用户名: 密码: 验证码:
钛表面阳极氧化物的生长、结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学阳极氧化法制备的钛表面氧化物薄膜具有优异的耐腐蚀性、极佳的光催化活性、良好的生物相容性等诸多优点,且其制备过程简单、易于控制、成本低、无毒,因此被广泛应用于腐蚀防护、光催化降解有机污染物、光水解制氢、染料敏化太阳能电池、传感器、电池及生物医学等领域。选择合适的阳极氧化条件,可在钛金属表面形成致密型的氧化膜材料或多孔型的纳米管材料。然而,对于致密型的钛氧化膜材料来说,在不同的阳极氧化条件下钛表面阳极氧化膜的生长和结晶形成机理目前仍不是十分明确。此外,对于多孔型的阳极氧化钛纳米管材料来说,由于氟离子对钛氧化物有较强的化学攻击性,所以传统的采用含有氟离子的电解液来制备TiO2纳米管的方法有其天然的局限性。本文首先在硫酸电解液中详细研究了各种阳极氧化参数和条件对钛阳极氧化膜的生长和结晶的影响,并且探索了在不同条件下钛阳极氧化膜的生长过程和结晶机理。此外,本文还引入了一种新的、温和的含有BF4的电解液,进行了TiO2纳米管的制备及性能研究。本文的主要研究内容如下:
     (1)研究了不同阳极氧化模式对钛表面阳极氧化膜生长与结晶的影响。结果表明,相较于在扫描电位或者两者结合模式下所生长的氧化膜,恒电位模式下所形成的氧化膜更厚、更加粗糙,并且具有较好的结晶性。对于在恒电位模式下所生长的氧化膜,由于在钛基底表面的局部缺陷处具有非常大的电流密度,因此形成了“花瓣状”的结晶大颗粒。而对于在扫描电位或两者结合的氧化模式下所形成的氧化膜,其结晶性较为均匀,主要是由氧化膜在生长过程中的内在压应力引起的。
     (2)详细比较了机械打磨钛基材和溅射沉积钛基材表面所生长的钛阳极氧化膜的结构和性能。结果发现,钛基底对钛阳极氧化膜的生长和结晶有着重要的影响。在溅射沉积钛基材表面所生长的氧化膜非常光滑和致密,因此不利于电子的传输,从而不利于氧化膜的生长和结晶。
     (3)分别在高电位和低电位下研究了氧化时间对钛氧化膜形成和结晶的影响。研究发现,延长氧化时间有利于钛氧化膜的生长和结晶。钛的阳极氧化过程分为两个阶段,即氧化膜的生长阶段和氧化膜的老化阶段。在氧化膜的生长阶段,氧化膜的厚度和结晶度以一个较快的速度增长,而在氧化膜的老化阶段,由于氧化膜的溶解速率加快,氧化膜的厚度和结晶度的改变较小。
     (4)引入了一种新的含有BF4的电解液,进行TiO2纳米管的制备研究。与在常见的含有F的电解液中制备的TiO2纳米管相比,在HBF4电解液中所形成的TiO2纳米管排列规整、管壁光滑,具有特殊的双层结构,且表现出较好的光催化活性。当采用含有BF4的电解液来进行TiO2纳米管阵列的制备时,BF4离子能够在高电场的作用下分解产生F离子,这对TiO2纳米管的形成起着关键性的作用。
     (5)分别采用机械打磨钛、电化学抛光钛和两步法钛基底进行了TiO2纳米管的制备。结果表明,钛基底的表面形貌对TiO2纳米管的生长和性能有着重要的影响。对于两步法钛基底,通过移除掉在第一步阳极氧化中所形成的纳米管,在其表面留下了许多呈六方型均匀排列的印迹,在随后进行的第二步阳极氧化中,这些印迹扮演着类似模板的作用,可指导下层纳米管的生长。因此,在三个样品中,通过两步阳极氧化法所制备的TiO2纳米管拥有最为有序的结构和光滑的管壁,因此表现出最为优异的光电化学性能。
     (6)通过在含有BF4的电解液中加入乳酸或葡萄糖酸的办法来优化TiO2纳米管的形貌和性能。研究发现,相比于在普通电解液中生长的TiO2纳米管,通过乳酸或葡萄糖酸优化的TiO2纳米管具有较好的表面形貌和光催化活性。这是由于乳酸或葡萄糖酸这类弱有机酸的螯合作用能够有效地降低TiO2纳米管表面的OH基团含量,从而为TiO2纳米管的生长提供一个更加“温和”的环境,因此有利于有序而稳固的TiO2纳米管的形成。
     总之,本文首先在0.1mol·L-1的H2SO4电解液中制备出了致密型的钛阳极氧化物薄膜。结果表明,氧化电位、氧化时间、氧化模式、钛基材等阳极氧化条件和参数对钛氧化膜的生长和结晶都有着重要的影响。这些研究结果为钛和其他金属材料表面阳极氧化膜的形成、结晶和可控生长的知识框架提供了重要的实验和理论的依据。此外,本文还采用了一种新型的含有BF4的电解液体系成功地制备出了高度有序的TiO2纳米管阵列,且所制备的TiO2纳米管具有特殊的纳米孔/纳米管状双层结构和优异的光催化性能。通过以上的研究,获得了对TiO2纳米管在BF4溶液中的形成和生长的基本认识,从而为阳极氧化TiO2纳米管阵列的制备提供了一种新型的、不含有F的电解液体系。
Titanium oxides prepared by electrochemical anodization methods possess highcorrosion resistance, excellent photocatalytic activities, good biomedical compatibility,low-cost, non-toxicity and easy-controllable, therefore have been widely used in the areas ofcorrosion protection, pollutants decomposition, water splitting, dye-sensitized solar cells,sensors, batteries and biomedicine. The preparaed anodic oxides can be either compact barrierfilms or porous nanotubes depending on the used electrolytes. However, for the growth andcrystalline mechanisms of titanium oxide films in different anodization conditions, it is stillnot very clear. Moreover, the TiO2nanotubes (NTs) formed in F contained electrolyte havetheir limitations due to the highly aggressive of F for the formed titanium oxides. In thisthesis, the effects of various anodization parameters on the growth and crystallization oftitanium oxide films in H2SO4solution are investigated in details, and the growth process andcrystalline mechanisms of titanium oxide films in different anodization conditions are alsodiscussed. In addition, a new gentle HBF4contained electrolyte is employed for thefabrication of anodic TiO2NTs. The details are presented as below:
     The influences of anodization modes on growth process and crystallizing mechanisms ofanodic oxide films on titanium are first studied. The results show that the potentiostaticallygrown film is thicker, rougher and more crystalline than the film formed at potential-sweepand combined modes. For titanium oxide film formed in the potentiostatic mode,“flower-like”crystalline grains are developed due to very high local current density at the local defect sitesof titanium surface. In the case of potential-sweep and combined anodization modes, thecrystallization of titanium oxide film is homogeneous, which is mainly caused by the internalcompressive stresses formed during the growth of anodic oxides.
