用户名: 密码: 验证码:
海洋环境中金属材料现场电化学检测及冲刷腐蚀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国材料环境海水腐蚀试验网站的基础数据积累研究,已经获得了大量宝贵的腐蚀数据。国家自然科学基金重大项目“材料在自然环境腐蚀过程中原位实时监检测新技术的基础与应用研究”(No. 50499335,2004.9~2008.7)的主要研究内容为“水环境腐蚀站网典型金属材料暴露试件现场实时检测”。针对舟山海域海水泥沙含量大、海生物附着少的特点,对舟山海水腐蚀试验站暴露金属试片进行现场腐蚀电化学检测,研究了金属材料在模拟泥沙海水及实海冲刷环境下的腐蚀行为,为材料在海洋环境中腐蚀行为的研究及预测提供了依据。
     实现了实海暴露金属试片的现场腐蚀电化学检测,恒电位方波和电化学阻抗谱(EIS)检测结果反映了试片在海水不同区带的腐蚀行为及海水环境因素的直接影响。确定了Q235钢、Q235超细晶钢、09CuPCrNiRE耐候钢和09CuPCrNi超细晶超高强度钢在海水中的极化阻力方程式的B值,为研究碳钢、低合金钢在海水中的腐蚀行为有很大意义。获得了实海试片暴露期间腐蚀速率的连续变化规律,碳钢、低合金钢全浸试片暴露1年和2年的电化学检测结果与失重结果一致。
     采用灰关联分析法分析了暴露期间试片不同时间的腐蚀速度与海水环境因素(潮位、温度、流速和流向)的关系,结果表明:海水温度是影响全浸和潮差试片腐蚀速度的主要因素,海水潮位对潮差试片腐蚀速度的影响程度与温度的影响非常接近。
     利用模拟冲刷腐蚀测试系统研究了3C、10CrMoAl、ZHMn55-3-1和HAl77-2在模拟泥沙海水冲刷条件下的腐蚀行为。模拟实海流速0~0.8m/s范围内,流速是影响3C和10CrMoAl腐蚀速度的主要因素,而泥沙含量的影响并不显著。流速和泥沙对ZHMn55-3-1和HAl77-2铜合金在模拟实海流速以及模拟高速下的冲刷腐蚀行为都有影响。
     在舟山海水腐蚀试验站实现了金属材料的实海冲刷腐蚀电化学检测,检测结果表明:在流速1~3m/s范围内,3C、10CrMoAl和ZHMn55-3-1的腐蚀速度随流速的增加而增大,与实海冲刷腐蚀失重结果一致。材料的冲刷腐蚀形貌也进一步验证了电化学检测结果。
On the basis of China's material ambient seawater corrosion network test data accumulated, a great deal of valuable corrosion data has been obtained. National Natural Science Foundation of major projects "in situ material in a natural process of corrosion testing of new technology based on real-time monitoring and application" (No.50499335, 2004.9~2008.7), the main content of this project is "Water environment network typical metal corrosion specimens exposed real-time detection". Focused on the characteristics of Zhoushan seawater with larger concentration of sand and less marine organism, in field corrosion electrochemical detections of metal samples in Zhoushan marine corrosion test station have been implemented. The corrosion behaviors of metal samples both in simulated erosion-corrosion of seawater with sand and in marine erosion-corrosion conditions have been studied. These offer the foundation to investigate and forecast the corrosion performances of materials in marine environment.
     The in field corrosion electrochemical detections of metal samples in marine environment have been achieved. Potentiostatic square wave and electrochemical impedance spectroscopy (EIS) results reflect the corrosion behaviors of metal samples exposed in different zone and the direct influence of marine environmental factors on the corrosion behaviors. The values of the parameter“B”in polarization resistance formula of Q235 carbon steel, Q235 ultrafine grained steel, 09CuPCrNiRE weathering steel and 09CuPCrNi ultrafine grained high strength steel have been identified, which have an great significance to investigate the corrosion behaviors o f carbon steels and low alloy steels in seawater. And the continuous rules of the samples’corrosion rate changing during exposure have been obtained. The results of carbon steels and low alloy steels immersed samples exposed for 1 and 2 years monitored by electrochemical methods is consistent with that of weight lost methods.
