用户名: 密码: 验证码:
多元金属纳米结构燃料电池催化剂的设计与制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着环境意识的增强和对有限自然资源认识的加深,为了减少对化石能源等不可再生资源的依赖,需要寻求一种更清洁,更廉价,更小型化和更有效的能源供给方式。因此,针对燃料电池成本高,反应活性低和稳定性差等制约其商业化的主要因素出发,展示材料的合理设计,通过提高材料的物理和化学性质,寻找可行的新型催化剂材料路线显得尤为重要。本论文具体内容主要包括以下几个方面:
     1、发展了一种在非水溶剂(极性非质子溶剂,二甲亚砜,DMSO)中采用模板电化学合成一维纳米颗粒管燃料电池催化剂的普适新方法。从溶剂的物理化学性质着手分析和解释了合成出高质量、高长径比,管壁厚度可控且非常均匀的Pt、Pd、Au和Ag一维纳米管催化剂的机理。其中合成的Pd管和Pt管具有多重等级结构,即纳米管是由40纳米左右的半球体刺球组成,而刺球是由3-6纳米的颗粒构成。该研究结果在《化学通讯》(C.H.Cui,et al Chem. Comm. 2010, 46, 940)上发表。
     2、氧化物支持的金属催化剂由于其氧化物-金属界面电子传递,在燃料电池领域有重要的应用。采用非水溶剂电化学方法,合成出Cu组分一定,Au/Pd组分比例逐渐增大的三元PdAuCu异质阴极催化剂材料并用于氧气还原反应。研究结果表明,相对于PdCu二元催化剂,Au的加入降低了Cu的氧化电位,使得Cu在电解液中更容易氧化成为CuO,有利于吸附氧和载氧,从而提高了催化活性。不仅如此,Au的存在提高了催化剂的稳定性,对双氧水也有极强的电催化还原能力。因此,这种材料使得发展双氧水/氧气混合燃料催化剂成为可能。相关研究成果在《应用化学》上发表(C.H.Cui,et al Angew. Chem. Int. Ed. 2010, 49, 9149.).在成功制备一维纳米管材料的基础上,通过调节电解质浓度、外加电压大小等条件,进一步拓展了非水溶剂电化学方法,制备出组分可调,管壁厚度可控,长度可控的PdAu异质纳米颗粒管并研究其对乙醇的电催化氧化性质。通过对PdAu组分比例的调节实现对Pd和Au界面的调控。研究结果表明,随着Au/Pd组分比例的提高,金属表面电子结构随之发生改变,而少量Au的加入电子结构变化最大,对乙醇电氧化催化的活性最高,稳定性也最好。相关研究成果在ACS Nano上发表(C.H.Cui,et al ACS Nano, 2011, 5, nn-2011-010602)。
     3、金属纳米催化剂表面重构是一种很普遍的表面现象。通过对非水溶剂电化学方法合成的PtCu纳米颗粒管在还原性气氛条件下(氢气+氩气)进行退火处理可制备出表面富Pt的多孔管状合金催化剂材料并用于氧气还原电催化研究。这种催化剂由于Cu相对较小原子半径而具有很强的晶格压缩应力,在循环伏安电化学扫描条件下,由于表面羟基和过氧基的吸附和脱附,其表面会发生大尺度的表面重构现象。研究结果表明,随着退火温度的升高晶体的有序程度提高,而晶格有序程度与表面重构密切相关,有序度越高,表面重构越强烈。通过对催化剂氧气还原电催化能力的研究表明电催化活性和稳定性随着重构能力的增强而增强。而当在氧气条件下对催化剂进行一万次循环稳定测试后再进行电化学处理,发现重构能力越高,经过电化学处理去除表面污染物后,电化学活性表面积降低的越小。在此基础上,我们进一步扩展到PtNi合金体系,研究发现PtNi合金经过表面重构以后,表面活性位点增多,活性增强,而且相对于商业的Pt/C催化剂有更强的恢复能力。相关研究成果已被《化学科学》接收(C.H.Cui,et al Chem Sci, 2011)。
     4、发展了一种制备Pt单层和Pt壳层低Pt催化剂电化学表面处理新方法。通过设计一种低Pt含量的三元PtPdCu体系同时展现了表面重构和表面分离现象。研究发现前体材料通过退火处理以后,Pd和Pt迁移到表面形成PtPd壳层,大量的Cu在体相内与Pt和Pd形成有序结构并产生较大的晶格应力,成为表面重构和表面分离的驱动力之一。表面重构极大的提高了表面粗糙度进而提高了电化学活性表面积;由于Pt和Pd原子在主体Cu原子中的表面分离能差异促使Pt趋向于迁移到壳层而Pd迁移到体相区域,同时Cu趋向于保持在体相内部而不会分离到表面而溶解到溶液中。所以PtPdCu体系能很好的防止非贵金属刻蚀溶解。另外,通过光电子能谱测试表明随着电化学循环次数的增加,近表面Pt/Pd组分比例从百分之十一增加到百分之五十,进一步选择甲酸作为探针分子检测表面Pt/Pd组分比例变化,从而定量和定性的展现了表面分离现象。在证明Cu在酸性电化学环境下不会刻蚀滤去的情况下,可认为表面应力影响相当。随着电化学循环次数增加,表面分离能差异导致表面PtPd原子比例连续增加,连续地改变了金属表面电子结构,导致羟基还原脱附电位连续地正移70毫伏。从而建立起了氧气还原活性与吸附键能的“火山”关系,完整的展现了“萨巴蒂尔”效应。
Increasing awareness of the environment and limited energy rescources to reduce the reliance on fossil fuels make us search for a cheaper, cleaner, smaller and more efficient energy supply mode. Therefore, it is important to explore a feasible and novel fuel cell catalyst route by improving the chemical and physical properties of these materials against the drawbacks of commercialization due to high cost, sluggish kinetics and long-term stability of fuel cell catalysts. The main results can be summarized as follows:
     1. A general tenplated-directed electrochemical method has been developed to synthesize one dimensional nanoparticle tubes in nonaqueous solution (polar aprotic solvent, DMSO). The synthesis mechanism of Pt, Pd, Au and Ag tubular materials with uniform tube wall, high aspect ratio, and high quality has been analyzed and explained base on the physical and chemical properties of solvent medium. Especially, the Pd and Pt tubes have hierarchical structure, in which the tube is built by semi-aristate sphere of 40 nm that consist of nanoparticles with 3-6 nm.
     2. Oxide-supported noble metal catalysts have potential application in fuel cells. The developed electrochemical method has also been used to synthesize the ternary PdAuCu heterostructure catalysts for oxygen reduction reaction, in which the Cu component almost keep the same, while the Au/Pd component ratio increase continuously. The results indicate that the oxygen reduction activity is improved because the Cu component can be easier to be oxidized to CuO which demonstrates both adsorption sites and mediator function for O2 when Au component is added in PdCu system. Moreover, this catalyst demonstrates highly stability for H2O2 reduction due to the introduction of Au. Therefore, this material provides possibility for development of mixed gas/liquid oxidant fuel cells. The nonaqueous solution electrochemical method has been further developed to synthesize Pd/Au heterostructure nanoparticle tubes with controlled component and length by tuning the concentration ratio of Pd/Au and applied potential. The electrocatalytic activity for ethanol oxidation has also been studied and improved by controlling the component ratio and thus adjusting the interface area. The results indicate that the optimal activity and ability for ethanol oxidation was obtained when little amount of Au in Pd/Au system, where the electronic structure was highly modified.
     3. The surface restructuring on metal surfaces is a very common phenomenon. The Pt-rich porous PtCu alloy catalysts have been obtained by annealing the AAO template-supported PtCu nanoparticle tube in reductive conditions. This material demonstrates high lattice strain owing to the smaller atomic radius in the bulk, which can be one of the driving forces for lage scale restructuring under potential cycling assisted by the adsorption/desorption of oxygenated species. The results indicate that increasing the thermal annealing temperature can increase the lattice ordering which will highly affect the restructuring. The electrocatalytic activity and stability increase with the increase of the restructuring ability. After 10,000 cycles of stability test and subsequently cleaning of the surface contaminants, the catalyst with higher restructuring ability has higher restorable ability. Based on these results, the rearranged surfaces of PtNi system show high surface active sites, high activity and high restorable ability than those of commercial Pt/C catalyst.
     4. A novel electrochemical surface treatment method has been developed to prepare Pt monolayer or Pt shell low Pt content electrocatalyst. A low Pt content PtPdCu is used to investigate the surface segregation and restructuring phenomena. After thermal annealing treatment, the Pt/Pd migrates to the surface and a mass of Cu stay in the bulk results in large lattice strain. The results indicate that the surface restructuring highly enhanced the surface roughness and thus improved electrochemical active surface area. Moreover, the solute Pt and Pd atoms respectively tend to migrate to the surface and core region due to surface segregation differences, whereas Cu atoms with almost no leaching remain in the core after potential cycling. Thus, the PtPdCu materials can inhibite the leaching of Cu. The surface Pt/Pd component ratio increases from 11 to 50 atom % with increasing the potential cycling. The continuous atomic ratio change between Pt and Pd on the surface is further monitored in situ by selecting formic acid as probe molecule. Therefore, the surface segregation was confirmed by both quantitative and qualitative methods. The Pt/Pd atomic ratio continuously increase with increasing the potential cycling number, which modified the surface electronic structure and positively shift 70 mV of the desorption of oxygenated species. Therefore, the adsorbate bond energy and activity relationship was established and perfectly demonstrate the“Sabatier principle”.
引文
[1] Tanaka, K. 2010. Unsolved problems in catalysis [J], Catal. Today, 154: 105-112.
    [2] Tao, F., Salmeron, M. 2011. In Situ Studies of Chemistry and Structure of Materials in Reactive Environments [J], Science, 331: 171-174.
    [3] Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., Liu, Z., Kaya, S., Nordlund, D., Ogasawara, H., Toney, M. F., Nilsson, A. 2010. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts [J], Nature Chem., 2: 454-460.
    [4] Cui, C.-H., Yu, J.-W., Li, H.-H., Gao, M.-R., Liang, H.-W., Yu, S.-H. 2011. Remarkable Enhancement of Electrocatalytic Activity by Tuning the Interface of Pd–Au Bimetallic Nanoparticle Tubes [J], Acs Nano null-null.
    [5] Zhou, Y., Perket, J. M., Zhou, J. 2010. Growth of Pt Nanoparticles on Reducible CeO2(111) Thin Films: Effect of Nanostructures and Redox Properties of Ceria [J], The Journal of Physical Chemistry C.
    [6] Idriss, H. 2004. Ethanol Reactions over the Surfaces of Noble Metal/Cerium Oxide Catalysts [J], Platinum Met. Rev., 48: 105-115.
    [7] Zhu, B., Albinsson, I., Andersson, C., Borsand, K., Nilsson, M., Mellander, B. E. 2006. Electrolysis studies based on ceria-based composites [J], Electrochem. Commun., 8: 495-498.
    [8] Zhou, H. P., Wu, H. S., Shen, J., Yin, A. X., Sun, L. D., Yan, C. H. 2010. Thermally Stable Pt/CeO2 Hetero-Nanocomposites with High Catalytic Activity [J], J. Am. Chem. Soc., 132: 4998-+.
    [9] Yeung, C. M. Y., Yu, K. M. K., Fu, Q. J., Thompsett, D., Petch, M. I., Tsang, S. C. 2005. Engineering Pt in ceria for a maximum metal-support interaction in catalysis [J], J. Am. Chem. Soc., 127: 18010-18011.