     Comparisons of the structure and properties of the anodic oxides films formed on themechanically abraded bulk titanium and the sputter-deposited titanium substrates are alsopresented. The titanium substrates can largely influence the properties of the formed anodicfilms. A more smooth and compact titanium oxide film could grow on the sputter-depositedtitanium substrate, which is unfavorable to the ionic migration through the film and thendelays the film growth and crystallization.
     The influence of anodizing time on formation and crystallization of the potentiostaticallyformed titanium oxide films is studied both at low and high applied potentials. It is revealedthat prolonging the anodizing time is beneficial for the growth and crystallization of titaniaanodic films. The titanium anodization process follows two distinct stages. In the filmformation stage, the film thickness and crystallinity increase fast. While in the film agingstage, the thickness and crystallinity of titanium oxide films only slightly change withanodizing time due to the enhancement of film dissolution rate.
     A new BF4contained electrolyte is introduced for the preparation of anodic TiO2NTs.The obtained TiO2NTs are highly ordered and extremely smooth, have unique hierarchicalupper-nanoporous and lower-nanotubular structure, and show enhanced photocatalyticactivities than the TiO2NTs formed in common used F contained electrolyte. It is consideredthat the decomposition of BF4into F under high electric field is the key for the formation ofanodic TiO2NTs in BF4contained electrolyte.
     Three different Ti substrates, the rough abraded Ti foil, the smooth electropolished Ti andthe two-step Ti plate, are employed for the preparation of TiO2NTs. It is revealed that the Tisubstrate morphology can largely influence the formation of TiO2NTs. The two-step Tisubstrate has ordered hexagonally distributed dimples which play the role of template for theformation of new TiO2NTs. As a result, the TiO2NTs grown via a two-step anodizationapproach have highly ordered structure and extremely smooth sidewalls, hence possess thebest photoelectrochemical performance among the three kind of substrates.
     The morphology and properties of anodic TiO2NTs are also improved by adding lacticacid or gluconic acid to the unique BF4contained electrolyte. It is shown that with specificadditives to the solution, the geometrical morphology and application properties of theobtained TiO2NTs can be significantly enhanced. We ascribe this improvement to thedecrease of surface OH groups content on TiO2NTs, which is related to the chelating effect ofthe added weak organic acids.
     In general, the compact titanium oxides barrier layers are first prepared in0.1mol·L-1H2SO4solution. It is shown that the growth and crystallization of titanium oxide films aredetermined by the anodizing potential, time, anodization mode and titanium substrate. Theabove results are beneficial for the understanding of the formation, growth and crystallization mechanisms of anodic films on titanium or other metals. Moreover, ordered anodic TiO2NTsare successfully prepared in a new BF4contained electrolyte. The obtained TiO2NTs haveunique nanopore/nanotube hierarchical structure and show enhanced photocatalytic properties.The research provides an alternative way for the preparation of TiO2NTs with F freeelectrolyte.