     The relationships between corrosion rate of the samples and marine environmental factors (such as height of tide, temperature, velocity of seawater and orientation of flow) during the exposure have been studied by gray correlation analysis method. The results show that seawater temperature is the major factor influencing the corrosion rate of the samples exposed in immersed and tidal zone. The extent of tidal height influencing on the tidal zone samples is close to that of temperature.
     The corrosion behaviors of 3C steel, 10CrMoAl steel, ZHMn55-3-1 copper alloy and HAl77-2 copper alloy have been investigated in different erosion-corrosion conditions of seawater with sand using simulated erosion-corrosion test systems. In the simulating marine velocity range of 0~0.8m/s, the main factor influencing on corrosion rate of 3C and 10CrMoAl steel is velocity of flow, the impact of silt content is not significant. In the test of simulating marine velocity and simulating high-speed erosion-corrosion, the velocity and silt all have an influence on the corrosion behaviors of ZHMn55-3-1 and HAl77-2 copper alloy.
     The marine erosion-corrosion electrochemical detections of metallic materials have been achieved in Zhoushan marine corrosion test station. The results show that the corrosion rates of 3C steel, 10CrMoAl steel and ZHMn55-3-1 copper alloy augment with the velocity increasing in the velocity range of 1~3m/s, which is consistent with the results of weight lost methods. The erosion-corrosion appearances of materials have further verified the results of electrochemical detections.
引文
[1] Emi H, Kumano A, Yamamoto N, et al. A recent study on life assessment of ships and offshore structures. Tech Bull Nippon Kaiji Kyokai, 1991, 9:27~49
    [2] 颜民,黄桂桥,中国水环境腐蚀试验站网工作回顾与展望,海洋科学,2005,29(7):73~76
    [3] Hussain Essam, Husain A. Erosion-corrosion of duplex stainless steel under Kuwait marine condition. Desalination and the environment, 2005, 183(1-3): 227~234
    [4] 侯宝荣等著,海洋腐蚀环境理论及其应用,北京:化学工业出版社,1999
    [5] 曹楚南主编,中国材料的自然环境腐蚀,北京:化学工业出版社,2005,220
    [6] (美)M.舒马赫,李大超译,海水腐蚀手册,北京:国防工业出版社,1984
    [7] T S Lee. Difficulties in developing tests to simulate corrosion in marine environments. Materials Performance, 1984, 23(8):28
    [8] Phull B S, Pikul S J, Kain R M. Seawater corrosivity around the world: results from five years of testing. Corrosion testing in natural waters, ASTM STP 1300, 1997, 2:34~73
    [9] Gusmanoa G, Simoncellib C, Valotac N M, et al. Factors affecting the corrosion behaviour of CN 108 alloy in sea water. Desalination, 1989, 74(1/3):259~276
    [10] Sawant S S, Wagh A B. Corrosion behaviour of metals and alloys in the waters of the Arabian Sea. Corrosion Prevention and Control, 1990, 37(6): 154~157
    [11] Sawant S S, Wagh A B. Effect of height on the marine atmospheric corrosion of Steel. Corrosion Prevention and Control (UK), 1991, 38 (3):75~77
    [12] Maruthamuthu S, Eashwar M, Manickam S T, et al. Corrosion and biofouling in Tuticorin Harbor. Corrosion Prevention and Control, 1993, 40(1):6~10