    [10] Yang, Z., Lu, Z., Luo, G. 2007. First-principles study of the Pt/CeO2 (111) interface [J], Phys. Rev. B, 76: 075421.
    [11] Sharma, S., Hegde, M. S. 2009. Pt metal-CeO2 interaction: Direct observation of redox coupling between Pt-0/Pt2+/Pt4+ and Ce4+/Ce3+ states in Ce0.98Pt0.02O2-delta catalyst by a combined electrochemical and x-ray photoelectron spectroscopy study [J], J. Chem. Phys., 130: -.
    [12] Campos, C. L., Roldán, C., Aponte, M., Ishikawa, Y., Cabrera, C. R. 2005. Preparation and methanol oxidation catalysis of Pt-CeO2 electrode [J], J. Electroanal. Chem., 581: 206-215.
    [13] Yu, H. B., Kim, J. H., Lee, H. I., Scibioh, M. A., Lee, J., Han, J., Yoon, S. P., Ha, H. Y. 2005. Development of nanophase CeO2-Pt/C cathode catalyst for direct methanol fuel cell [J], J. Power Sources, 140: 59-65.
    [14] Wang, J., Xi, J., Bai, Y., Shen, Y., Sun, J., Chen, L., Zhu, W., Qiu, X. 2007. Structural designing of Pt-CeO2/CNTs for methanol electro-oxidation [J], J. Power Sources, 164: 555-560.
    [15] Wang, J. S., Deng, X. Z., Xi, J. Y., Chen, L. Q., Zhu, W. T., Qiu, X. P. 2007. Promoting the current for methanol electro-oxidation by mixing Pt-based catalysts with CeO2 nanoparticles [J], J. Power Sources, 170: 297-302.
    [16] Guo, D.-J., Jing, Z.-H. 2010. A novel co-precipitation method for preparation of Pt-CeO2 composites on multi-walled carbon nanotubes for direct methanol fuel cells [J], J. Power Sources,195: 3802-3805.
    [17] Sun, Z., Wang, X., Liu, Z., Zhang, H., Yu, P., Mao, L. 2010. Pt?Ru/CeO2/Carbon Nanotube Nanocomposites: An Efficient Electrocatalyst for Direct Methanol Fuel Cells [J], Langmuir.
    [18]Changwei, X., Pei Kang, S. 2005. Electrochamical oxidation of ethanol on Pt-CeO2//C catalysts [J], J. Power Sources, 142: 27-29.
    [19] Fu, Q., Li, W.-X., Yao, Y., Liu, H., Su, H.-Y., Ma, D., Gu, X.-K., Chen, L., Wang, Z., Zhang, H., Wang, B., Bao, X. 2010. Interface-Confined Ferrous Centers for Catalytic Oxidation [J], Science, 328: 1141-1144.
    [20] Giordano, L., Pacchioni, G., Goniakowski, J., Nilius, N., Rienks, E. D. L., Freund, H. J. 2007. Interplay between structural, magnetic, and electronic properties in a FeO/Pt(111) ultrathin film [J], Phys. Rev. B, 76.
    [21] Qin, Z. H., Lewandowski, M., Sun, Y. N., Shaikhutdinov, S., Freund, H. J. 2009. Morphology and CO adsorption on platinum supported on thin Fe3O4(111) films [J], Journal of Physics-Condensed Matter, 21.
    [22] Wang, C., Daimon, H., Sun, S. H. 2009. Dumbbell-like Pt-Fe3O4 Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction [J], Nano Lett., 9: 1493-1496.
    [23] Kwak, J. H., Hu, J., Mei, D., Yi, C.-W., Kim, D. H., Peden, C. H. F., Allard, L. F., Szanyi, J. 2009. Coordinatively Unsaturated Al3+ Centers as Binding Sites for Active Catalyst Phases of Platinum onγ-Al2O3 [J], Science, 325: 1670-1673.
    [24] El-Deab, M. S., Ohsaka, T. 2006. Manganese oxide nanoparticles electrodeposited on platinum are superior to platinum for oxygen reduction [J], Angew. Chem. Int. Ed., 45: 5963-5966.
    [25] Zhao, G. Y., Li, H. L. 2008. Electrochemical oxidation of methanol on Pt nanoparticles composited MnO2 nanowire arrayed electrode [J], Appl. Surf. Sci., 254: 3232-3235.
    [26] El-Deab, M. S. 2009. Electrocatalytic Oxidation of Methanol at gamma-MnOOH Nanorods Modified Pt Electrodes [J], International Journal of Electrochemical Science, 4: 1329-1338.
    [27] Cargnello, M., Montini, T., Polizzi, S., Wieder, N. L., Gorte, R. J., Graziani, M., Fornasiero, P. 2010. Novel embedded Pd@CeO2 catalysts: a way to active and stable catalysts [J], Dalton Transactions, 39: 2122-2127.
    [28] Xu, C., Tian, Z., Shen, P., Jiang, S. P. 2008. Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media [J], Electrochim. Acta, 53: 2610-2618.
    [29] Mayernick, A. D., Janik, M. J. 2009. Ab initio thermodynamic evaluation of Pd atom interaction with CeO2 surfaces [J], J. Chem. Phys., 131: -.
    [30]Schalow, T., Brandt, B., Starr, D. E., Laurin, M., Shaikhutdinov, S. K., Schauermann, S., Libuda, J., Freund, H. J. 2006. Size-dependent oxidation mechanism of supported Pd nanoparticles [J], Angewandte Chemie-International Edition, 45: 3693-3697.
    [31] Jiang, X. C., Yu, A. B. 2009. Synthesis of Pd/alpha-Fe2O3 nanocomposites for catalytic CO oxidation [J], J. Mater. Process. Technol., 209: 4558-4562.
    [32] Zhu, L. D., Zhao, T. S., Xu, J. B., Liang, Z. X. 2009. Preparation and characterization of carbon-supported sub-monolayer palladium decorated gold nanoparticles for the electro-oxidation of ethanol in alkaline media [J], J. Power Sources, 187: 80-84.
    [33] Teranishi, T., Wachi, A., Kanehara, M., Shoji, T., Sakuma, N., Nakaya, M. 2008. Conversion of anisotropically phase-segregated Pd/gamma-Fe2O3 nanoparticles into exchange-coupled fct-FePd/alpha-Fe nanocomposite magnets [J], J. Am. Chem. Soc., 130: 4210-+.
    [34] Wang, Y., Kong, F. H., Zhu, B. L., Wang, S. R., Wu, S. H., Huang, W. P. 2007. Synthesis and characterization of Pd-doped alpha-Fe2O3 H2S sensor with low power consumption [J], Materials Science and Engineering B-Solid State Materials for Advanced Technology, 140: 98-102.
    [35] Zhang, S., Shao, Y., Yin, G., Lin, Y. 2010. Electrostatic Self-Assembly of a Pt-around-Au Nanocomposite with High Activity towards Formic Acid Oxidation [J], Angew. Chem. Int. Ed., 49: 2211-2214.
    [36] Kristian, N., Yan, Y., Wang, X. 2008. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation [J], Chem. Commun. 353-355.
    [37] Wang, S. Y., Kristian, N., Jiang, S. P., Wang, X. 2009. Controlled synthesis of dendritic Au@Pt core-shell nanomaterials for use as an effective fuel cell electrocatalyst [J], Nanotechnology, 20.
    [38] Lim, B., Jiang, M., Camargo, P. H. C., Cho, E. C., Tao, J., Lu, X., Zhu, Y., Xia, Y. 2009. Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction [J], Science, 324: 1302-1305.
    [39] Peng, Z. M., Yang, H. 2009. Synthesis and Oxygen Reduction Electrocatalytic Property of Pt-on-Pd Bimetallic Heteronanostructures [J], J. Am. Chem. Soc., 131: 7542-+.
    [40] Lee, H. J., Habas, S. E., Somorjai, G. A., Yang, P. D. 2008. Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid [J], J. Am. Chem. Soc., 130: 5406-5407.
    [41] Arenz, M., Stamenkovic, V., Ross, P. N., Markovic, N. M. 2003. Preferential oxidation of carbon monoxide adsorbed on Pd submonolayer films deposited on Pt(100) [J], Electrochem. Commun., 5: 809-813.
    [42] Sasaki, K., Naohara, H., Cai, Y., Choi, Y. M., Liu, P., Vukmirovic, M. B., Wang, J. X., Adzic, R. R. 2010. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes [J], Angew. Chem. Int. Ed. n/a-n/a.
    [43] Guo, S., Dong, S., Wang, E. 2010. Ultralong Pt-on-Pd bimetallic nanowires with nanoporous surface: nanodendritic structure for enhanced electrocatalytic activity [J], Chem. Commun., 46: 1869-1871.
    [44] Morimura, T., Hasaka, M., Uchiyama, Y. 1991. Determination of atom configuration in Cu-Au-Pd ternary alloy by analytical electron microscopy [J], Reports of the Faculty of Engineering, Nagasaki University|Reports of the Faculty of Engineering, Nagasaki University, 21: 69-73.
    [45] Alayoglu, S., Nilekar, A. U., Mavrikakis, M., Eichhorn, B. 2008. Ru-Pt Core-Shell Nanoparticles for Preferential Oxidation of Carbon Monoxide in Hydrogen [J], Nature Mater., 7: 333-338.
    [46] Alayoglu, S., Zavalij, P., Eichhorn, B., Wang, Q., Frenkel, A. I., Chupas, P. 2009. Structural and Architectural Evaluation of Bimetallic Nanoparticles: A Case Study of Pt?Ru Core?Shell and Alloy Nanoparticles [J], Acs Nano.
    [47] Yuan, Q., Zhou, Z., Zhuang, J., Wang, X. 2010. Seed Displacement, Epitaxial Synthesis of Rh/Pt Bimetallic Ultrathin Nanowires for Highly Selective Oxidizing Ethanol to CO2 [J], Chem. Mater.
    [48] Alayoglu, S., Eichhorn, B. 2008. Rh?Pt Bimetallic Catalysts: Synthesis, Characterization, and Catalysis of Core?Shell, Alloy, and Monometallic Nanoparticles [J], J. Am. Chem. Soc., 130: 17479-17486.
    [49] Tao, F., Dag, S., Wang, L. W., Liu, Z., Butcher, D. R., Bluhm, H., Salmeron, M., Somorjai, G. A. 2010. Break-Up of Stepped Platinum Catalyst Surfaces by High CO Coverage [J], Science, 327: 850-853.
    [50] Driver, S. M., Zhang, T. F., King, D. A. 2007. Massively cooperative adsorbate-induced surface restructuring and nanocluster formation [J], Angewandte Chemie-International Edition, 46:700-703.
    [51] Kolb, D. M. 1996. Reconstruction phenomena at metal-electrolyte interfaces [J], Prog. Surf. Sci., 51: 109-173.
    [52] Chen, Q., Richardson, N. V. 2003. Surface facetting induced by adsorbates [J], Prog. Surf. Sci., 73: 59-77.
    [53] Stamenkovic, V., Schmidt, T. J., Ross, P. N., Markovic, N. M. 2003. Surface segregation effects in electrocatalysis: kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces [J], J. Electroanal. Chem., 554: 191-199.
    [54] Mu, R. T., Fu, Q., Liu, H. Y., Tan, D. L., Zhai, R. S., Bao, X. H. 2009. Reversible surface structural changes in Pt-based bimetallic nanoparticles during oxidation and reduction cycles [J], Appl. Surf. Sci., 255: 7296-7301.