引文
[1] Liu H., Liu G., Shi X. N/Zr-codoped TiO2nanotube arrays: Fabrication, characterization,and enhanced photocatalytic activity[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2010,363(1-3):35-40
    [2] Fujishima A., Honda K. Electrochemical photocatalysis of water at a semiconductorelectrode[J]. Nature,1972,238(5358):37-38
    [3] Diamanti M., Ormellese M., Marin E., et al. Anodic titanium oxide as immobilizedphotocatalyst in UV or visible light devices[J]. Journal of Hazardous Materials,2011,186:2103-2109
    [4] Sikora M.S., Rosario A.V., Pereira E.C., et al. Influence of the morphology andmicrostructure on the photocatalytic properties of titanium oxide films obtained by sparkinganodization in H3PO4[J]. Electrochimica Acta,2011,56:3122-3127
    [5] Wang H., Bai Y., Wu Q., et al. Rutile TiO2nano-branched arrays on FTO fordye-sensitized solar cells[J]. Physical Chemistry Chemical Physics,2011,13:7008-7013
    [6] Wang H., Bai Y., Zhang H., et al. CdS quantum dots-sensitized TiO2nanorod array ontransparent conductive glass photoelectrodes[J]. The Journal of Physical Chemistry C,2010,114(39):16451–16455
    [7] Li J., Zhang J.Z. Optical properties and applications of hybrid semiconductornanomaterials[J]. Coordination Chemistry Reviews,2009,253(23-24):3015-3041
    [8] Dubey M., He H. Effect of titanium substrate morphology on the growth of TiO2nanotubes and their photovoltaic performance in dye-sensitized solar cells[J]. Nanoscienceand Nanotechnology Letters,2012,4(5):548-552
    [9] Chen D., Zhang H., Li X., et al. Biofunctional titania nanotubes for visible-light-activatedphotoelectrochemical biosensing[J]. Analytical Chemistry,2010,82(6):2253-2261
    [10] Seo H.S., Kim B.H., Ko Y.M. Fabrication of anodized titanium with immobilization ofhyaluronic acid to improve biological performance[J]. Progress in Organic Coatings,2010,69(1):38-44
    [11] Aloia Games L., Gomez Sanchez A., Jimenez-Pique E., et al. Chemical and mechanicalproperties of anodized cp-titanium in NH4H2PO4/NH4F media for biomedical applications[J].Surface and Coatings Technology,2012,206(23):4791-4798
    [12] Simka W., Sadkowski A., Warczak M., et al. Characterization of passive films formed ontitanium during anodic oxidation[J]. Electrochimica Acta,2011,56:8962-8968
    [13] Varghese O.K., Gong D., Paulose M., et al. Hydrogen sensing using titania nanotubes[J].Sensors and Actuators B: Chemical,2003,93(1-3):338-344
    [14] Varghese O.K., Mor G.K., Grimes C.A., et al. A titania nanotube-array room-temperaturesensor for selective detection of hydrogen at low concentrations[J]. Journal of Nanoscienceand Nanotechnology,2004,4(7):733-737
    [15] G nüllü Y., Rodríguez G.C.M., Saruhan B., et al. Improvement of gas sensingperformance of TiO2towards NO2by nano-tubular structuring[J]. Sensors and Actuators B:Chemical,2012,169(5):151-160
    [16] Li Y., Lv X., Li J. High performance binderless TiO2nanowire arrays electrode forlithium-ion battery[J]. Applied Physics Letters,2009,95(11):113102-113103
    [17] Macak J., Tsuchiya H., Ghicov A., et al. TiO2nanotubes: Self-organized electrochemicalformation, properties and applications[J]. Current Opinion in Solid State and MaterialsScience,2007,11(1):3-18
    [18] Bozzini B., Carlino P., D’urzo L., et al. An electrochemical impedance investigation ofthe behaviour of anodically oxidised titanium in human plasma and cognate fluids, relevant todental applications[J]. Journal of Materials Science: Materials in Medicine,2008,19(11):3443-3453
    [19] Ningshen S., Kamachi Mudali U., Mukherjee P., et al. Influence of oxygen ion irradiationon the corrosion aspects of Ti-5%Ta-2%Nb alloy and oxide coated titanium[J]. CorrosionScience,2008,50(8):2124-2134
    [20] Habazaki H., Uozumi M., Konno H., et al. Crystallization of anodic titania on titaniumand its alloys[J]. Corrosion Science,2003,45(9):2063-2073
    [21] Habazaki H., Shimizu K., Nagata S., et al. Ionic transport in amorphous anodic titaniastabilised by incorporation of silicon species[J]. Corrosion Science,2002,44(5):1047-1055
    [22] Habazaki H., Shimizu K., Nagata S., et al. Ionic mobilities in amorphous anodictitania[J]. Journal of The Electrochemical Society,2002,149(3): B70-B74
    [23] Shibata T., Zhu Y. The effect of temperature on the growth of anodic oxide film ontitanium[J]. Corrosion Science,1995,37(1):133-144
    [24] Macdonald D.D. The point defect model for the passive state[J]. Journal of TheElectrochemical Society,1992,139(12):3434-3449
    [25] Vanhumbeeck J.F. In situ monitoring of the internal stress evolution during titanium thinfilm anodising[D]. Belgium: Universite Catholique de Louvain,2009
    [26] Cabrera N., Mott N. Theory of the oxidation of metals[J]. Reports on Progress in Physics,1948-1949,12(1):163