    [13] Francis R. The effects of chlorine on the properties of films on copper alloys in sea-water. corrosion science, 1986, 26(3):205
    [14] Al-Arifia A, El-Dahshanb M E, Hazzaab M I. The effect of molybdenum on the corrosion behaviour of steel alloy in sea water, Desalination, 1994, 97(1-3): 77~86
    [15] Malik A U, Siddiqi N A, Ahmad S, et al. The effect of dominant alloy additions on the corrosion behavior of some conventional and high alloy stainless steels in seawater. Corrosion Science, 1995, 37(10):1521~1535
    [16] Bhosle N B, Wagh A B. The effect of organic matter associated with the corrosion products on the corrosion of mild steel in the Arabian Sea. Corrosion Science, 1992, 33(5) :647~655
    [17] Sinyavskii V S, Kalinin V D. Marine corrosion and protection of aluminum alloys according to their composition and structure. Protection of metals, 2005, 41(4): 317~328
    [18] Nú?nez L, Reguera E, Corvo F, et al. Corrosion of copper in seawater and its aerosols in a tropical island. Corrosion Science, 2005, 47: 461–484
    [19] Jeom Kee Paik, Thayamballi Anil K, Young Il Park, et al. A time-dependent corrosion wastage model for seawater ballast tank structures of ships. Corrosion science , 2004, 46(2): 471~486
    [20] Melchers R E. Corrosion uncertainty modelling for steel structures. Journal of Constructional Steel Research, 1999, 52: 3~19
    [21] Melchers R E. Effect of temperature on the marine immersion corrosion of carbon steels. Corrosion (NACE), 2002, 58 (9): 768~782
    [22] Melchers R E. Probabilistic model for marine corrosion of steel for structural reliability assessment. Journal of Structural Engineering, 2003, 129, (11): 1484~1493
    [23] Melchers R E. Modeling of marine immersion corrosion for mild and low alloy steels––part 1: phenomenological model, Corrosion, 2003, 59 (4): 319~334
    [24] Melchers R E. Probabilistic models for corrosion in structural reliability assessment—part 2: Models Based on Mechanics. Journal of Offshore Mechanics and Arctic Engineering , 2003, 125(4): 272~280
    [25] Melchers R E. Mathematical modelling of the diffusion controlled phase in marine immersion corrosion of mild steel. Corrosion Science, 2003, 45: 923~940
    [26] Melchers R E. Effect on marine immersion corrosion of carbon content of low alloy steels. Corrosion Science, 2003, 45: 2609~2625
    [27] Melchers R E. Effect of small compositional changes on marine immersion corrosion of low alloy steels. Corrosion Science, 2004, 46: 1669~1691
    [28] Melchers R E, Jeffrey R. Early corrosion of mild steel in seawater. Corrosion Science, 2005, 47: 1678~1693
    [29] Robert E Melchers. Effect of immersion depth on marine corrosion of mild steel. Corrosion, 2005, 61(9): 895~906
    [30] 夏兰廷,王录才,黄桂桥,我国金属材料的海水腐蚀研究现状,中国铸造装备与技术,2002,6:1~4
    [31] 黄桂桥,不锈钢海水潮汐区 16 年腐蚀行为,中国腐蚀与防护学报,2002,22(6):330~334
    [32] 黄桂桥,戴明安,含铬低合金钢在海水中的腐蚀研究,腐蚀科学与防护技术,2000,12(6):315~318
    [33] 黄桂桥,郁春娟,金属材料在海洋飞溅区的腐蚀,材料保护,1999,32(2):28~30
    [34] 黄桂桥,铝合金在海洋环境中的腐蚀研究(Ⅰ)海水潮汐区 16 年暴露试验总结,腐蚀与防护,2002,23(1):18~20
    [35] 黄桂桥,铝合金在海洋环境中的腐蚀研究(Ⅱ)海水全浸区 16 年暴露试验总结,腐蚀与防护,2002,23(2):47~50