    [55] Han, B. C., Van der Ven, A., Ceder, G., Hwang, B.-J. 2005. Surface segregation and ordering of alloy surfaces in the presence of adsorbates [J], Phys. Rev. B, 72: 205409.
    [56] Mayrhofer, K. J. J., Hartl, K., Juhart, V., Arenz, M. 2009. Degradation of Carbon-Supported Pt Bimetallic Nanoparticles by Surface Segregation [J], J. Am. Chem. Soc., 131: 16348-16349.
    [57] Mayrhofer, K. J. J., Juhart, V., Hartl, K., Hanzlik, M., Arenz, M. 2009. Adsorbate-Induced Surface Segregation for Core-Shell Nanocatalysts [J], Angew. Chem. Int. Ed., 48: 3529-3531.
    [58] Cui, C. H., Li, H. H., Yu, J. W., Gao, M. R., Yu, S. H. 2010. Ternary Heterostructured Nanoparticle Tubes: A Dual Catalyst and Its Synergistic Enhancement Effects for O2/H2O2 Reduction [J], Angew. Chem. Int. Ed., 49: 9149-9152.
    [59] Cui, C. H., Li, H. H., Yu, S. H. 2010. A General Approach to Electrochemical Deposition of High Quality Free-Standing Noble Metal (Pd, Pt, Au, Ag) Sub-Micron Tubes Composed of Nanoparticles in Polar Aprotic Solvent [J], Chem. Commun., 46: 940-942.
    [60] Chen, Z. W., Waje, M., Li, W. Z., Yan, Y. S. 2007. Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions [J], Angew. Chem. Int. Ed., 46: 4060-4063.
    [61] Liang, H. W., Liu, S., Gong, J. Y., Wang, S. B., Wang, L., Yu, S. H. 2009. Ultrathin Te Nanowires: An Excellent Platform for Controlled Synthesis of Ultrathin Platinum and Palladium Nanowires/Nanotubes with Very High Aspect Ratio [J], Adv. Mater., 21: 1850-+.
    [62] Cao, H., Wang, L., Qiu, Y., Wu, Q., Wang, G., Zhang, L., Liu, X. 2006. Generation and Growth Mechanism of Metal (Fe, Co, Ni) Nanotube Arrays [J], ChemPhysChem, 7: 1500-1504.
    [63] Mu, C., Yn, Y. X., Wang, R. M., Wu, K., Xu, D. S., Guo, G. L. 2004. Uniform metal nanotube arrays by multistep template replication and electrodeposition [J], Adv. Mater., 16: 1550-+.
    [64] Wang, Q. T., Wang, G. Z., Han, X. H., Wang, X. P., Hou, J. G. 2005. Controllable template synthesis of Ni/Cu nanocable and Ni nanotube arrays: A one-step coelectrodeposition and electrochemical etching method [J], J. Phys. Chem. B, 109: 23326-23329.
    [65] Xue, S., Cao, C., Wang, D., Zhu, H. 2005. Synthesis and magnetic properties of Fe0.32Ni0.68 alloy nanotubes [J], Nanotechnology, 16: 1495-1499.
    [66] Li, D. D., Thompson, R. S., Bergmann, G., Lu, J. G. 2008. Template-based Synthesis and Magnetic Properties of Cobalt Nanotube Arrays [J], Adv. Mater., 20: 4575-4578.
    [67] Hendren, W. R., Murphy, A., Evans, P., O'Connor, D., Wurtz, G. A., Zayats, A. V., Atkinson, R., Pollard, R. J. 2008. Fabrication and optical properties of gold nanotube arrays [J], Journal of Physics-Condensed Matter, 20.
    [68] C. Mu, Y.-X. Yu, R. M. Wang, K. Wu, D. S. Xu, G.-L. Guo 2004. Uniform Metal Nanotube Arrays by Multistep Template Replication and Electrodeposition [J], Adv. Mater., 16: 1550-1553.
    [69] K., I. Electrochemistry in Nonaqueous Solutions (Wiley-VCH, Weinheim, 2009).
    [70] Martin, D., Weise, A., Niclas, H.-J. 1967. The Solvent Dimethyl Sulfoxide [J], Angewandte Chemie International Edition in English, 6: 318-334.
    [71] Pope, D. C., Oliver, W. T. 1966. Dimethyl Sulfoxide (DMSO) [J], Can. J. Comp. Med. Vet. Sci., 30.
    [1] Zhang, X. Y., Li, D., Bourgeois, L., Wang, H. T., Webley, P. A. 2009. Direct Electrodeposition of Porous Gold Nanowire Arrays for Biosensing Applications [J], Chemphyschem, 10: 436-441.
    [2] Zhang, X., Wang, H., Bourgeois, L., Pan, R., Zhao, D., Webley, P. A. 2008. Direct electrodeposition of gold nanotube arrays for sensing applications [J], J. Mater. Chem., 18: 463-467.
    [3] Favier, F., Walter, E. C., Zach, M. P., Benter, T., Penner, R. M. 2001. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays [J], Science, 293: 2227-2231.
    [4] Dasari, R., Zamborini, F. P. 2008. Hydrogen Switches and Sensors Fabricated by Combining Electropolymerization and Pd Electrodeposition at Microgap Electrodes [J], J. Am. Chem. Soc., 130: 16138-16139.
    [5] Bianchini, C., Shen, P. K. 2009. Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells [J], Chem. Rev., 109: 4183-4206.
    [6] Xiao, L., Zhuang, L., Liu, Y., Lu, J. T., Abruna, H. D. 2009. Activating Pd by Morphology Tailoring for Oxygen Reduction [J], J. Am. Chem. Soc., 131: 602-608.
    [7] Kim, S.-W., Kim, M., Lee, W. Y., Hyeon, T. 2002. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions [J], J. Am. Chem. Soc., 124: 7642-7643.
    [8] Siwy, Z., Trofin, L., Kohli, P., Baker, L. A., Trautmann, C., Martin, C. R. 2005. Protein biosensors based on biofunctionalized conical gold nanotubes [J], J. Am. Chem. Soc., 127: 5000-5001.
    [9] Gao, P., Zhan, C. L., Liu, M. H. 2006. Controlled synthesis of double- and multiwall silver nanotubes with template organogel from a bolaamphiphile [J], Langmuir, 22: 775-779.
    [10] Brumlik, C. J., Martin, C. R. 1991. Template Synthesis of Metal Microtubules [J], J. Am. Chem. Soc., 113: 3174-3175.
    [11] Chen, J. Y., Wiley, B. J., Xia, Y. N. 2007. One-dimensional nanostructures of metals: Large-scalesynthesis and some potential applications [J], Langmuir, 23: 4120-4129.
    [12] Woo Lee, Roland Scholz, Kornelius Nielsch, Ulrich G?sele 2005. A Template-Based Electrochemical Method for the Synthesis of Multisegmented Metallic Nanotubes13 [J], Angew. Chem. Int. Ed., 44: 6050-6054.
    [13] Chen, Z. W., Waje, M., Li, W. Z., Yan, Y. S. 2007. Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions [J], Angew. Chem. Int. Ed., 46: 4060-4063.
    [14] Liang, H. W., Liu, S., Gong, J. Y., Wang, S. B., Wang, L., Yu, S. H. 2009. Ultrathin Te Nanowires: An Excellent Platform for Controlled Synthesis of Ultrathin Platinum and Palladium Nanowires/Nanotubes with Very High Aspect Ratio [J], Adv. Mater., 21: 1850-+.
    [15] C. Mu, Y.-X. Yu, R. M. Wang, K. Wu, D. S. Xu, G.-L. Guo 2004. Uniform Metal Nanotube Arrays by Multistep Template Replication and Electrodeposition [J], Adv. Mater., 16: 1550-1553.
    [16] Kijima, T., Yoshimura, T., Uota, M., Ikeda, T., Fujikawa, D., Mouri, S., Uoyama, S. 2004. Noble-metal nanotubes (Pt, Pd, Ag) from lyotropic mixed-surfactant liquid-crystal templates [J], Angewandte Chemie-International Edition, 43: 228-232.
    [17] Lahav, M., Sehayek, T., Vaskevich, A., Rubinstein, I. 2003. Nanoparticle nanotubes [J], Angewandte Chemie-International Edition, 42: 5575-5579.
    [18]Sun, Y. G., Mayers, B., Xia, Y. N. 2003. Metal nanostructures with hollow interiors [J], Adv. Mater., 15: 641-646.
    [19] Qu, L. T., Shi, G. Q., Wu, X. F., Fan, B. 2004. Facile route to silver nanotubes [J], Adv. Mater., 16: 1200-+.
    [20] Lim, B., Jiang, M., Camargo, P. H. C., Cho, E. C., Tao, J., Lu, X., Zhu, Y., Xia, Y. 2009. Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction [J], Science, 324: 1302-1305.
    [21] Wang, L., Yamauchi, Y. 2009. Block Copolymer Mediated Synthesis of Dendritic Platinum Nanoparticles [J], J. Am. Chem. Soc., 131: 9152-9153.
    [22] Sanchez, S. I., Small, M. W., Zuo, J.-m., Nuzzo, R. G. 2009. Structural Characterization of Pt?Pd and Pd?Pt Core?Shell Nanoclusters at Atomic Resolution [J], J. Am. Chem. Soc., 131: 8683-8689.
    [23] Peng, Z. M., Yang, H. 2009. Synthesis and Oxygen Reduction Electrocatalytic Property of Pt-on-Pd Bimetallic Heteronanostructures [J], J. Am. Chem. Soc., 131: 7542-+.
    [24] Siril, P. F., Ramos, L., Beaunier, P., Archirel, P., Etcheberry, A., Remita, H. 2009. Synthesis of Ultrathin Hexagonal Palladium Nanosheets [J], Chem. Mater.
    [25] Adams, B. D., Wu, G., Nigro, S., Chen, A. 2009. Facile Synthesis of PdCd Nanostructures with High Capacity for Hydrogen Storage [J], J. Am. Chem. Soc., 131: 6930-6931.
    [26] Kohli, P., Wharton, J. E., Braide, O., Martin, C. R. 2004. Template synthesis of gold nanotubes in an anodic alumina membrane [J], Journal of Nanoscience and Nanotechnology, 4: 605-610.
    [27] Fu, J., Cherevko, S., Chung, C. H. 2008. Electroplating of metal nanotubes and nanowires in a high aspect-ratio nanotemplate [J], Electrochem. Commun., 10: 514-518.
    [28] Zhang, X., Dong, D., Li, D., Williams, T., Wang, H., Webley, P. A. 2009. Direct electrodeposition of Pt nanotube arrays and their enhanced electrocatalytic activities [J], Electrochem. Commun., 11: 190-193.
    [29] Ma, H., Tao, Z. L., Gao, F., Chen, J. 2004. Template synthesis of transition-metal Ru and Pd nanotubes [J], Chinese Journal of Inorganic Chemistry, 20: 1187-1190.
    [30] Martin, D., Weise, A., Niclas, H.-J. 1967. The Solvent Dimethyl Sulfoxide [J], Angewandte Chemie International Edition in English, 6: 318-334.
    [31] Pope, D. C., Oliver, W. T. 1966. Dimethyl Sulfoxide (DMSO) [J], Can. J. Comp. Med. Vet. Sci.,30.