    [27] Lohrengel M. Thin anodic oxide layers on aluminium and other valve metals: high fieldregime[J]. Materials Science and Engineering: R: Reports,1993,11(6):243-294
    [28] Ammar I.A., Kamal I. Kinetics of anodic oxide-film growth on titanium--I. Acidmedia[J]. Electrochimica Acta,1971,16(9):1539-1553
    [29] Rysselberghe P.V., Johansen H.A. Electrochemical kinetics of the anodic formation ofoxide films[J]. Journal of The Electrochemical Society,1959,106(4):355-388
    [30] Chao C., Lin L., Macdonald D. A point defect model for anodic passive films I. filmgrowth kinetics[J]. Journal of The Electrochemical Society,1981,128(6):1187-1194
    [31] Macdonald D.D., Urquidi‐Macdonald M. Theory of steady‐state passive films[J]. Journalof The Electrochemical Society,1990,137(8):2395-2402
    [32] Masahashi N., Mizukoshi Y., Semboshi S., et al. Enhanced photocatalytic activity ofrutile TiO2prepared by anodic oxidation in a high concentration sulfuric acid electrolyte[J].Applied Catalysis B: Environmental,2009,90(1-2):255-261
    [33] Park H., Kim W.R., Jeong H.T., et al. Fabrication of dye-sensitized solar cells bytransplanting highly ordered TiO2nanotube arrays[J]. Solar Energy Materials and Solar Cells,2011,95(1):184-189
    [34] Cui X., Kim H.M., Kawashita M., et al. Preparation of bioactive titania films on titaniummetal via anodic oxidation[J]. Dental Materials,2009,25(1):80-86
    [35] Dyer C., Leach J. Breakdown and efficiency of anodic oxide growth on titanium[J].Journal of The Electrochemical Society,1978,125:1032-1038
    [36] Yahalom J., Zahavi J. Electrolytic breakdown crystallization of anodic oxide films on A1,Ta and Ti[J]. Electrochimica Acta,1970,15(9):1429-1435
    [37] Leach J., Pearson B. Crystallization in anodic oxide films[J]. Corrosion Science,1988,28(1):43-56
    [38] Zahavi J., Yahalom J. Temperature increase during formation of anodic films ontantalum[J]. Electrochimica Acta,1971,16(1):89-99
    [39] Yahalom J., Zahavi J. Experimental evaluation of some electrolytic breakdownhypotheses[J]. Electrochimica Acta,1971,16(5):603-607
    [40] Varghese O.K., Gong D., Paulose M., et al. Crystallization and high-temperaturestructural stability of titanium oxide nanotube arrays[J]. Journal of Materials Research,2003,18(1):156-165
    [41] Xia Z., Nanjo H., Tetsuka H., et al. Crystallization of the anodic oxide on titanium insulphuric acids solution at a very low potential[J]. Electrochemistry Communications,2007,9(4):850-856
    [42] Xia Z., Nanjo H., Aizawa T., et al. Growth process of atomically flat anodic films ontitanium under potentiostatical electrochemical treatment in H2SO4solution[J]. SurfaceScience,2007,601(22):5133-5141
    [43] Teh T.H., Berkani A., Mato S., et al. Initial stages of plasma electrolytic oxidation oftitanium[J]. Corrosion Science,2003,45:2757-2768
    [44] Capek D., Gigandet M., Masmoudi M., et al. Long-time anodisation of titanium insulphuric acid[J]. Surface and Coatings Technology,2008,202(8):1379-1384
    [45] Vermilyea D. Stresses in anodic films[J]. Journal of The Electrochemical Society,1963,110:345-346
    [46] Sato N. A theory for breakdown of anodic oxide films on metals[J]. Electrochimica Acta,1971,16(10):1683-1692
    [47] Shibata T., Zhu Y. The effect of film formation conditions on the structure andcomposition of anodic oxide films on titanium[J]. Corrosion Science,1995,37(2):253-270
    [48] Nelson J., Oriani R. Stress generation during anodic oxidation of titanium andaluminum[J]. Corrosion Science,1993,34(2):307-326
    [49] Nelson J.C. Stress generation in thin anodic oxide films on titanium, aluminium andnickel[D]. USA: University of Minnesota,1990
    [50] Pilling N., Bedworth R. The oxidation of metals at high temperatures[J]. Journal Instituteof Metals,1923,29:529
    [51] Kozlowski M.R., Tyler P.S., Smyrl W.H., et al. Photoelectrochemical microscopy ofoxide films on metals: Ti/TiO2interface[J]. Surface Science,1988,194(3):505-530
    [52] Gueneau de Mussy J., Langelaan G., Decerf J., et al. TEM and X-ray diffractioninvestigation of the structural characteristics of the microporous oxide film formed onpolycrystalline Ti[J]. Scripta Materialia,2003,48(1):23-29
    [53] Delplancke J.L., Garnier A., Massiani Y., et al. Influence of the anodizing procedure onthe structure and the properties of titanium oxide films and its effect on copper nucleation[J].Electrochimica Acta,1994,39(8-9):1281-1289
    [54] Kudelka S., Michaelis A., Schultze J. Effect of texture and formation rate on ionic andelectronic properties of passive layers on Ti single crystals[J]. Electrochimica Acta,1996,41(6):863-870
    [55] Diamanti M.V., Pedeferri M.P., Schuh C.A. Thickness of anodic titanium oxides as afunction of crystallographic orientation of the substrate[J]. Metallurgical and MaterialsTransactions A,2008,39(9):2143-2147