    [36] 夏兰廷,黄桂桥,丁路平,碳钢及低合金钢的海水腐蚀性能,铸造设备研究,2002,4:14~17
    [37] 黄桂桥,碳钢在我国不同海域的海水腐蚀行为,腐蚀科学与防护技术,2001,13(2):81~84
    [38] 赵月红,林乐耘,崔大为,铜及铜合金在我国实海海域暴露 16 年局部腐蚀规律,腐蚀科学与防护技术,2003,15(5):266~271
    [39] 黄桂桥,郁春娟,镍合金在天然海水中的腐蚀行为,材料保护,2004,37(3):16~18
    [40] 孔德英,宋诗哲,人工神经网络技术探讨碳钢、低合金钢的实海腐蚀规律,中国腐蚀与防护学报,1998,18(4):289~296
    [41] 朱相荣,张启富,灰关联分析法探讨环境因素与海水腐蚀性的关系,中国腐蚀与防护学报,2000,20(1):29~34
    [42] 朱相荣,张启富,海水中钢铁腐蚀与环境因素的灰关联分析,海洋科学,2000,24(5):37~40
    [43] 朱相荣,郁春娟,张晶,Al 合金海水腐蚀与环境因素的灰关联分折,腐蚀科学与防护技术,2003,13(1):25~28
    [44] 王守琰,孔德英,宋诗哲,基于模糊模式识别的金属材料海水腐蚀形貌诊断系统,金属学报,2001,37(5):517~521
    [45] 王守琰,宋诗哲,基于分形的金属材料海水腐蚀形貌图像分析诊断系统,金属学报,2004,40(1):84~98
    [46] 灰色理论对碳钢、低合金钢海水腐蚀的预测和分析,腐蚀与防护,2005,26(9):373~374
    [47] 邓春龙,李文军,孙明先,等,BP 神经网络在铜及铜合金海水腐蚀预测中的应用,海洋科学,2006,30(3):16~20
    [48] 朱卫东,陈范才,智能化腐蚀监测仪的发展现状及趋势,腐蚀科学与防护技术,2003,15(1):29~32
    [49] George R P, Marshall D, Newman R C. Mechanism of a MIC probe. Corrosion Science , 2003, 45(9): 1999~2015
    [50] Xu Songbo, Zhu Yongda, Huang Xing. Corrosion resistance of the intermetallic compound NiAl in a molten carbonate fuel cell environment. Journal of Power Sources, 2002, 103(2): 230~236
    [51] 左慧军,金文房,电阻探针 MS3500E 在线腐蚀监测应用,腐蚀与防护,2000,21(12):557~558
    [52] 郑立群,张蔚,台闯,等,高温腐蚀监测电阻探针和测试仪的研制及应用,石油化工腐蚀与防护,2002,19(5):50~52
    [53] 宋诗哲,万小山,郭英等,磁阻探针腐蚀检测技术的应用,化工学报,2001,52(7):622~625
    [54] 谢先宇,宋诗哲,磁阻法在大气腐蚀研究中的应用,腐蚀科学与防护技术,2004,16(1):55~56
    [55] 佘坚,宋诗哲,磁阻探针研究碳钢在人造污染大气中的腐蚀行为,腐蚀科学与防护技术,2006,18(1):9~11
    [56] Yeih W, Huang R. Detection of the corrosion damage in reinforced concrete members by ultrasonic testing. Cement and Concrete Research, 1998, 28(7): 1071~1083
    [57] Mark J, Bergander. EMAT thickness measurement for tubes in coal-fired boilers. Applied Energy, 2003, 74(3): 439~444
    [58] Silva M Z, Gouyon R, Lepoutre F. Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis. Ultrasonics, 2003, 41(4): 301~305
    [59] Lohr K R, Rose J L. Ultrasonic guided wave and acoustic impact methods for pipe fouling detection. Journal of Food Engineering, 2003, 56(4): 315~324
    [60] Baby S, Balasubramanian T, Pardikar R J, Ultrasonic study for detection of inner diameter cracking in pipeline girth welds using creeping waves. International Journal of Pressure Vessels and Piping, 2003, 80(2): 139~146
    [61] Lewis K G. The CERL overhead line corrosion detector. Corrosion and Prevention and Control, 1990, 37(2): 85~93
    [62] 杨宾峰,罗飞路,曹雄恒,等,飞机结构腐蚀检测中的脉冲涡流无损检测技术,测试技术学报,2005,19(1):27~29
    [63] Verginia R Crispim, Jesse J G Da Silva. Detection of corrosion in aircraft aluminum alloys. Applied radiation and isotopes, 1998, 49(7): 779~782
    [64] Cullington D W, MacNeil D, Paulson P. Continuous acoustic monitoring of grouted post-tensioned concrete bridges. NDT&E International, 2001, 34(2): 95~105
    [65] J H W de Wit. New knowledge on localized corrosion obtained from local measuring techniques. Electrochimica Acta, 2001, 46(24): 3641~3650
    [66] Kittel J, Celati N, Keddam M, et al. New methods for the study of organic coatings by EIS New insights into attached and free films. Progress in Organic Coatings, 2001, 41(1): 93~98