    [32] Rodriguez-Gattorno, G., Diaz, D., Rendon, L., Hernandez-Segura, G. O. 2002. Metallic Nanoparticles from Spontaneous Reduction of Silver(I) in DMSO. Interaction between Nitric Oxide and Silver Nanoparticles [J], J. Phys. Chem. B, 106: 2482-2487.
    [33] Si, S. K., Gewirth, A. A. 2000. Solvent organization above metal surfaces: Ordering of DMSO on Au [J], J. Phys. Chem. B, 104: 10775-10782.
    [34] Wadkar, M. M., Chaudhari, V. R., Haram, S. K. 2006. Synthesis and Characterization of Stable Organosols of Silver Nanoparticles by Electrochemical Dissolution of Silver in DMSO [J], J. Phys. Chem. B, 110: 20889-20894.
    [35] Furlong, O. J., Miller, B. P., Li, Z., Walker, J., Burkholder, L., Tysoe, W. T. 2010. The Surface Chemistry of Dimethyl Disulfide on Copper? [J], Langmuir null-null.
    [36] Si, S. K., Gewirth, A. A. 2001. Complex formation between halogens and sulfoxides on metal surfaces [J], Phys. Chem. Chem. Phys., 3: 3325-3329.
    [37] Schroter, C., Roelfs, B., Solomun, T. 1997. The interaction of dimethylsulfoxide with a gold surface [J], Surf. Sci., 380: L441-L445.
    [38] Eftekhari, A. Nanostructured Materials in Electrochemistry (Wiley-VCH, 2008) [J].
    [39] Zoski, C. G. 2007. Handbook of Electrochemistry [J].
    [40] Calligaris, M. 1999. Stereochemical Aspects of Sulfoxides and Metal Sulfoxide Complexes [J], Croat. Chem. Acta, 72: 147-169.
    [41] Warren, G. W., Henein, H. 1997. Solubility of PbCl2 in DMSO and DMSO-water solutions [J], Hydrometallurgy, 46: 243-247.
    [42] Price, J. H., Williamson, A. N., Schramm, R. F., Wayland, B. B. 1972. Palladium(II) and platinum(II) alkyl sulfoxide complexes. Examples of sulfur-bonded, mixed sulfur- and oxygen-bonded, and totally oxygen-bonded complexes [J], Inorg. Chem., 11: 1280-1284.
    [43] Faraglia, G., Sitran, S. 1990. The behaviour of dithiocarbamic ester palladium(II) and platinum(II) complexes in dimethyl sulfoxide [J], Inorg. Chim. Acta, 176: 67-73.
    [44] Banerjee, S., Roy, S., Bagchi, B. 2010. Enhanced Pair Hydrophobicity in the Water?Dimethylsulfoxide (DMSO) Binary Mixture at Low DMSO Concentrations [J], J. Phys. Chem. B null-null.
    [45] da Silva, M. F. C. G., Pombeiro, A. J. L., Geremia, S., Zangrando, E., Calligaris, M., Zinchenko, A. V., Kukushkin, V. Y. 2000. Unusual pathways for the reaction between [MCl2(Me2SO)(4)] (M = Os, Ru) and hydrazine dihydrochloride: deoxygenation of sulfoxides vs. coordination of hydrazinium [J], Journal of the Chemical Society-Dalton Transactions, 8: 1363-1371.
    [46] Bennett, M. J., Cotton, F. A., Weaver, D. L. 1966. Structures of Dimethyl Sulphoxide Complexes [J], Nature, 212: 286-287.
    [47] Risberg, E. D., Mink, J., Abbasi, A., Skripkin, M. Y., Hajba, L., Lindqvist-Reis, P., Bencze, E., Sandstrom, M. 2009. Ambidentate coordination in hydrogen bonded dimethyl sulfoxide, (CH3)2SOH3O+, and in dichlorobis(dimethyl sulfoxide) palladium(ii) and platinum(ii) solid solvates, by vibrational and sulfur K-edge X-ray absorption spectroscopy [J], Dalton Transactions 1328-1338.
    [48] Hutchings, G. 2009. A golden future [J], Nat Chem, 1: 584-584.
    [49] Diao, J., Gall, K., Dunn, M. L. 2003. Surface-stress-induced phase transformation in metal nanowires [J], Nat Mater, 2: 656-660.
    [50] Haruta, M. 2005. Catalysis: Gold rush [J], Nature, 437: 1098-1099.
    [51] Hughes, M. D., Xu, Y.-J., Jenkins, P., McMorn, P., Landon, P., Enache, D. I., Carley, A. F., Attard, G. A., Hutchings, G. J., King, F., Stitt, E. H., Johnston, P., Griffin, K., Kiely, C. J. 2005. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions [J], Nature, 437: 1132-1135.
    [52] Biener, J., Wittstock, A., Zepeda-Ruiz, L. A., Biener, M. M., Zielasek, V., Kramer, D., Viswanath, R. N., Weissmuller, J., Baumer, M., Hamza, A. V. 2009. Surface-chemistry-driven actuation in nanoporous gold [J], Nature Mater., 8: 47-51.
    [53] Bin, W., Heidelberg, A., Boland, J. J. 2005. Mechanical properties of ultrahigh-strength gold nanowires [J], Nature Mater., 4: 525-529.
    [54] Huang, W. J., Sun, R., Tao, J., Menard, L. D., Nuzzo, R. G., Zuo, J. M. 2008. Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction [J], Nature Mater., 7: 308-313.
    [55] Jiang, C. Y., Markutsya, S., Pikus, Y., Tsukruk, V. V. 2004. Freely suspended nanocomposite membranes as highly sensitive sensors [J], Nature Mater., 3: 721-728.
    [56] Zhou, H., Jin, L., Xu, W. 2007. New approach to fabricate nanoporous gold film [J], Chin. Chem. Lett., 18: 365-368.
    [57] Wiley, B., Sun, Y. G., Chen, J. Y., Cang, H., Li, Z. Y., Li, X. D., Xia, Y. N. 2005. Shape-controlled synthesis of silver and gold nanostructures [J], MRS Bull., 30: 356-361.
    [58] Wang, C., Sun, S. H. 2009. Facile Synthesis of Ultrathin and Single-Crystalline Au Nanowires [J], Chemistry-an Asian Journal, 4: 1028-1034.
    [59] Wang, C., Hu, Y., Lieber, C. M., Sun, S. 2008. Ultrathin Au Nanowires and Their Transport Properties [J], J. Am. Chem. Soc., 130: 8902-8903.
    [60] Lu, X. M., Yavuz, M. S., Tuan, H. Y., Korgel, B. A., Xia, Y. N. 2008. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction [J], J. Am. Chem. Soc., 130: 8900-8901.
    [61] Huo, Z. Y., Tsung, C. K., Huang, W. Y., Zhang, X. F., Yang, P. D. 2008. Sub-two nanometer single crystal Au nanowires [J], Nano Lett., 8: 2041-2044.
    [62]Huang, T. K., Chen, Y. C., Ko, H. C., Huang, H. W., Wang, C. H., Lin, H. K., Chen, F. R., Kai, J. J., Lee, C. Y., Chiu, H. T. 2008. Growth of high-aspect-ratio gold nanowires on silicon by surfactant-assisted galvanic reductions [J], Langmuir, 24: 5647-5649.
    [63] Liu, J., Duan, J. L., Toimil-Molares, E., Karim, S., Cornelius, T. W., Dobrev, D., Yao, H. J., Sun, Y. M., Hou, M. D., Mo, D., Wang, Z. G., Neumann, R. 2006. Electrochemical fabrication of single-crystalline and polycrystalline Au nanowires: the influence of deposition parameters [J], Nanotechnology, 17: 1922-1926.
    [64] Dickey, M. D., Weiss, E. A., Smythe, E. J., Chiechi, R. C., Capasso, F., Whitesides, G. M. 2008. Fabrication of arrays of metal and metal oxide nanotubes by shadow evaporation [J], Acs Nano, 2: 800-808.
    [65] Zhu, Q., Zhou, S. H., Wang, X. Q., Dai, S. 2009. Controlled synthesis of mesoporous carbon modified by tungsten carbides as an improved electrocatalyst support for the oxygen reduction reaction [J], J. Power Sources, 193: 495-500.
    [66] Zhang, Z. H., Wang, Y., Qi, Z., Lin, J. K., Bian, X. F. 2009. Nanoporous Gold Ribbons with Bimodal Channel Size Distributions by Chemical Dealloying of Al-Au Alloys [J], J. Phys. Chem. C, 113: 1308-1314.
    [67] Zhang, Z. H., Wang, Y., Qi, Z., Zhang, W. H., Qin, J. Y., Frenzel, J. 2009. Generalized Fabricationof Nanoporous Metals (Au, Pd, Pt, Ag, and Cu) through Chemical Dealloying [J], J. Phys. Chem. C, 113: 12629-12636.
    [68] Yin, Z., Zheng, H. J., Ma, D., Bao, X. H. 2009. Porous Palladium Nanoflowers that Have Enhanced Methanol Electro-Oxidation Activity [J], J. Phys. Chem. C, 113: 1001-1005.
    [69] Yang, Q. Y., Liang, Y., Zhou, T. S., Shi, G. Y., Jin, L. T. 2009. Electrochemical investigation of platinum-coated gold nanoporous film and its application for Escherichia coli rapid measurement [J], Electrochem. Commun., 11: 893-896.
    [70] Xu, C., Wang, L., Mu, X., Ding, Y. 2010. Nanoporous PtRu Alloys for Electrocatalysis [J], Langmuir.
    [71] Xu, C. X., Wang, R. Y., Chen, M. W., Zhang, Y., Ding, Y. 2010. Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties [J], Phys. Chem. Chem. Phys., 12: 239-246.
    [72] Xia, R., Wang, J. L., Wang, R. Y., Li, X. D., Zhang, X., Feng, X. Q., Ding, Y. 2010. Correlation of the thermal and electrical conductivities of nanoporous gold [J], Nanotechnology, 21.
    [73] Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N., Sieradzki, K. 2001. Evolution of nanoporosity in dealloying [J], Nature, 410: 450-453.
    [74] Wang, C., Chi, M., Wang, G., van der Vliet, D., Li, D., More, K., Wang, H.-H., Schlueter, J. A., Markovic, N. M., Stamenkovic, V. R. 2011. Correlation Between Surface Chemistry and Electrocatalytic Properties of Monodisperse PtxNi1-x Nanoparticles [J], Adv. Funct. Mater., 21: 147-152.
    [75] Lai, F.-J., Su, W.-N., Sarma, Loka S., Liu, D.-G., Hsieh, C.-A., Lee, J.-F., Hwang, B.-J. 2010. Chemical Dealloying Mechanism of Bimetallic Pt-Co Nanoparticles and Enhancement of Catalytic Activity toward Oxygen Reduction [J], Chemistry - A European Journal, 16: 4602-4611.
    [76] Mani, P., Srivastava, R., Strasser, P. 2011. Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi3M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells [J], J. Power Sources, 196: 666-673.
    [77] Cao, H., Wang, L., Qiu, Y., Wu, Q., Wang, G., Zhang, L., Liu, X. 2006. Generation and Growth Mechanism of Metal (Fe, Co, Ni) Nanotube Arrays [J], ChemPhysChem, 7: 1500-1504.
    [78] Subramanian, P. R. L., D. E. in Binary Alloy Phase Diagrams 2nd edn, Vol. 2 (ed. Massalski, T. B.) 1460–1462 (ASM International, 1990). Subramanian, P. R. & Laughlin, D. E. in Binary Alloy Phase Diagrams 2nd edn, Vol. 2 (ed. Massalski, T. B.) 1460–1462 (ASM International, 1990).