    [56] Matykina E., Arrabal R., Skeldon P., et al. Influence of grain orientation on oxygengeneration in anodic titania[J]. Thin Solid Films,2008,516(8):2296-2305
    [57] Marsh J., Gorse D. A photoelectrochemical and ac impedance study of anodic titaniumoxide films[J]. Electrochimica Acta,1998,43(7):659-670
    [58] da Fonseca C., Traverse A., Tadjeddine A., et al. A characterization of titanium anodicoxides by X-ray absorption spectroscopy and grazing X-ray diffraction[J]. Journal ofElectroanalytical Chemistry,1995,388(1-2):115-122
    [59] Popa M., Vasilescu E., Drob P., et al. Anodic passivity of some titanium base alloys inaggressive environments[J]. Materials and Corrosion,2002,53(1):51-55
    [60] Mantzila A.G., Prodromidis M.I. Development and study of anodic Ti/TiO2electrodesand their potential use as impedimetric immunosensors[J]. Electrochimica Acta,2006,51(17):3537-3542
    [61] Pankuch M., Bell R., Melendres C. Composition and structure of the anodic films ontitanium in aqueous solutions[J]. Electrochimica Acta,1993,38(18):2777-2779
    [62] Vanhumbeeck J., Proost J. On the relation between growth instabilities and internal stressevolution during galvanostatic Ti thin film anodization[J]. Journal of The ElectrochemicalSociety,2008,155C506-C514
    [63] Hugot-Le Goff A. Structure of very thin TiO2films studied by Raman spectroscopy withinterference enhancement[J]. Thin Solid Films,1986,142(2):193-197
    [64] Wiesler D., Majkrzak C. Neutron reflectometry studies of surface oxidation[J]. Physica B:Condensed Matter,1994,198(1-3):181-186
    [65] Zhu R., Nowierski C., Ding Z., et al. Insights into grain structures and their reactivity ongrade-2Ti alloy surfaces by scanning electrochemical microscopy[J]. Chemistry of Materials,2007,19(10):2533-2543
    [66] Kong D., Lu W., Feng Y., et al. Studying on the point-defect-conductive property of thesemiconducting anodic oxide films on titanium[J]. Journal of The Electrochemical Society,2009,156(1): C39-C44
    [67] Prusi A., Arsov L., Haran B., et al. Anodic behavior of Ti in KOH Solutions[J]. Journalof The Electrochemical Society,2002,149(11): B491-B498
    [68] Azumi K., Seo M. Changes in electrochemical properties of the anodic oxide film formedon titanium during potential sweep[J]. Corrosion Science,2001,43(3):533-546
    [69] Jr E.S., Kuromoto N.K., Campos D.M., et al. In vitro behavior of two distinct titaniumsurfaces obtained by anodic oxidation[J]. Key Engineering Materials,2008,363:669-672
    [70] Wilks R.G., Jr E.S., Kurmaev E.Z., et al. Characterization of oxide layers formed onelectrochemically treated Ti by using soft X-ray absorption measurements[J]. Journal ofElectron Spectroscopy and Related Phenomena,2009,169(1):46-50
    [71] Diamanti M.V., Pedeferri M.P. Effect of anodic oxidation parameters on the titaniumoxides formation[J]. Corrosion Science,2007,49(2):939-948
    [72] Arsov L., Kormann C., Plieth W. In situ Raman spectra of anodically formed titaniumdioxide layers in solutions of H2SO4, KOH, and HNO3[J]. Journal of The ElectrochemicalSociety,1991,138(10):2964-2970
    [73] Arsov L., Kormann C., Plieth W. Electrochemical synthesis and in situ Ramanspectroscopy of thin films of titanium dioxide[J]. Journal of Raman Spectroscopy,1991,22(10):573-575
    [74] Sul Y., Johansson C., Jeong Y., et al. The electrochemical oxide growth behaviour ontitanium in acid and alkaline electrolytes[J]. Medical Engineering&Physics,2001,23(5):329-346
    [75] Shimizu K., Thompson G., Wood G. Electron-beam-induced crystallization of anodicbarrier films on aluminium[J]. Thin Solid Films,1981,77(4):313-318
    [76] Shimizu K., Thompson G., Wood G. The duplex nature of anodic barrier films formed onaluminium in aqueous borate and borate-glycol solutions[J]. Thin Solid Films,1981,85(1):53-59
    [77] Blackwood D., Peter L., Williams D. Stability and open circuit breakdown of the passiveoxide film on titanium[J]. Electrochimica Acta,1988,33(8):1143-1149
    [78] Ohtsuka T., Otsuki T. The aging of the anodic oxide of titanium during potentiostaticcondition by ellipsometry[J]. Corrosion Science,2003,45(8):1793-1801
    [79] Chen G., Wen X., Zhang N. Corrosion resistance and ion dissolution of titanium withdifferent surface microroughness[J]. Bio-medical Materials and Engineering,1998,8(2):61-74
    [80] Narita Y., Murata T., Suemitsu M. Suppression of atomic exchange between Ge and Siduring germane adsorption on Si(001) using atomically flat surface[J]. Thin Solid Films,2006,508(1-2):166-168
    [81] Kozlowski M., Smyrl W.H., Atanasoska L., et al. Local film thickness and photoresponseof thin anodic TiO2films on polycrystalline titanium[J]. Electrochimica Acta,1989,34(12):1763-1768