    [67] Rocchini G. Some considerations on the polarization resistance method. Corrosion science, 1999, 41(12): 2353~2367
    [68] Gowers K R, Millard S G. On-site linear polarization resistance mapping of reinforced concrete structures. Corrosion science, 1993, 35(5-8): 1593~1600
    [69] Andrade C, Alonso C. Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Materials and Structures, 2004, 37(9): 623~643
    [70] Roberge P R, Sastri V S. On-Line corrosion monitoring with electrochemical impedance spectroscopy. Corrosion, 1994, 50(10): 744~754
    [71] Amirudin A, Thierry D. Application of electrochemical impedance spectroscopy to study efficiency of anticorrosive pigments in epoxy-polyamide resin. British Corrosion Journal, 1995, 30(2): 128~134
    [72] Liang Ming-Te, Su Po-Jen. Detection of the corrosion damage of rebar in concrete using impact-echo method. Cement and Concrete Research, 2001, 31(10): 1427~1436
    [73] Bosch Rik-Wouter. Electrochemical impedance spectroscopy for the detection of stress corrosion cracks in aqueous corrosion systems at ambient and high temperature. Corrosion Science, 2005, 47 (1): 125~143
    [74] Atsushi Nishikata, Fumiyuki Suzuki, Tooru Tsuru. Corrosion monitoring of nickel-containing steels in marine atmospheric environment. Corrosion Science, 2005, 47: 2578~2588
    [75] Jurgen Mietz, Bernd Isecke. Monitoring of concrete structures with respect to rebar corrosion. Construction and Building Materials, 1996, 10(5): 367~373
    [76] Birbilis N, Nairn K M, Forsyth M. Transient response analysis of steel in concrete. Corrosion Science, 2003,45(9): 1895~1902
    [77] Montemor M F, Sim?es A M P, Ferreira M G S. Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques. Cement & Concrete Composites, 2003, 25(4-5): 491~502
    [78] Gulikers J. Development of a galvanic monitoring probe to improve service life prediction of reinforced concrete structures with respect to reinforcement corrosion. Construction and Building Materials, 1997, 11(3): 143~148
    [79] Ji-Hong Yoo, Zin-Taek Parka, Jung-Gu Kim. Development of a galvanic sensor system for detecting the corrosion damage of the steel embedded in concrete structures: Part 1. Laboratory tests to correlate galvanic current with actual damage. Cement and Concrete Research, 2003, 33(12): 2057~2062
    [80] Zin-Taek Park, Yoon-Seok Choi, Jung-Gu Kim, et al. Development of a galvanic sensor system for detecting the corrosion damage of the steel embedded in concrete structure: Part 2. Laboratory electrochemical testing of sensors in concrete. Cement and Concrete Research, 2005, 35: 1814~1819
    [81] 宋诗哲,腐蚀电化学研究方法,北京:化学工业出版社,1987,100~150
    [82] Dan Townley, Steven J Duranceau, Instrumentation considerations for electrochemical noise corrosion monitoring in the field. NACE2001, paper01287
    [83] Graham E C Bell, Laury M Rosenthal, Kevin Lawson. Electrochemical noise corrosion monitoring field trial at Cahn3 water treatment plant Lost Hills. NACE2000, Paper 00412
    [84] John I Mickalonis, Eugene Tshishiko. Development of a movable EN corrosion probe for nuclear waste tanks. NACE2002, paper02327
