrystalline and monocrystalline pore arrays with large interpore distance in anodic alumina. Electrochemical and Solid State Letters 2000, 3, 131-134.
    126. Montero-Moreno, J. M.; Sarret, M.; Muller, C., Some considerations on the influence of voltage in potentiostatic two-step anodizing of AA1050. Journal of the Electrochemical Society 2007, 154, C169-C174.
    127. Kawai,s., Magnetic properties of anodic oxide coatings on aluminum containing electrodeposited Co and Co-Ni. J. Electrochem. Soc 1975, 7, 56-61.
    128. Moskovits, M., Colloidal metal in aluminum-oxide. 1978, 6, 54-59.
    129. Fratila-Apachitei, L. E.; Duszczyk, J.; Katgerman, L., Voltage transients and morphology of AlSi(Cu) anodic oxide layers formed in H2SO4 at low temperature. Surface & CoatingsTechnology 2002, 157, 80-94.
    130. Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R. B.; Gosele, U., Self-ordering regimes of porous alumina: The 10% porosity rule. Nano Letters 2002, 2, 677-680.
    131. Matsui, Y.; Nishio, K.; Masuda, H., Highly ordered anodic porous alumina with 13-nm hole intervals using a 2D array of monodisperse nanoparticles as a template. Small 2006, 2, 522-525.
    132. Vrublevsky, I.; Parkoun, V.; Sokol, V.; Schreckenbach, J., Study of chemical dissolution of the barrier oxide layer of porous alumina films formed in oxalic acid using a re-anodizing technique. Applied Surface Science 2004, 236, 270-277.
    133. Chen, C. C.; Chen, J. H.; Chao, C. G., Post-treatment method of producing ordered array of anodic aluminum oxide using general purity commercial (99.7%) aluminum. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 2005, 44, 1529-1533.
    134. Montero-Moreno, J. M.; Sarret, M.; Muller, C., Influence of the aluminum surface on the final results of a two-step anodizing. Surface & Coatings Technology 2007, 201, 6352-6357.
    135. Shimizu, K.; Brown, G. M.; Habazaki, H.; Kobayashi, K.; Skeldon, P.; Thompson, G. E.; Wood, G. C., Impurity distributions in barrier anodic films on aluminium: a GDOES depth profiling study. Electrochimica Acta 1999, 44, 2297-2306.
    136. Mukhopadhyay, A. K.; Sharma, A. K., Influence of Fe-bearing particles and nature of electrolyte on the hard anodizing behaviour of AA 7075 extrusion products. Surface & Coatings Technology 1997, 92, 212-220.
    137. Singh, G. K.; Golovin, A. A.; Aranson, I. S., Formation of self-organized nanoscale porous structures in anodic aluminum oxide. Physical Review B 2006, 73, 20-24.
    138. P.Konttinen, R. K., P.D.Lund, Microstructural analysis of selective C/Al2O3/Al solar absorber surfaces. Thin Solid Films 2003, 8, 425-429.
    139. Shuxi Zhao, E. A., Kristina Gelin, Optimization of an industrial DC magnetron sputtering process for graded composition solar thermal absorbing layer. Solar Energy Materials & Solar Cells 2006, 90, 134-138.
    140. Katumba, G.; Forbes, A.; Olumekor, L.; Makiwa, G., Quantifying the efficacy of solar selective absorber materials: the case of carbon nanoparticles dispersed in SiO2, ZnO and NiO matrices. Optical Modeling and Measurements for Solar Energy Systems 2008, 7046, B460-B460.
    141. Granqvist, C. G., Transparent conductors as solar energy materials: A panoramic review. solarenergy materials and solar cells 2007, 91, 1529-1598.
    142.Katumba, G.; Olumekor, L.; Forbes, A.; Makiwa, G.; Mwakikunga, B.; Lu, J.; Wackelgard, E., Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers. Solar Energy Materials and Solar Cells 2008, 92, 1285-1292.
    143. Kennedy, C. E.; Smilgys, R. V.; Kirkpatrick, D. A.; Ross, J. S., Optical performance and durability of solar reflectors protected by an alumina coating. Thin Solid Films 1997, 304, 303-309.
    144. Wackelgard, E., The experimental dielectric function of porous anodic alumina in the infrared region; A comparison with the Maxwell-Garnett model. Journal of Physics-Condensed Matter 1996, 8, 4289-4299.
    145. Pavlovic, T.; Ignatiev, A., Optical and microstructural properties of anodically oxidized aluminum. Thin Solid Films 1986, 138, 97-109.
    146. Nakamura, S.; Saito, M.; Huang, L. F.; Miyagi, M.; Wada, K., Infrared optical-constants of anodic alumina films with micropore arrays. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 1992, 31, 3589-3593.
    147.Fernandez-Romero, L.; Montero-Moreno, J. M.; Pellicer, E.; Peiro, F.; Cornet, A.; Morante, J. R.; Sarret, M.; Muller, C., Assessment of the thermal stability of anodic alumina membranes at high temperatures. Materials Chemistry and Physics 2008, 111, 542-547.
    148. BeltowskaLehman, E.; Chassaing, E., Electrochemical investigation of the Ni-Cu-Mo electrodeposition system. Journal of Applied Electrochemistry 1997, 27, 568-572.
    149. Wackelgard, E., Characterization of black nickel solar absorber coatings electroplated in a nickel chlorine aqueous solution. Solar Energy Materials & Solar Cells 1998, 56, 223-235.
    150. Scherer, Modelling of degradation of nickel-pigmented aluminum-oxide photothermal collector coatings. Journal of Materials Science 1988, 23, 77-80.