    [82] Vanhumbeeck J., Ryelandt L., Proost J. On the relationship between local voltagemaxima and efficiency changes during galvanostatic Ti anodising[J]. Electrochimica Acta,2009,54(12):3330-3338
    [83] Habazaki H., Uozumi M., Konno H., et al. Formation of barrier-type amorphous anodicfilms on Ti-Mo alloys[J]. Surface and Coatings Technology,2003,169-170:151-154
    [84] Habazaki H., Uozumi M., Konno H., et al. Influences of structure and composition ongrowth of anodic oxide films on Ti-Zr alloys[J]. Electrochimica Acta,2003,48(20-22):3257-3266
    [85] Zwilling V., Aucouturier M., Darque-ceretti E. Anodic oxidation of titanium and TA6Valloy in chromic media. An electrochemical approach[J]. Electrochimica Acta,1999,45:921-929
    [86] Zwilling V., David D., Perrin M.Y., et al. Structure and physicochemistry of anodic oxidefilms on titanium and TA6V alloy[J]. Surface and Interface Analysis,1999,637:629-637
    [87] Gong D., Grimes C., Varghese O.K., et al. Titanium oxide nanotube arrays prepared byanodic oxidation[J]. Journal of Materials Research,2001,16(12):3331-3334
    [88] Macak J.M., Tsuchiya H., Schmuki P. High-aspect-ratio TiO2nanotubes by anodizationof titanium[J]. Angewandte Chemie International Edition,2005,44(14):2100-2102
    [89] Macak J., Taveira L., Tsuchiya H., et al. Influence of different fluoride containingelectrolytes on the formation of self-organized titania nanotubes by Ti anodization[J]. Journalof Electroceramics,2006,16(1):29-34
    [90] Macak J.M., Tsuchiya H., Taveira L., et al. Smooth anodic TiO2nanotubes[J].Angewandte Chemie International Edition,2005,44(45):7463-7465
    [91] Shankar K., Mor G.K., Prakasam H.E., et al. Highly-ordered TiO2nanotube arrays up to220μm in length: use in water photoelectrolysis and dye-sensitized solar cells[J].Nanotechnology,2007,18(6):065707
    [92] Taveira L., Macak J., Tsuchiya H., et al. Initiation and growth of self-organized TiO2nanotubes anodically formed in NH4F/(NH4)2SO4electrolytes[J]. Journal of TheElectrochemical Society,2005,152(10): B405-B410
    [93] Yasuda K., Macak J.M., Berger S., et al. Mechanistic aspects of the self-organizationprocess for oxide nanotube formation on valve metals[J]. Journal of The ElectrochemicalSociety,2007,154(9): C472-C478
    [94] Garcia-Vergara S., Skeldon P., Thompson G., et al. A flow model of porous anodic filmgrowth on aluminium[J]. Electrochimica Acta,2006,52(2):681-687
    [95] Houser J.E., Hebert K.R. The role of viscous flow of oxide in the growth of self-orderedporous anodic alumina films[J]. Nature Materials,2009,8(5):415-420
    [96] Berger S., Macak J.M., Kunze J., et al. High-efficiency conversion of sputtered Ti thinfilms into TiO2nanotubular layers[J]. Electrochemical and Solid-State Letters,2008,11(7):C37-C40
    [97] Berger S., Kunze J., Schmuki P., et al. A lithographic approach to determine volumeexpansion factors during anodization: Using the example of initiation and growth ofTiO2-nanotubes[J]. Electrochimica Acta,2009,54(24):5942-5948
    [98] Roy P., Berger S., Schmuki P. TiO2nanotubes: synthesis and applications[J]. AngewandteChemie International Edition,2011,50(13):2904-2939
    [99] Su Z., Zhou W. Formation mechanism of porous anodic aluminium and titaniumoxides[J]. Advanced Materials,2008,20(19):3663-3667
    [100] Albu S.P., Ghicov A., Aldabergenova S., et al. Formation of double-walled TiO2nanotubes and robust anatase membranes[J]. Advanced Materials,2008,20(21):4135-4139
    [101] Berger S., Albu S.P., Schmidt-Stein F., et al. The origin for tubular growth of TiO2nanotubes: A fluoride rich layer between tube-walls[J]. Surface Science,2011,605(19):L57-L60
    [102] Masuda H., Fukuda K. Ordered metal nanohole arrays made by a two-step replicationof honeycomb structures of anodic alumina[J]. Science,1995,268(5216):1466-1468
    [103] Masuda H., Yamada H., Satoh M., et al. Highly ordered nanochannel-array architecturein anodic alumina[J]. Applied Physics Letters,1997,71(19):2770-2772
    [104] Zhang Z., Hossain M.F., Takahashi T. Photoelectrochemical water splitting on highlysmooth and ordered TiO2nanotube arrays for hydrogen generation[J]. International Journal ofHydrogen Energy,2010,35(16):8528-8535
    [105] Zhang Z., Wang P. Optimization of photoelectrochemical water splitting performanceon hierarchical TiO2nanotube arrays[J]. Energy&Environmental Science,2012,5(4):6506-6512
    [106] Zhang Z., Yu Y., Wang P. Hierarchical top-porous/bottom-yubular TiO2nanostructuresdecorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition ofsynergistic pollutants[J]. ACS Applied Materials&Interfaces,2012,4(2):990-996
    [107] Li S., Zhang G., Guo D., et al. Anodization fabrication of highly ordered TiO2nanotubes[J]. The Journal of Physical Chemistry C,2009,113(29):12759-12765