    [85] Townley Dan W, Schiff M J. On-Line electrochemical noise corrosion monitoring in potable water distribution systems. NACE2002, paper 02328
    [86] Graham Quirk. Electrochemical noise measurements in a 500MW steam turbine to maximize lifetime under changing operational demands. NACE2002, paper 02333
    [87] Manuel Amaya, E Sosa, Jose L. Corrosion behavior of API X52 and API X65 pipeline steels in the presence of bacteria consortia using electrochemical noise. NACE2003, paper 03414
    [88] Townley Dan W, Wilson D F, Pawel S J. Investigation of the use of electrochemical noise to monitor corrosion in Kraft Pulp Digesters, NACE2003,paper 03411
    [89] Elbeik S, Tseung A C C, Mackay A L. The formation of calcareous deposits during the corrosion of mild steel in sea water. Corrosion Science, 1986, 26(9): 669~680
    [90] Veleva L, Quintana P, Ramanauskas R, et al. Mechanism of copper patina formation in marine environments. Electrochmica Acta, 1996, 41(10):1641~ 1646
    [91] Mansfeld F, Xiao H, Han L T, et al. Electrochemical impedance and noise data for polymer coated steel exposed at remote marine test sites. Progress in Organic Coatings, 1997, 30: 89~100
    [92] Stoffyn-Egli Patricia, Buckley Dale E, Clyburne Jason A C. Corrosion of brass in a marine environment: mineral products and their relationship to variable oxidation and reduction conditions. Applied Geochemistry, 1998, 13(5): 643~650
    [93] Han Z, Zhao H, Effect of β martensite transformation on dealuminification behavior of Cu-9Al-2Mn alloy in a marine environment, Materials Science and Engineering, 2003, A345: 8~13
    [94] Poupard O, L’Hostis V, Catinaud S, et al. Corrosion damage diagnosis of a reinforced concrete beam after 40 years natural exposure in marine environment. Cement and Concrete Research, 2006, 36: 504~520
    [95] 万小山,田斌,宋诗哲,水下钢铁构筑物腐蚀监检测电化学传感系统研制,中国腐蚀与防护学报,2001,21(3):182~187
    [96] Song Shizhe, Yin Lihui, Jin Weixian, et al. In field electrochemical detecting of carbon steel and low alloy steel samples in immersion region. 16th international corrosion congress, P-05-A-08, September 19-24, 2005, Beijing, China
    [97] 姜晓霞,李诗卓,李曙,金属的腐蚀磨损,北京:化学工业出版社,2003.1
    [98] (美)M.G.方坦纳(M.G.Fontana),(美)N.D.格林(N.D.Greene)著,左景伊译,腐蚀工程(第二版),北京:化学工业出版社,1982. 71~84
    [99] 龚敏,冲刷腐蚀的某些影响因素及其研究方法,四川轻化工学院学报, 1995, 8(1):53~59
    [100] 雍兴跃,刘景军,林玉珍,金属在流动氯化物体系中流动腐蚀的 EIS 研究,金属学报,2005,41(8):871~875
    [101] Hu X, Neville A. The electrochemical response of stainless steels in liquid–solid impingement. Wear,2005, 258(1-4): 641~648
    [102] 林玉珍,流动条件下磨损腐蚀的研究进展,全面腐蚀控制,1996,10(4):1~3
    [103] Heitz E. Mechanistically based prevention strategies of flow-induced corrosion. Electrochemical Acta, 1996, 41(4): 503~509
    [104] GAT N, Tabakoff W. Effects of temperature on the behavior of metals under erosion by particulate matter. Journal of Testing and Evaluation, 1980, 8: 177~186
    [105] Chen J, Shadley J R, Rincon H, et al. Effects of temperature on erosion-corrosion of 13CR. Corrosion, 2003,11:16~20