    151. Wackelgard, E., a comparative study of the optical properties of nickel pigmented alumina films of different thicknesses exposed to elevated temperature and humidity. solar Energy Materials and Solar Cells 1998, 54, 171.
    152. Ammundsen, B.; Paulsen, J., Novel lithium-ion cathode materials based on layered manganese oxides. Advanced Materials 2001, 13, 943-946.
    153. Zhang, Z. T.; Rondinone, A. J.; Ma, J. X.; Shen, J.; Dai, S., Morphologically templatedgrowth of aligned spinel CoFe2O4 nanorods. Advanced Materials 2005, 17, 1415-1420.
    154. Jeong, U.; Teng, X. W.; Wang, Y.; Yang, H.; Xia, Y. N., Superparamagnetic colloids: Controlled synthesis and niche applications. Advanced Materials 2007, 19, 33-60.
    155. Dhak, ParticleSize Comparison of Soft-Chemically Prepared Transition Metal (Co, Ni, Cu, Zn) Aluminate Spinels. J. Am. Ceram. Soc 2006, 89, 115-121.
    156. Wang, D. F.; Zou, Z. G.; Ye, J. H., A new spinel-type photocatalyst BaCr2O4 for H-2 evolution under UV and visible light irradiation. Chemical Physics Letters 2003, 373, 191-196.
    157. Qiu, J. X.; Wang, C. Y.; Gu, M. Y., Photocatalytic properties and optical absorption of zinc ferrite nanometer films. Materials Science and Engineering B-Solid State Materials for Advanced Technology 2004, 112, 1-4.
    158. Yanyan, J., CuAl2O4 powder synthesis by sol- gel method and its photodegradation property under visible light irradiation. J Sol-Gel Sci Techn 2007, 8, 221-224.
    159. Mimani, Instant synthesis of nanoscale spinel aluminates. Journal of alloys and compounds 2001, 6, 335-340.
    160. Shimizu, Spectroscopic characterisation of catalysts for selective Cu–Al2O3 catalytic reduction of NO with propene. Phys. Chem. Chem. Phys 2000, 2, 58-62.
    161. Kameswari, Reaction of piperidine with formaldehyde over alumina and spinel aluminates Ctatalysis Letters 1996, 38, 45-50.
    162. Meyer, F.; Hempelmann, R.; Mathur, S.; Veith, M., Microemulsion mediated sol-gel synthesis of nano-scaled MAl2O4 (M=Co, Ni, Cu) spinels from single-source heterobimetallic alkoxide precursors. Journal of Materials Chemistry 1999, 9, 1755-1763.
    163. Carlsson, B.; Moller, K.; Frei, U.; Brunold, S.; Kohl, M., Comparison between predicted and actually observed in-service degradation of a nickel pigmented anodized aluminium absorber coating for solar DHW systems. Solar energy materials and solar cells 2000, 61, 223-238.
    164. L.C.Leu, optical and dielectric properties of CuAl2O4 fimls synthesized by solid-phase epitaxy. Thin solid films 2007, 14 234-237.
    165. Ding, D. W.; Long, M. C.; Cai, W. M.; Wu, Y. H.; Wu, D. Y.; Chen, C., In-situ synthesis of photocatalytic CuAl2O4-Cu hybrid nanorod arrays. Chemical Communications 2009, 60, 3588-3590.
    166. Scherer, A.; Inal, O. T.; Pettit, R. B., Modeling of degradation of in black copperphotothermal collector coatings. Journal of materials science 1988, 23, 1923-1933.
    167. Theiss, M., Hard and Sofeware for optical spectroscopy, Dr.-Bernhard-Klein-Str. 110, D-52078 Aachen, Germany. 2002.
    168. Zhang, M., New cermet film structures with much improved selectivity for solar thermal applications. Applied Physics Letters 1991, 60, 3-6.
    169. Cozzoli, P. D.; Comparelli, R.; Fanizza, E.; Curri, M. L.; Agostiano, A.; Laub, D., Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor / metal nanocomposite in homogeneous nonpolar solution. Journal of the American Chemical Society 2004, 126, 3868-3879.
    170. Wood, A.; Giersig, M.; Mulvaney, P., Fermi level equilibration in quantum dot-metal nanojunctions. Journal of Physical Chemistry B 2001, 105, 8810-8815.
    171. Cozzoli, P. D.; Fanizza, E.; Comparelli, R.; Curri, M. L.; Agostiano, A.; Laub, D., Role of metal nanoparticles in TiO2/Ag nanocomposite-based microheterogeneous photocatalysis. Journal of Physical Chemistry B 2004, 108, 9623-9630.
    172. Chandrasekharan, N.; Kamat, P. V.; Hu, J. Q.; Jones, G., Dye-capped gold nanoclusters: Photoinduced morphological changes in gold/rhodamine 6G nanoassemblies. Journal of Physical Chemistry B 2000, 104, 11103-11109.
    173. A.Jagminas, Application of Anodic Dissolution Method for a Study of Electrocolored Aluminum Oxides. Russian Journal of Electrochemistry 1999, 15, 114-119.
    174. A.Jagminas, Influence of magnesium and aluminium ions on the copper a.c. deposition into aluminium anodic oxide film nanotubes. Journal of Applied Electrochemistry 2002, 15, 223-227.
    175. Severino, F., Nature of copper active sites in the carbon monoxide oxidation on CuAl2O4 and CuCr2O4 spinel type catalysts. Journal of Catalysis 1998, 12, 54-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700