    [108] Shin Y., Lee S. Self-organized regular arrays of anodic TiO2nanotubes[J]. Nano Letters,2008,8(10):3171-3173
    [109] Wang F., Liu Y., Dong W., et al. Tuning TiO2photoelectrochemical properties bynanoring/nanotube combined structure[J]. The Journal of Physical Chemistry C,2011,115(30):14635-14640
    [110] Xiao F. Construction of highly ordered ZnO-TiO2nanotube arrays (ZnO/TNTs)heterostructure for photocatalytic application[J]. ACS Applied Materials&Interfaces,2012,4(12):7055-7063
    [111] Wu H., Zhang Z. Photoelectrochemical water splitting and simultaneousphotoelectrocatalytic degradation of organic pollutant on highly smooth and ordered TiO2nanotube arrays[J]. Journal of Solid State Chemistry,2011,184(12):3202-3207
    [112] Li J., Lin C.J., Lin C.G. A photoelectrochemical study of highly ordered TiO2nanotubearrays as the photoanodes for cathodic protection of304stainless steel[J]. Journal of TheElectrochemical Society,2011,158(3): C55-C62
    [113] Ye M., Xin X., Lin C., et al. High efficiency dye-sensitized solar cells based onhierarchically structured nanotubes[J]. Nano Letters,2011,11(8):3214-3220
    [114] Li L., Zhou Z., Lei J., et al. Facile fabrication of a dual hierarchical TiO2nanostructure[J]. Materials Letters,2012,68:290-292
    [115] Paramasivam I., Jha H., Liu N., et al. A review of photocatalysis using self-organizedTiO2nanotubes and other ordered oxide nanostructures[J]. Small,2012,8(20):3073-3103
    [116] Asahi R., Morikawa T., Ohwaki T., et al. Visible-light photocatalysis in nitrogen-dopedtitanium oxides[J]. Science,2001,293(5528):269-271
    [117] Murphy A. Does carbon doping of TiO2allow water splitting in visible light?Comments on “Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2forefficient water splitting”[J]. Solar Energy Materials and Solar Cells,2008,92(3):363-367
    [118] Lu N., Quan X., Li J., et al. Fabrication of boron-doped TiO2nanotube array electrodeand investigation of its photoelectrochemical capability[J]. The Journal of Physical ChemistryC,2007,111(32):11836-11842
    [119] Ghosh A.K., Maruska H.P. Photoelectrolysis of water in sunlight with sensitizedsemiconductor electrodes[J]. Journal of The Electrochemical Society,1977,124(10):1516-1522
    [120] Yamashita H., Harada M., Misaka J., et al. Degradation of propanol diluted in waterunder visible light irradiation using metal ion-implanted titanium dioxide photocatalysts[J].Journal of Photochemistry and Photobiology A: Chemistry,2002,148(1):257-261
    [121] He X., Cai Y., Zhang H., et al. Photocatalytic degradation of organic pollutants with Agdecorated free-standing TiO2nanotube arrays and interface electrochemical response[J].Journal of Materials Chemistry,2011,21(2):475-480
    [122] Chen S., Malig M., Tian M., et al. Electrocatalytic activity of PtAu nanoparticlesdeposited on TiO2nanotubes[J]. The Journal of Physical Chemistry C,2012,116(5):3298-3304
    [123] Tian M., Wu G., Chen A. Unique electrochemical catalytic behavior of Pt nanoparticlesdeposited on TiO2nanotubes[J]. ACS Catalysis,2012,2(3):425-432
    [124] Sun W. T., Yu Y., Pan H. Y., et al. CdS quantum dots sensitized TiO2nanotube-arrayphotoelectrodes[J]. Journal of The American Chemical Society,2008,130(4):1124-1125
    [125] Kongkanand A., Tvrdy K., Takechi K., et al. Quantum dot solar cells. Tuningphotoresponse through size and shape control of CdSe-TiO2architecture[J]. Journal of TheAmerican Chemical Society,2008,130(12):4007-4015
    [126] Plass R., Pelet S., Krueger J., et al. Quantum dot sensitization of organic-inorganichybrid solar cells[J]. The Journal of Physical Chemistry B,2002,106(31):7578-7580
    [127] Pan D., Xi C., Li Z., et al. Electrophoretic fabrication of highly robust, efficient, andbenign heterojunction photoelectrocatalysts based on graphene-quantum-dot sensitized TiO2nanotube arrays[J]. Journal of Materials Chemistry A,2013,1:3551-3555
    [1] Shin Y., Lee S. Self-organized regular arrays of anodic TiO2nanotubes[J]. Nano Letters,2008,8(10):3171-3173
    [2] Zhang Z., Wang P. Optimization of photoelectrochemical water splitting performance onhierarchical TiO2nanotube arrays[J]. Energy&Environmental Science,2012,5(4):6506-6512
    [1] Xia Z., Nanjo H., Aizawa T., et al. Growth process of atomically flat anodic films ontitanium under potentiostatical electrochemical treatment in H2SO4solution[J]. SurfaceScience,2007,601(22):5133-5141
    [2] Bourdet P., Vacandio F., Argeme L., et al. Anodisation of sputtered titanium films: anelectrochemical and electrochemical quartz crystal microbalance study[J]. Thin Solid Films,2005,483(1-2):205-210
    [3] Delplancke J.L., Garnier A., Massiani Y., et al. Influence of the anodizing procedure onthe structure and the properties of titanium oxide films and its effect on copper nucleation[J].Electrochimica Acta,1994,39(8-9):1281-1289