    [106] Giddey S, Cherry B, Lawson F, et al. Effect of increased temperature on erosion-corrosion under turbulent conditions in bayer liquor. Corrosion Science, 1998, 40(4): 839~842
    [107] Wang B Q, Geng G Q, Levy A V. The Relationship Between Erosion--Corrosion Metal Wastage and Temperature. Wear (Switzerland). 1992, 159(2): 233~239
    [108] Ninham A J, Little J A, Hutchings I M, et al. Teperature gradient effects in erosion-corrosion. Proc. 4th Berkeley Conf. on Corrosion-erosion-wear of Materials at Elevated Temperatures, Berkeley, 1990, pp. 23-1 to 23-12
    [109] Howes T E, Rogers P M, Little J A, et al. Erosion-corrosion of mild steel in a temperature gradient. Wear, 1995, 186-87(1): 316~324
    [110] Mesaa D H, Torob A, Sinatora A, et al. The effect of testing temperature on corrosion–erosion resistance of martensitic stainless steels, Wear, 2003, 255: 139~145
    [111] 郑玉贵,姚治铭,何莉,泥浆型冲蚀中冲刷和腐蚀交互作用研究综述,材料科学与工程,1994,12(4):27~31
    [112] 丁一刚,王慧龙,郭兴蓬,金属在液固两相流中的冲刷腐蚀,材料保护,2001,34(11):16~18
    [113] Burstein G T, Sasaki K.Detecting electrochemical transients generated by erosion–corrosion. Electrochimica Acta, 2001, 46 (3): 675~683
    [114] Burstein G T, Sasaki K. The birth of corrosion pits as stimulated by slurry erosion. Corrosion Science, 2000, 42 (1): 841~860
    [115] Feng Z, Ball A. The erosion of four materials using seven erodents: towards an understanding. Wear, 1999, 12(233-235): 674~684
    [116] Stack M M, James J S, Lu Q. Erosion–corrosion of chromium steel in a rotating cylinder electrode system: some comments on particle size effects, Wear, 2004, 5(256): 557~564
    [117] 刘新宽,方其先,液固两相流冲刷腐蚀研究,水利电力机械,1998,5:33~35
    [118] 刘新宽,方其先,两种不锈钢冲刷腐蚀的研究,化工机械,1998,12(1):12~15
    [119] Wood R J K. The sand erosion performance of coatings. Materials and Design, 1999, 20: 179~191
    [120] Burstein G T, Sasaki K. Effect of impact angle on the slurry erosion–corrosion of 304L stainless steel. Wear, 2000, 1(240): 80~94
    [121] López D, Congote J P, Cano J R, et al. Effect of particle velocity and impact angle on the corrosion-erosion of AISI 304 and AISI 420 stainless steels. Wear, 2005, 259: 118~124
    [122] 鲍崇高,高义民,邢建东,水轮机用不锈钢材料的抗冲蚀磨损性能研究, 机械工程学报,2002,38(2):8~10
    [123] 张安峰,王豫跃,刑建东,不锈钢与碳钢在液固两相流中冲刷腐蚀特性的研究,兵器材料科学与工程,2003,26(2):36~40
    [124] 刘新宽,方其先,冲刷腐蚀对不锈钢表面状态的影响,西安交通大学学报,1998,3(24):105~107
    [125] Postlethwaite J, Dobbin M H, Bergevin K. The role of oxygen mass transfer in the erosion-corrosion of slurry pipelines. Corrosion, 1986, 42(9): 514~521
    [126] Sakaki K, Burstein G T. The generation of surface roughness during slurry erosion-corrosion and its effect on the pitting potential. Corrosion Science, 1996,12(38): 2111~2120
    [127] Neville A, Hodgkiess T, Dallas J T. A study of the erosion-corrosion behavior of engineering steels for marine pumping applications. Wear, 1995, 186-187: 497~507
    [128] Neville A, Hodgkiess T, Study of effect of liquid corrosivity in liquid-solid impingement on cast iron and austenitic stainless steel. British Corrosion Journal, 1997, 32(3): 197
    [129] Zheng Yugui, Yao Zhiming, Wei Xiangyun, et al. The synergistic effect between erosion, corrosion in acidic slurry medium. Wear, 1995, 186-187: 555~561