    [1] Chen, A., Holt-Hindle, P. 2010. Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications [J], Chem. Rev., 110: 3767-3804.
    [2] Bianchini, C., Shen, P. K. 2009. Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells [J], Chem. Rev., 109: 4183-4206.
    [3] Sasaki, K., Naohara, H., Cai, Y., Choi, Y. M., Liu, P., Vukmirovic, M. B., Wang, J. X., Adzic, R. R. 2010. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes [J], Angewandte Chemie-International Edition, 49: 8602-8607.
    [4] Zhang, J. L., Vukmirovic, M. B., Xu, Y., Mavrikakis, M., Adzic, R. R. 2005. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates [J], Angewandte Chemie-International Edition, 44: 2132-2135.
    [5] Ghosh, T., Vukmirovic, M. B., DiSalvo, F. J., Adzic, R. R. 2010. Intermetallics as Novel Supports for Pt Monolayer O2 Reduction Electrocatalysts: Potential for Significantly Improving Properties [J], J. Am. Chem. Soc., 132: 906-+.
    [6] Gong, K. P., Su, D., Adzic, R. R. 2010. Platinum-Monolayer Shell on AuNi0.5Fe Nanoparticle Core Electrocatalyst with High Activity and Stability for the Oxygen Reduction Reaction [J], J. Am.Chem. Soc., 132: 14364-14366.
    [7] Wang, J. X., Inada, H., Wu, L. J., Zhu, Y. M., Choi, Y. M., Liu, P., Zhou, W. P., Adzic, R. R. 2009. Oxygen Reduction on Well-Defined Core-Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects [J], J. Am. Chem. Soc., 131: 17298-17302.
    [8] Adzic, R. R., Zhang, J., Sasaki, K., Vukmirovic, M. B., Shao, M., Wang, J. X., Nilekar, A. U., Mavrikakis, M., Valerio, J. A., Uribe, F. 2007. Platinum Monolayer Fuel Cell Eectrocatalysts [J], Top. Catal., 46: 249-262.
    [9] Lim, B., Jiang, M., Camargo, P. H. C., Cho, E. C., Tao, J., Lu, X., Zhu, Y., Xia, Y. 2009. Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction [J], Science, 324: 1302-1305.
    [10] Peng, Z. M., Yang, H. 2009. Synthesis and Oxygen Reduction Electrocatalytic Property of Pt-on-Pd Bimetallic Heteronanostructures [J], J. Am. Chem. Soc., 131: 7542-+.
    [11] Lee, H. J., Habas, S. E., Somorjai, G. A., Yang, P. D. 2008. Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid [J], J. Am. Chem. Soc., 130: 5406-5407.
    [12] Valden, M., Lai, X., Goodman, D. W. 1998. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties [J], Science, 281: 1647-1650.
    [13] Rodriguez, J. A., Ma, S., Liu, P., Hrbek, J., Evans, J., Perez, M. 2007. Activity of CeOx and TiOx Nanoparticles Grown on Au(111) in the Water-Gas Shift Reaction [J], Science, 318: 1757-1760.
    [14] Matthey, D., Wang, J. G., Wendt, S., Matthiesen, J., Schaub, R., Laegsgaard, E., Hammer, B., Besenbacher, F. 2007. Enhanced Bonding of Gold Nanoparticles on Oxidized TiO2(110) [J], Science, 315: 1692-1696.
    [15] Kwak, J. H., Hu, J., Mei, D., Yi, C.-W., Kim, D. H., Peden, C. H. F., Allard, L. F., Szanyi, J. 2009. Coordinatively Unsaturated Al3+ Centers as Binding Sites for Active Catalyst Phases of Platinum onγ-Al2O3 [J], Science, 325: 1670-1673.
    [16] Kim, W. B., Voitl, T., Rodriguez-Rivera, G. J., Dumesic, J. A. 2004. Powering Fuel Cells with CO via Aqueous Polyoxometalates and Gold Catalysts [J], Science, 305: 1280-1283.
    [17] Kaden, W. E., Wu, T., Kunkel, W. A., Anderson, S. L. 2009. Electronic Structure Controls Reactivity of Size-Selected Pd Clusters Adsorbed on TiO2 Surfaces [J], Science, 326: 826-829.
    [18] Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P., Hutchings, G. J. 2008. Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation [J], Science, 321: 1331-1335.
    [19] Fu, Q., Saltsburg, H., Flytzani-Stephanopoulos, M. 2003. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts [J], Science, 301: 935-938.
    [20] Enache, D. I., Edwards, J. K., Landon, P., Solsona-Espriu, B., Carley, A. F., Herzing, A. A., Watanabe, M., Kiely, C. J., Knight, D. W., Hutchings, G. J. 2006. Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts [J], Science, 311: 362-365.
    [21] Chen, M. S., Goodman, D. W. 2004. The Structure of Catalytically Active Gold on Titania [J], Science, 306: 252-255.
    [22] Chen, M., Kumar, D., Yi, C.-W., Goodman, D. W. 2005. The Promotional Effect of Gold in Catalysis by Palladium-Gold [J], Science, 310: 291-293.
    [23] Lim, B., Kobayashi, H., Yu, T., Wang, J., Kim, M. J., Li, Z.-Y., Rycenga, M., Xia, Y. 2010. Synthesis of Pd?Au Bimetallic Nanocrystals via Controlled Overgrowth [J], J. Am. Chem. Soc., 132: 2506-2507.
    [24] Lee, Y. W., Kim, M., Kim, Z. H., Han, S. W. 2009. One-Step Synthesis of Au@Pd Core?Shell Nanooctahedron [J], J. Am. Chem. Soc., 131: 17036-17037.
    [25] Heinz, H., Farmer, B. L., Pandey, R. B., Slocik, J. M., Patnaik, S. S., Pachter, R., Naik, R. R. 2009. Nature of Molecular Interactions of Peptides with Gold, Palladium, and Pd-Au Bimetal Surfaces in Aqueous Solution [J], J. Am. Chem. Soc., 131: 9704-9714.
    [26] Ding, Y., Fan, F., Tian, Z., Wang, Z. L. 2010. Atomic Structure of Au?Pd Bimetallic Alloyed Nanoparticles [J], J. Am. Chem. Soc., 132: 12480-12486.
    [27] Ksar, F. a., Ramos, L., Keita, B., Nadjo, L., Beaunier, P., Remita, H. 2009. Bimetallic Palladium?Gold Nanostructures: Application in Ethanol Oxidation [J], Chem. Mater., 21: 3677-3683.
    [28] Tanaka, S., Taguchi, N., Akita, T., Hori, F., Kohyama, M. 2008. First-Principles Calculations of Pd/Au(100) Interfaces with Adsorbates [J], Solid State Phenom., 139: 47-52.
    [29] Taguchi, N., Tanaka, S., Akita, T., Kohyama, M., Hori, F. 2008. First-Principles Calculations of the Atomic and Electronic Structures in Au-Pd Slab Interfaces [J], Solid State Phenom., 139: 29-33.
    [30] Maroun, F., Ozanam, F., Magnussen, O. M., Behm, R. J. 2001. The role of atomic ensembles in the reactivity of bimetallic electrocatalysts [J], Science, 293: 1811-1814.
    [31] Wang, C., Daimon, H., Sun, S. H. 2009. Dumbbell-like Pt-Fe3O4 Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction [J], Nano Lett., 9: 1493-1496.
    [32] Chen, Z. W., Waje, M., Li, W. Z., Yan, Y. S. 2007. Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions [J], Angew. Chem. Int. Ed., 46: 4060-4063.
    [33] Morimura, T., Matsumura, S., Hasaka, M., Tsukamoto, H. 1997. Phase equilibria of L1(0)-type order in Cu-Au-Pd and Cu-Au-Ni ternary systems [J], Philos. Mag., A, 76: 1235-1249.
    [34] Mekhalif, Z., Sinapi, F., Laffineur, F., Delhalle, J. 2001. XPS and electrochemical characterisation of polycrystalline copper modified with 12-(N-pyrrolyl)-n-dodecanethiol [J], J. Electron. Spectrosc. Relat. Phenom., 121: 149-161.
    [35] Watanabe, H., Yamazaki, H., Wang, X. Y., Uchiyama, S. 2009. Oxygen and hydrogen peroxide reduction catalyses in neutral aqueous media using copper ion loaded glassy carbon electrode electrolyzed in ammonium carbamate solution [J], Electrochim. Acta, 54: 1362-1367.
    [36] Nabae, Y., Yamanaka, I., Otsuka, K. 2005. Electro-catalysis of the Cu/carbon cathode for the reduction of O2 during fuel-cell reactions [J], Appl. Catal., A, 280: 149-155.
    [37] Lee, Y., Garcia, M. A., Frey Huls, N. A., Sun, S. 2010. Synthetic Tuning of the Catalytic Properties of Au-Fe3O4 Nanoparticles [J], Angew. Chem. Int. Ed., 49: 1271-1274.
    [38] Cui, C. H., Li, H. H., Yu, S. H. 2010. A General Approach to Electrochemical Deposition of High Quality Free-Standing Noble Metal (Pd, Pt, Au, Ag) Sub-Micron Tubes Composed of Nanoparticles in Polar Aprotic Solvent [J], Chem. Commun., 46: 940-942.
    [39] Cui, C. H., Li, H. H., Yu, J. W., Gao, M. R., Yu, S. H. 2010. Ternary Heterostructured Nanoparticle Tubes: A Dual Catalyst and Its Synergistic Enhancement Effects for O2/H2O2 Reduction [J], Angew. Chem. Int. Ed., 49: 9149-9152.
    [40] Rodriguez-Gattorno, G., Diaz, D., Rendon, L., Hernandez-Segura, G. O. 2002. Metallic Nanoparticles from Spontaneous Reduction of Silver(I) in DMSO. Interaction between Nitric Oxide and Silver Nanoparticles [J], J. Phys. Chem. B, 106: 2482-2487.
    [41] Si, S. K., Gewirth, A. A. 2000. Solvent organization above metal surfaces: Ordering of DMSO on Au [J], J. Phys. Chem. B, 104: 10775-10782.
    [42] Wadkar, M. M., Chaudhari, V. R., Haram, S. K. 2006. Synthesis and Characterization of Stable Organosols of Silver Nanoparticles by Electrochemical Dissolution of Silver in DMSO [J], J. Phys. Chem. B, 110: 20889-20894.
    [43] Furlong, O. J., Miller, B. P., Li, Z., Walker, J., Burkholder, L., Tysoe, W. T. 2010. The Surface Chemistry of Dimethyl Disulfide on Copper? [J], Langmuir null-null.
    [44] Si, S. K., Gewirth, A. A. 2001. Complex formation between halogens and sulfoxides on metal surfaces [J], Phys. Chem. Chem. Phys., 3: 3325-3329.
    [45] Schroter, C., Roelfs, B., Solomun, T. 1997. The interaction of dimethylsulfoxide with a gold surface [J], Surf. Sci., 380: L441-L445.
    [46] Eftekhari, A. Nanostructured Materials in Electrochemistry (Wiley-VCH, 2008) [J].
    [47] Weir, M. G., Knecht, M. R., Frenkel, A. I., Crooks, R. M. 2009. Structural Analysis of PdAu Dendrimer-Encapsulated Bimetallic Nanoparticles [J], Langmuir, 26: 1137-1146.
    [48] Wu, M.-L., Chen, D.-H., Huang, T.-C. 2001. Synthesis of Au/Pd Bimetallic Nanoparticles in Reverse Micelles [J], Langmuir, 17: 3877-3883.
    [49] Alayoglu, S., Nilekar, A. U., Mavrikakis, M., Eichhorn, B. 2008. Ru-Pt Core-Shell Nanoparticles for Preferential Oxidation of Carbon Monoxide in Hydrogen [J], Nature Mater., 7: 333-338.
    [50] Lee, Y. W., Kim, M., Kim, Z. H., Han, S. W. 2009. One-Step Synthesis of Au@Pd Core-Shell Nanooctahedron [J], J. Am. Chem. Soc., 131: 17036-+.
    [51] Toshima, N., Yonezawa, T. 1998. Bimetallic Nanoparticles - Novel Materials for Chemical and Physical Applications [J], New J. Chem., 22: 1179-1201.
    [52] Pozio, A., De Francesco, M., Cemmi, A., Cardellini, F., Giorgi, L. 2002. Comparison of high surface Pt/C catalysts by cyclic voltammetry [J], J. Power Sources, 105: 13-19.
    [53] Trasatti, S., Petrii, O. A. 1992. Real Surface-Area Measurements in Electrochemistry [J], J. Electroanal. Chem., 327: 353-376.
    [54] Borkowska, Z., Tymosiak-Zielinska, A., Nowakowski, R. 2004. High catalytic activity of chemically activated gold electrodes towards electro-oxidation of methanol [J], Electrochim. Acta, 49: 2613-2621.
    [55] Zhang, S., Shao, Y., Yin, G., Lin, Y. 2010. Electrostatic Self-Assembly of a Pt-around-Au Nanocomposite with High Activity towards Formic Acid Oxidation [J], Angew. Chem. Int. Ed., 49: 2211-2214.
    [56] Adzic, R. R., Zhang, J., Sasaki, K., Vukmirovic, M. B., Shao, M., Wang, J. X., Nilekar, A. U., Mavrikakis, M., Valerio, J. A., Uribe, F. 2007. Platinum monolayer fuel cell electrocatalysts [J], Top. Catal., 46: 249-262.
    [57] Xu, C. W., Wang, H., Shen, P. K., Jiang, S. P. 2007. Highly Ordered Pd Nanowire Arrays as Effective Electrocatalysts for Ethanol Oxidation in Direct Alcohol Fuel Cells [J], Adv. Mater., 19: 4256-4259.
    [1] Stamenkovic, V. R., Mun, B. S., Arenz, M., Mayrhofer, K. J. J., Lucas, C. A., Wang, G. F., Ross, P. N., Markovic, N. M. 2007. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces [J], Nature Mater., 6: 241-247.
    [2] Ji, X., Lee, K. T., Holden, R., Zhang, L., Zhang, J., Botton, G. A., Couillard, M., Nazar, L. F. 2010. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes [J], Nature Chem., 2: 286-293.
    [3] Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., Liu, Z., Kaya, S., Nordlund, D., Ogasawara, H., Toney, M. F., Nilsson, A. 2010. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts [J], Nature Chem., 2: 454-460.
    [4] Koh, S., Strasser, P. 2007. Electrocatalysis on Bimetallic Surfaces: Modifying Catalytic Reactivity for Oxygen Reduction by Voltammetric Surface Dealloying [J], J. Am. Chem. Soc., 129: 12624-12625.
    [5] Strasser, P., Koha, S., Greeley, J. 2008. Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis [J], Phys. Chem. Chem. Phys., 10: 3670-3683.
    [6] Adzic, R. R., Zhang, J., Sasaki, K., Vukmirovic, M. B., Shao, M., Wang, J. X., Nilekar, A. U., Mavrikakis, M., Valerio, J. A., Uribe, F. 2007. Platinum monolayer fuel cell electrocatalysts [J], Top. Catal., 46: 249-262.
    [7] Zhou, W. P., Yang, X. F., Vukmirovic, M. B., Koel, B. E., Jiao, J., Peng, G. W., Mavrikakis, M., Adzic, R. R. 2009. Improving Electrocatalysts for O2 Reduction by Fine-Tuning the Pt-Support Interaction: Pt Monolayer on the Surfaces of a Pd3Fe(111) Single-Crystal Alloy [J], J. Am. Chem. Soc., 131: 12755-12762.
    [8] Wang, J. X., Inada, H., Wu, L. J., Zhu, Y. M., Choi, Y. M., Liu, P., Zhou, W. P., Adzic, R. R. 2009. Oxygen Reduction on Well-Defined Core-Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects [J], J. Am. Chem. Soc., 131: 17298-17302.
    [9] Zhang, J. L., Vukmirovic, M. B., Sasaki, K., Nilekar, A. U., Mavrikakis, M., Adzic, R. R. 2005.Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics [J], J. Am. Chem. Soc., 127: 12480-12481.
    [10] Mayrhofer, K. J. J., Juhart, V., Hartl, K., Hanzlik, M., Arenz, M. 2009. Adsorbate-Induced Surface Segregation for Core-Shell Nanocatalysts [J], Angew. Chem. Int. Ed., 48: 3529-3531.
    [11] Tao, F., Salmeron, M. 2011. In Situ Studies of Chemistry and Structure of Materials in Reactive Environments [J], Science, 331: 171-174.
    [12] Tao, F., Dag, S., Wang, L. W., Liu, Z., Butcher, D. R., Bluhm, H., Salmeron, M., Somorjai, G. A. 2010. Break-Up of Stepped Platinum Catalyst Surfaces by High CO Coverage [J], Science, 327: 850-853.
    [13] Mayrhofer, K. J. J., Ashton, S. J., Meier, J. C., Wiberg, G. K. H., Hanzlik, M., Arenz, M. 2008. Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment [J], J. Power Sources, 185: 734-739.
    [14] Haiss, W. 2001. Surface stress of clean and adsorbate-covered solids [J], Rep. Prog. Phys., 64: 591–648.
    [15] Ibach, H. 1997. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures [J], Surf. Sci. Rep., 29: 195-263.
    [16] Mayrhofer, K. J. J., Hanzlik, M., Arenz, M. 2009. The influence of electrochemical annealing in CO saturated solution on the catalytic activity of Pt nanoparticles [J], Electrochim. Acta, 54: 5018-5022.
    [17] Mayrhofer, K. J. J., Hartl, K., Juhart, V., Arenz, M. 2009. Degradation of Carbon-Supported Pt Bimetallic Nanoparticles by Surface Segregation [J], J. Am. Chem. Soc., 131: 16348-16349.
    [18] Shuo, C., Wenchao, S., Yabuuchi, N., Ferreira, P. J., Allard, L. F., Yang, S.-H. 2009. Origin of oxygen reduction reaction activity on "Pt3/Co" nanoparticles: atomically resolved chemical compositions and structures [J], J. Phys. Chem. C, 113: 1109-1125.
    [19] Cui, C. H., Li, H. H., Yu, S. H. 2010. A General Approach to Electrochemical Deposition of High Quality Free-Standing Noble Metal (Pd, Pt, Au, Ag) Sub-Micron Tubes Composed of Nanoparticles in Polar Aprotic Solvent [J], Chem. Commun., 46: 940-942.
    [20] Cui, C. H., Li, H. H., Yu, J. W., Gao, M. R., Yu, S. H. 2010. Ternary Heterostructured Nanoparticle Tubes: A Dual Catalyst and Its Synergistic Enhancement Effects for O2/H2O2 Reduction [J], Angew. Chem. Int. Ed., 49: 9149-9152.
    [21] Chen, Z. W., Waje, M., Li, W. Z., Yan, Y. S. 2007. Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions [J], Angew. Chem. Int. Ed., 46: 4060-4063.
    [22] Zhou, S. H., Varughese, B., Eichhorn, B., Jackson, G., McIlwrath, K. 2005. Pt-Cu core-shell and alloy nanoparticles for heterogeneous NOx, reduction: Anomalous stability and reactivity of a core-shell nanostructure [J], Angew. Chem. Int. Ed., 44: 4539-4543.
    [23] AlShamaileh, E. 2004. The structure of oxygen-induced reconstruction on Cu100-c(2×2)–Pt surface alloy: the Pt/Cu100-(2×2)–O [J], Surf. Sci., 548: 231-238.
    [24] Gauthier, Y., Senhaji, A., Legrand, B., Treglia, G., Becker, C., Wandelt, K. 2003. An unusual composition profile: a LEED-TBIM study of Pt25Cu75(111) [J], Surf. Sci., 527: 71-79.
    [25]Stamenkovic, V. R., Fowler, B., Mun, B. S., Wang, G. F., Ross, P. N., Lucas, C. A., Markovic, N. M. 2007. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability [J], Science, 315: 493-497.
    [26] Needs, R. J., M, M. 1989. calculation of the surface stress tensor and surface energy of the (111) surface of iridium, platinum and gold [J], J. Phys.: Condens. Matter., 1: 7555-7563.
    [27] Markovic, N. M., Ross, P. N. 2002. Surface science studies of model fuel cell electrocatalysts [J], Surf. Sci. Rep., 45: 121-229.
    [28] Somorjai, G. A. 1992. The experimental evidence of the role of surface restructuring during catalytic reactions [J], Catal. Lett., 12: 17-34.
    [29] Ghosh, T., Leonard, B. M., Zhou, Q., DiSalvo, F. J. 2010. Pt Alloy and Intermetallic Phases with V, Cr, Mn, Ni, and Cu: Synthesis As Nanomaterials and Possible Applications As Fuel Cell Catalysts [J], Chem. Mater.
    [30] Subramanian, P. R. L., D. E. in Binary Alloy Phase Diagrams 2nd edn, Vol. 2 (ed. Massalski, T. B.) 1460–1462 (ASM International, 1990). Subramanian, P. R. & Laughlin, D. E. in Binary Alloy Phase Diagrams 2nd edn, Vol. 2 (ed. Massalski, T. B.) 1460–1462 (ASM International, 1990). [J].
    [31] Yamakata, A., Osawa, M. 2008. Dynamics of double-layer restructuring on a platinum electrode covered by CO: Laser-induced potential transient measurement [J], J. Phys. Chem. C, 112: 11427-11432.
    [32] Thostrup, P., Vestergaard, E. K., An, T., Laegsgaard, E., Besenbacher, F. 2003. CO-induced restructuring of Pt(110)-(1x2): Bridging the pressure gap with high-pressure scanning tunneling microscopy [J], J. Chem. Phys., 118: 3724-3730.
    [33] Tao, F., Dag, S., Wang, L. W., Liu, Z., Butcher, D. R., Salmeron, M., Somorjai, G. A. 2009. Restructuring of hex-Pt(100) under CO Gas Environments: Formation of 2-D Nanoclusters [J], Nano Lett., 9: 2167-2171.
    [34] Qu, Z. P., Huang, W. X., Cheng, M. J., Bao, X. H. 2005. Restructuring and redispersion of silver on SiO2 under oxidizing/reducing atmospheres and its activity toward CO oxidation [J], J. Phys. Chem. B, 109: 15842-15848.
    [35] Batteas, J. D., Dunphy, J. C., Somorjai, G. A., Salmeron, M. 1996. Coadsorbate Induced Reconstruction of a Stepped Pt(111) Surface by Sulfur and CO: A Novel Surface Restructuring Mechanism Observed by Scanning Tunneling Microscopy [J], Phys. Rev. Lett., 77: 534.