    [130] Burstein G T, Li Y, Hutchings I M. The influence of corrosion on the erosion of aluminum by aqueous silica slurries. Wear, 1995, 186-187: 515~522
    [131] Lu B T, Luo J L. Synergism of electrochemical and mechanical factors in erosion-corrosion. Journal of Physical Chemistry B, 2006, 110 (9): 4217~4231
    [132] Wood R J K. Erosion–corrosion interactions and their effect on marine and offshore materials. Wear, 2006, Review
    [133] Guo H X, Lu B T, Luo J L. Interaction of mechanical and electrochemical factors in erosion-corrosion of carbon steel. Electrochimica Acta, 2005, 51: 315~323
    [134] Ramakrishna Malka, Srdjan Ne?i?, Daniel A Gulino. Erosion corrosion and synergistic effects in disturbed liquid-particle flow. NACE2006, paper06594
    [135] S R de Sanchez, D J Schiffrin. The use of high speed rotating disc electrodes for the study of erosion-corrosion of copper base alloys in sea water. Corrosion Science, 1988, 28(2): 141~151
    [136] Meyer U, Atrens A. Influence of environmental variables on erosion- corrosion of carbon steel in spent liquor reheaters in Bayer plant, Wear, 1995, 189(1-2): 107~116
    [137] 刘景军,雍兴跃,林玉珍,不同流动体系中碳钢磨损腐蚀可比性的研究, 材料保护,2003,36(9):25~27
    [138] Rincon H E, Rybicki E F, Shadley J R, et al. Erosion-corrosion of carbon steel in CO2 saturated multiphase flows containing sand. NACE2006, paper 06590
    [139] Puget Y, Trethewey K, Wood R J K. Electrochemical noise analysis of polyurethane-coated steel subjected to erosion-corrosion. Wear , 1999, 233-235: 552~567
    [140] Cabrera-Sierra R, García I, Sosa E, et al. Electrochemical behavior of carbon steel in alkaline sour environments measured by electrochemical impedance spectroscopy. Electrochimica Acta, 2000, 46: 487~497
    [141] Wood R J K, Wharton J A, Speyer A J, et al. Investigation of erosion- corrosion processes using electrochemical noise measurements. Tribology International, 2002, 35: 631~641
    [142] Quan Zhenlan, Wu Pei-Qiang, Tang Lin, et al. Corrosion-wear monitoring of TiN coated AISI 316 stainless steel by electrochemical noise measurements. Applied Surface Science, 2006, 253: 1194~1197
    [143] Quan Zhenlan, Wu Pei-Qiang, Tang Lin, et al. Corrosion-wear monitoring of TiN coated ASP23 steel by electrochemical noise measurements. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 280: 241~244
    [144] 宋诗哲,王光雍,王守琰,我国材料自然环境腐蚀数据处理研究进展,中国腐蚀与防护学报, 2003,23(1):56~64
    [145] 魏宝明主编,金属腐蚀理论及应用,北京:化学工业出版社,1995,5~9
    [146] 傅立编著,灰色系统理论及其应用,北京:科学技术文献出版社,1992,185~204
    [147] 国家自然科学基金“九五”重大项目 16 年碳钢、低合金钢海水腐蚀数据
    [148] 朱相荣,黄桂桥,林乐耘,等,金属材料长周期海水腐蚀规律研究,中国腐蚀与防护学报,2005,25(3):142~148
    [149] 黄桂桥,Cr 对钢耐海水腐蚀性的影响,腐蚀科学与防护技术,2000,12(2):86~89
    [150] 张启富,涂抚洲,朱相荣,等,含铬低合金钢在海水全浸腐蚀过程中“逆转”机理的研究,腐蚀与防护,2001,22(12):517~519
    [151] 刘大扬,含铬低合金钢在海水中耐蚀性“逆转”原因分析,中国腐蚀与防护学报,2003,23(1):7~12
    [152] 林玉珍,王贤铭,雍兴跃,碳钢在流动 3%氯化钠溶液中腐蚀机理的探讨,腐蚀科学,1992,4(2):73~78
    [153] 金威贤,谢荫寒,靳裕康,等,海水中泥沙对铜及铜合金腐蚀的影响,材料保护,2001,34(1),22~23
    [154] 郑玉贵,姚治明,柯伟,冲刷腐蚀的研究近况,材料科学与工程,1992,10(3):21~26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700