    [36] Molotskii, M. 2009. Excitonic mechanism of the photoinduced surface restructuring of copper [J], Appl. Phys. Lett., 95.
    [37] Kibsgaard, J., Morgenstern, K., Laegsgaard, E., Lauritsen, J. V., Besenbacher, F. 2008. Restructuring of cobalt nanoparticles induced by formation and diffusion of monodisperse metal-sulfur complexes [J], Phys. Rev. Lett., 100.
    [38] Anderson, S. L., Mizushima, T., Udagawa, Y. 1991. Growth/restructuring of palladium clusters induced by carbon monoxide adsorption [J], J. Phys. Chem., 95: 6603-6610.
    [39] Driver, S. M., Zhang, T. F., King, D. A. 2007. Massively cooperative adsorbate-induced surface restructuring and nanocluster formation [J], Angewandte Chemie-International Edition, 46: 700-703.
    [40] Wang, C., Chi, M., Wang, G., van der Vliet, D., Li, D., More, K., Wang, H.-H., Schlueter, J. A., Markovic, N. M., Stamenkovic, V. R. 2011. Correlation Between Surface Chemistry and Electrocatalytic Properties of Monodisperse PtxNi1-x Nanoparticles [J], Adv. Funct. Mater., 21: 147-152.
    [41] Trasatti, S., Petrii, O. A. 1992. Real Surface-Area Measurements in Electrochemistry [J], J. Electroanal. Chem., 327: 353-376.
    [42] Ji, C., Searson, P. C. 2003. Synthesis and Characterization of Nanoporous Gold Nanowires [J], J. Phys. Chem. B, 107: 4494-4499.
    [43] Pozio, A., De Francesco, M., Cemmi, A., Cardellini, F., Giorgi, L. 2002. Comparison of highsurface Pt/C catalysts by cyclic voltammetry [J], J. Power Sources, 105: 13-19.
    [44] Yoo, H. D., Jang, J. H., Ka, B. H., Rhee, C. K., Oh, S. M. 2009. Impedance Analysis for Hydrogen Adsorption Pseudocapacitance and Electrochemically Active Surface Area of Pt Electrode [J], Langmuir, 25: 11947-11954.
    [45] Trasatti, S., Petrii, O. A. 1991. Real Surface-Area Measurements in Electrochemistry [J], Pure Appl. Chem., 63: 711-734.
    [46] Park, K. W., Choi, J. H., Ahn, K. S., Sung, Y. E. 2004. PtRu alloy and PtRu-WO3 nanocomposite electrodes for methanol electrooxidation fabricated by a sputtering deposition method [J], J. Phys. Chem. B, 108: 5989-5994.
    [47] Park, K. W., Choi, J. H., Kwon, B. K., Lee, S. A., Sung, Y. E., Ha, H. Y., Hong, S. A., Kim, H., Wieckowski, A. 2002. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation [J], J. Phys. Chem. B, 106: 1869-1877.
    [48] Liu, L., Pippel, E., Scholz, R., Gos?ele, U. 2009. Nanoporous Pt?Co Alloy Nanowires: Fabrication, Characterization, and Electrocatalytic Properties [J], Nano Lett., 9: 4352-4358.
    [49] Liang, H.-W., Cao, X., Zhou, F., Cui, C.-H., Zhang, W.-J., Yu, S.-H. 2011. A Free-Standing Pt-Nanowire Membrane as a Highly Stable Electrocatalyst for the Oxygen Reduction Reaction [J], Adv. Mater., 23: 1467-1471.
    [1] Ramirez-Caballero, G. E., Ma, Y., Callejas-Tovar, R., Balbuena, P. B. 2010. Surface segregation and stability of core-shell alloy catalysts for oxygen reduction in acid medium [J], Phys. Chem. Chem. Phys., 12: 2209-2218.
    [2] Stamenkovic, V. R., Mun, B. S., Arenz, M., Mayrhofer, K. J. J., Lucas, C. A., Wang, G. F., Ross, P. N., Markovic, N. M. 2007. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces [J], Nature Mater., 6: 241-247.
    [3] Tao, F., Salmeron, M. 2011. In Situ Studies of Chemistry and Structure of Materials in Reactive Environments [J], Science, 331: 171-174.
    [4] Titmuss, S., Wander, A., King, D. A. 1996. Reconstruction of Clean and Adsorbate-Covered Metal Surfaces [J], Chem. Rev., 96: 1291-1306.
    [5] Tao, F., Dag, S., Wang, L. W., Liu, Z., Butcher, D. R., Bluhm, H., Salmeron, M., Somorjai, G. A. 2010. Break-Up of Stepped Platinum Catalyst Surfaces by High CO Coverage [J], Science, 327: 850-853.
    [6] Tao, F., Dag, S., Wang, L. W., Liu, Z., Butcher, D. R., Salmeron, M., Somorjai, G. A. 2009.Restructuring of hex-Pt(100) under CO Gas Environments: Formation of 2-D Nanoclusters [J], Nano Lett., 9: 2167-2171.
    [7] Harris, P. J. F. 1986. Sulfur-induced faceting of platinum catalyst particles [J], Nature, 323: 792-794.
    [8] Kolb, D. M. 1996. Reconstruction phenomena at metal-electrolyte interfaces [J], Prog. Surf. Sci., 51: 109-173.
    [9] Mayrhofer, K. J. J., Hartl, K., Juhart, V., Arenz, M. 2009. Degradation of Carbon-Supported Pt Bimetallic Nanoparticles by Surface Segregation [J], J. Am. Chem. Soc., 131: 16348-16349.
    [10] Duong, H. T., Rigsby, M. A., Zhou, W. P., Wieckowski, A. 2007. Oxygen reduction catalysis of the Pt3Co alloy in alkaline and acidic media studied by x-ray photoelectron Spectroscopy and electrochemical methods [J], J. Phys. Chem. C, 111: 13460-13465.
    [11] Adzic, R. R., Zhang, J., Sasaki, K., Vukmirovic, M. B., Shao, M., Wang, J. X., Nilekar, A. U., Mavrikakis, M., Valerio, J. A., Uribe, F. 2007. Platinum Monolayer Fuel Cell Eectrocatalysts [J], Top. Catal., 46: 249-262.
    [12] Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., Liu, Z., Kaya, S., Nordlund, D., Ogasawara, H., Toney, M. F., Nilsson, A. 2010. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts [J], Nature Chem., 2: 454-460.
    [13] Nilekar, A. U., Ruban, A. V., Mavrikakis, M. 2009. Surface segregation energies in low-index open surfaces of bimetallic transition metal alloys [J], Surf. Sci., 603: 91-96.
    [14] Greeley, J., Norskov, J. K. 2007. Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations [J], Electrochim. Acta, 52: 5829-5836.
    [15] Mayrhofer, K. J. J., Juhart, V., Hartl, K., Hanzlik, M., Arenz, M. 2009. Adsorbate-Induced Surface Segregation for Core-Shell Nanocatalysts [J], Angew. Chem. Int. Ed., 48: 3529-3531.
    [16] Haiss, W. 2001. Surface stress of clean and adsorbate-covered solids [J], Rep. Prog. Phys., 64: 591–648.
    [17] Zhang, H.-X., Wang, C., Wang, J.-Y., Zhai, J.-J., Cai, W.-B. 2010. Carbon-Supported Pd?Pt Nanoalloy with Low Pt Content and Superior Catalysis for Formic Acid Electro-oxidation [J], J. Phys. Chem. C, 114: 6446-6451.
    [18] Winjobi, O., Zhang, Z. Y., Liang, C. H., Li, W. Z. 2010. Carbon nanotube supported platinum-palladium nanoparticles for formic acid oxidation [J], Electrochim. Acta, 55: 4217-4221.
    [19] Yuan, Q., Zhou, Z., Zhuang, J., Wang, X. 2010. Pd-Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities [J], Chem. Commun., 46: 1491-1493.
    [20] Lee, H., Habas, S. E., Somorjai, G. A., Yang, P. 2008. Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid [J], J. Am. Chem. Soc., 130: 5406-5407.
    [21] Cui, C. H., Li, H. H., Yu, J. W., Gao, M. R., Yu, S. H. 2010. Ternary Heterostructured Nanoparticle Tubes: A Dual Catalyst and Its Synergistic Enhancement Effects for O2/H2O2 Reduction [J], Angew. Chem. Int. Ed., 49: 9149-9152.
    [22] Wang, C., Chi, M., Wang, G., van der Vliet, D., Li, D., More, K., Wang, H.-H., Schlueter, J. A., Markovic, N. M., Stamenkovic, V. R. 2011. Correlation Between Surface Chemistry and Electrocatalytic Properties of Monodisperse PtxNi1-x Nanoparticles [J], Adv. Funct. Mater., 21: 147-152.
    [23] Xu, Y. H., Wang, J. P. 2008. Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation [J], Adv. Mater., 20: 994-+.
    [24] Liu, C.-W., Wei, Y.-C., Wang, K.-W. 2010. Promotion of ceria-modified Pt–Au/C cathode catalysts for oxygen reduction reaction by H2-induced surface segregation [J], Chem. Commun., 46: 2483.
    [25] Deng, L., Hu, W., Deng, H., Xiao, S. 2010. Surface Segregation and Structural Features of Bimetallic Au?Pt Nanoparticles [J], J. Phys. Chem. C, 114: 11026-11032.
    [26] Andersson, K. J., Calle-Vallejo, F., Rossmeisl, J., Chorkendorff, L. 2009. Adsorption-Driven Surface Segregation of the Less Reactive Alloy Component [J], J. Am. Chem. Soc., 131: 2404-2407.
    [27] Jeon, T. Y., Lee, K. S., Yoo, S. J., Cho, Y. H., Kang, S. H., Sung, Y. E. 2010. Effect of Surface Segregation on the Methanol Oxidation Reaction in Carbon-Supported Pt-Ru Alloy Nanoparticles [J], Langmuir, 26: 9123-9129.
    [28] Foiles, S. M. 1987. Calculation of the surface segregation of Pd-Cu, Pd-Ag, and Pd-Au alloys [J], Physical and Chemical Properties of Thin Metal Overlayers and Alloy Surfaces. Symposium|Physical and Chemical Properties of Thin Metal Overlayers and Alloy Surfaces. Symposium 175-182|xiii+268.
    [29] Schurmans, M., Luyten, J., Creemers, C., Declerck, R., Waroquier, M. 2007. Surface segregation in CuPt alloys by means of an improved modified embedded atom method [J], Phys. Rev. B, 76: 174208.
    [30] Miller, J., Matranga, C., Gellman, A. 2008. Surface segregation in a polycrystalline Pd70Cu30 alloy hydrogen purification membrane [J], Surf. Sci., 602: 375-382.
    [31] Zhenjun, L., Furlong, O., Calaza, F., Burkholder, L., Hin Cheuk, P., Saldin, D., Tysoe, W. T. 2008. Surface segregation of gold for Au/Pd(111) alloys measured by low-energy electron diffraction and low-energy ion scattering [J], Surf. Sci. 10.1016/j.susc.2008.1001.1019.
    [32]Polak, M., Rubinovich, L. 2000. The interplay of surface segregation and atomic order in alloys [J], Surf. Sci. Rep., 38: 127-194.
    [33] Yoshimura, Y., Toba, M., Matsui, T., Harada, M., Ichihashi, Y., Bando, K. K., Yasuda, H., Ishihara, H., Morita, Y., Kameoka, T. 2007. Active phases and sulfur tolerance of bimetallic Pd-Pt catalysts used for hydrotreatment [J], Applied Catalysis a-General, 322: 152-171.
    [34] Xiong, L. F., He, T. 2006. Synthesis and characterization of carbon supported PtW catalysts from carbonyl complexes for oxygen electroreduction [J], Electrochem. Commun., 8: 1671-1676.
    [35] Xiao, X. Y., Tillmann, S., Baltruschat, H. 2002. Scanning tunneling microscopy of Sn coadsorbed with Cu and CO on Pt(111) electrodes [J], Phys. Chem. Chem. Phys., 4: 4044-4050.
    [36] Wintterlin, J., Bocquet, M. L. 2009. Graphene on metal surfaces [J], Surf. Sci., 603: 1841-1852.
    [37] Wanjala, B. N., Luo, J., Loukrakpam, R., Fang, B., Mott, D., Njoki, P. N., Engelhard, M., Naslund, H. R., Wu, J. K., Wang, L. C., Malis, O., Zhong, C. J. 2010. Nanoscale Alloying, Phase-Segregation, and Core-Shell Evolution of Gold-Platinum Nanoparticles and Their Electrocatalytic Effect on Oxygen Reduction Reaction [J], Chem. Mater., 22: 4282-4294.
    [38] Wang, C., Wang, G. F., van der Vliet, D., Chang, K. C., Markovic, N. M., Stamenkovic, V. R. 2010. Monodisperse Pt3Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen [J], Phys. Chem. Chem. Phys., 12: 6933-6939.
    [39] Wang, D., Villa, A., Porta, F., Prati, L., Su, D. S. 2008. Bimetallic gold/palladium catalysts: Correlation between nanostructure and synergistic effects [J], J. Phys. Chem. C, 112: 8617-8622.
    [40] Wang, G. F., Van Hove, M. A., Ross, P. N., Baskes, M. I. 2005. Quantitative prediction of surface segregation in bimetallic Pt-M alloy nanoparticles (M = Ni, Re, Mo) [J], Prog. Surf. Sci., 79: 28-45.
    [41] Wang, A. Q., Chang, C. M., Mou, C. Y. 2005. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation [J], J. Phys. Chem. B, 109: 18860-18867.
    [42] Villa, A., Wang, D., Su, D. S., Veith, G. M., Prati, L. 2010. Using supported Au nanoparticles as starting material for preparing uniform Au/Pd bimetallic catalysts [J], Phys. Chem. Chem. Phys., 12: 2183-2189.
    [43] Vidal-Iglesias, F. J., Al-Akl, A., Watson, D., Attard, G. A. 2007. Electrochemical characterization of PtPd alloy single crystal surfaces prepared using Pt basal planes as templates [J], J. Electroanal. Chem., 611: 117-125.
    [44] Tysoe, W. T., Zhenjun, L., Feng, G., Yilin, W., Calaza, F., Burkholder, L. 2007. Formation and characterization of Au/Pd surface alloys on Pd(111) [J], Surf. Sci., 601: 1898-1908.
    [45] Tojo, C., de Dios, M., Lo pez-Quintela, M. A. 2009. On the Structure of Bimetallic Nanoparticles Synthesized in Microemulsions [J], J. Phys. Chem. C 19145-19154.
    [46] Miller, J. B., Morreale, B. D., Gellman, A. J. 2008. The effect of adsorbed sulfur on surface segregation in a polycrystalline Pd70Cu30 alloy [J], Surf. Sci., 602: 1819-1825.
    [47] Tegou, A., Armyanov, S., Valova, E., Steenhaut, O., Hubin, A., Kokkinidis, G., Sotiropoulos, S. 2009. Mixed platinum-gold electrocatalysts for borohydride oxidation prepared by the galvanic replacement of nickel deposits [J], J. Electroanal. Chem., 634: 104-110.
    [48] Tao, F., Grass, M. E., Zhang, Y. W., Butcher, D. R., Renzas, J. R., Liu, Z., Chung, J. Y., Mun, B. S., Salmeron, M., Somorjai, G. A. 2008. Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles [J], Science, 322: 932-934.
    [49] Vasiliev, M. A. 1997. Surface effects of ordering in binary alloys [J], Journal of Physics D-Applied Physics, 30: 3037-3070.
    [50] Rousset, J. L., Cadrot, A. M., Aires, F. J. C. S., Renouprez, A., Melinon, P., Perez, A., Pellarin, M., Vialle, J. L., Broyer, M. 1995. Study of Bimetallic Pd-Pt Clusters in Both Free and Supported Phases [J], J. Chem. Phys., 102: 8574-8585.
    [51] Stoupin, S., Rivera, H., Li, Z. R., Segre, C. U., Korzeniewski, C., Casadonte, D. J., Inoue, H., Smotkin, E. S. 2008. Structural analysis of sonochemically prepared PtRu versus Johnson Matthey PtRu in operating direct methanol fuel cells [J], Phys. Chem. Chem. Phys., 10: 6430-6437.
    [52] Stamenkovic, V. R., Mun, B. S., Mayrhofer, K. J. J., Ross, P. N., Markovic, N. M. 2006. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces [J], J. Am. Chem. Soc., 128: 8813-8819.
    [53] Stamenkovic, V., Schmidt, T. J., Ross, P. N., Markovic, N. M. 2003. Surface segregation effects in electrocatalysis: kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces [J], J. Electroanal. Chem., 554-555: 191-199.
    [54] Stamenkovic, V., Schmidt, T. J., Ross, P. N., Markovic, N. M. 2003. Surface segregation effects in electrocatalysis: kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces [J], J. Electroanal. Chem., 554: 191-199.
    [55] Stamenkovic, V. R., Arenz, M., Lucas, C. A., Gallagher, M. E., Ross, P. N., Markovic, N. M. 2003. Surface chemistry on bimetallic alloy surfaces: Adsorption of anions and oxidation of CO on Pt3Sn(111) [J], J. Am. Chem. Soc., 125: 2736-2745.
    [56] Soto-Verdugo, V., Metiu, H. 2007. Segregation at the surface of an Au/Pd alloy exposed to CO [J], Surf. Sci., 601: 5332-5339.
    [57] Somorjai, G. A. 2002. The evolution of surface chemistry. A personal view of building the future on past and present accomplishments [J], J. Phys. Chem. B, 106: 9201-9213.
    [58] Shuo, C., Wenchao, S., Yabuuchi, N., Ferreira, P. J., Allard, L. F., Yang, S.-H. 2009. Origin of oxygen reduction reaction activity on "Pt3/Co" nanoparticles: atomically resolved chemical compositions and structures [J], J. Phys. Chem. C 1109-1125.
    [59] Shao, M. H., Liu, P., Zhang, J. L., Adzic, R. 2007. Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction [J], J. Phys. Chem. B, 111: 6772-6775.
    [60] Shao, M. H., Huang, T., Liu, P., Zhang, J., Sasaki, K., Vukmirovic, M. B., Adzic, R. R. 2006. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction [J], Langmuir, 22: 10409-10415.
    [61] Pantf?rder, A., Skonieczny, J., Janssen, E., Meister, G., Goldmann, A., Varga, P. 1995. Surface segregation and chemisorption of CO and oxygen on Pt25Ni75(111) studied by XPS and HREELS [J], Surf. Sci., 331-333: 824-830.
    [62] Pantf?rder, A., Skonieczny, J., Janssen, E., Meister, G., Goldmann, A., Varga, P. 1995. Surface composition of Pt25Ni75(111) probed by HREELS [J], Surf. Sci., 337: 177-182.
    [63] Komatsu, T., Tamura, A. 2008. Pt3Co and PtCu intermetallic compounds: Promising catalysts for preferential oxidation of CO in excess hydrogen [J], J. Catal., 258: 306-314.
    [64] Gauthier, Y., Senhaji, A., Legrand, B., Treglia, G., Becker, C., Wandelt, K. 2003. An unusual composition profile: a LEED-TBIM study of Pt25Cu75(111) [J], Surf. Sci., 527: 71-79.
    [65] Andersson, K. J., Chorkendorff, I. 2010. On the stability of the CO adsorption-induced and self-organized CuPt surface alloy [J], Surf. Sci., 604: 1733-1736.
    [66] Barrio, L., Liu, P., Rodriguez, J. A., Campos-Martin, J. M., Fierro, J. L. G. 2006. A density functional theory study of the dissociation of H2 on gold clusters: Importance of fluxionality and ensemble effects [J], J. Chem. Phys., 125.
    [67] Du, B. C., Tong, Y. Y. 2005. A coverage-dependent study of Pt spontaneously deposited onto Au and Ru surfaces: Direct experimental evidence of the ensemble effect for methanol electro-oxidation on Pt [J], J. Phys. Chem. B, 109: 17775-17780.
    [68] Liu, P., Rodriguez, J. A. 2005. Catalysts for hydrogen evolution from the NiFe hydrogenase to the Ni2P(001) surface: The importance of ensemble effect [J], J. Am. Chem. Soc., 127: 14871-14878.
    [69] Liu, P., Norskov, J. K. 2001. Ligand and ensemble effects in adsorption on alloy surfaces [J], Phys. Chem. Chem. Phys., 3: 3814-3818.
    [70] Yuan, D. W., Gong, X. G., Wu, R. Q. 2007. Ensemble effects on ethylene dehydrogenation on PdAu(001) surfaces investigated with first-principles calculations and nudged-elastic-band simulations [J], Phys. Rev. B, 75.
    [71] Zhang, H. X., Wang, C., Wang, J. Y., Zhai, J. J., Cai, W. B. 2010. Carbon-Supported Pd-Pt Nanoalloy with Low Pt Content and Superior Catalysis for Formic Acid Electro-oxidation [J], J. Phys. Chem. C, 114: 6446-6451.
    [72] Stephens, I. E. L., Bondarenko, A. S., Perez-Alonso, F. J., Calle-Vallejo, F., Bech, L., Johansson, T. P., Jepsen, A. K., Frydendal, R., Knudsen, B. P., Rossmeisl, J., Chorkendorff, I. 2011. Tuning the Activity of Pt(111) for Oxygen Electroreduction by Subsurface Alloying [J], J. Am. Chem. Soc., 133: 5485-5491.
    [73] Strasser, P., Koha, S., Greeley, J. 2008. Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis [J], Phys. Chem. Chem. Phys., 10: 3670-3683.
    [74] Zhou, W. P., Lewera, A., Larsen, R., Masel, R. I., Bagus, P. S., Wieckowski, A. 2006. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation offormic acid [J], J. Phys. Chem. B, 110: 13393-13398.
    [75] Richter, B., Kuhlenbeck, H., Freund, H. J., Bagus, P. S. 2004. Cluster Core-Level Binding-Energy Shifts: The Role of Lattice Strain [J], Phys. Rev. Lett., 93: 026805.
    [76] Benesh, G. A., King, D. A. 1992. Core-level shift spectroscopy for adsorbates-ionic, covalent or metallic bonding [J], Chem. Phys. Lett., 191: 315-319.
    [77] Benesh, G. A., King, D. A. 1992. Core-level shift spectroscopy for adsorbates: ionic, covalent or metallic bonding? [J], Chem. Phys. Lett., 191: 315-319.
    [78] Benesh, G. A., Krakauer, H., Ellis, D. E., Posternak, M. 1981. Na chemisorption on the Al(001) surface[J], Surf. Sci., 104: 599-608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700