    [4] Kudelka S., Michaelis A., Schultze J. Effect of texture and formation rate on ionic andelectronic properties of passive layers on Ti single crystals[J]. Electrochimica Acta,1996,41(6):863-870
    [5] Wiesler D., Majkrzak C. Neutron reflectometry studies of surface oxidation[J]. Physica B:Condensed Matter,1994,198(1-3):181-186
    [6] Prusi A., Arsov L., Haran B., et al. Anodic behavior of Ti in KOH Solutions[J]. Journal ofThe Electrochemical Society,2002,149(11): B491-B498
    [7] Capek D., Gigandet M., Masmoudi M., et al. Long-time anodisation of titanium insulphuric acid[J]. Surface and Coatings Technology,2008,202(8):1379-1384
    [8] Fadl-allah S.A., Mohsen Q. Characterization of native and anodic oxide films formed oncommercial pure titanium using electrochemical properties and morphology techniques[J].Applied Surface Science,2010,256:5849-5855
    [9] Xia Z., Nanjo H., Tetsuka H., et al. Crystallization of the anodic oxide on titanium insulphuric acids solution at a very low potential[J]. Electrochemistry Communications,2007,9(4):850-856
    [10] Leprince-Wang Y. Study of the initial stages of TiO2growth on Si wafers by XPS[J].Surface and Coatings Technology,2002,150(2):257-262
    [11] Ohtsuka T., Otsuki T. The aging of the anodic oxide of titanium during potentiostaticcondition by ellipsometry[J]. Corrosion Science,2003,45(8):1793-1801
    [12] Macdonald D.D. The point defect model for the passive state[J]. Journal of TheElectrochemical Society,1992,139(12):3434-3449
    [13] Souza M.E.P., Ballester M., Freire C.M.A. EIS characterisation of Ti anodic oxide porousfilms formed using modulated potential[J]. Surface and Coatings Technology,2007,201:7775-7780
    [14] Habazaki H., Uozumi M., Konno H., et al. Crystallization of anodic titania on titaniumand its alloys[J]. Corrosion Science,2003,45(9):2063-2073
    [15] Hsu C., Mansfeld F. Technical note: concerning the conversion of the constant phaseelement parameter Y0into a capacitance[J]. Corrosion,2001,57(9):747-748
    [16] Shibata T., Zhu Y. The effect of temperature on the growth of anodic oxide film ontitanium[J]. Corrosion Science,1995,37(1):133-144
    [17] Leach J., Pearson B. Crystallization in anodic oxide films[J]. Corrosion Science,1988,28(1):43-56
    [1] Capek D., Gigandet M., Masmoudi M., et al. Long-time anodisation of titanium insulphuric acid[J]. Surface and Coatings Technology,2008,202(8):1379-1384
    [2] Kozlowski M.R., Tyler P.S., Smyrl W.H., et al. Photoelectrochemical microscopy of oxidefilms on metals: Ti/TiO2interface[J]. Surface Science,1988,194(3):505-530
    [3] Kozlowski M., Smyrl W.H., Atanasoska L., et al. Local film thickness and photoresponseof thin anodic TiO2films on polycrystalline titanium[J]. Electrochimica Acta,1989,34(12):1763-1768
    [4] Prusi A., Arsov L., Haran B., et al. Anodic behavior of Ti in KOH Solutions[J]. Journal ofThe Electrochemical Society,2002,149(11): B491-B498
    [5] Xia Z., Nanjo H., Tetsuka H., et al. Crystallization of the anodic oxide on titanium insulphuric acids solution at a very low potential[J]. Electrochemistry Communications,2007,9(4):850-856
    [6] Van Overmeere Q., Vanhumbeeck J., Proost J. Effect of current density on the internalstress evolution during galvanostatic Ti thin film anodizing[J]. Journal of The ElectrochemicalSociety,2010,157: C166-C173
    [7] Vanhumbeeck J., Proost J. On the relation between growth instabilities and internal stressevolution during galvanostatic Ti thin film anodization[J]. Journal of The ElectrochemicalSociety,2008,155: C506-C514
    [8] Vanhumbeeck J., Ryelandt L., Proost J. On the relationship between local voltage maximaand efficiency changes during galvanostatic Ti anodising[J]. Electrochimica Acta,2009,54:3330-3338
    [9] Akiyama E., Yoshioka H., Kim J., et al. The effect of magnesium on the corrosionbehavior of sputter-deposited amorphous Al/Mg/Ti ternary alloys in a neutral chloridesolution[J]. Corrosion Science,1993,34(1):27-40
    [10] Chu S.Z., Inoue S., Wada K., et al. Self-organized nanoporous anodic titania films andordered titania nanodots/nanorods on glass[J]. Advanced Functional Materials,2005,15(8):1343-1349
    [11] Kar A., Pando R., Subramanian V. Photoelectrochemical responses of anodized titaniumoxide films[J]. Journal of Materials Research,2010,25(1):82-88
    [12] Xia Z., Nanjo H., Aizawa T., et al. Growth process of atomically flat anodic films ontitanium under potentiostatical electrochemical treatment in H2SO4solution[J]. SurfaceScience,2007,601(22):5133-5141
    [13] Nanjo H., Fujimura M., Laycock N., et al. Nanoscale surface properties of iron treated byelectrochemical and physico-chemical methods[J]. Current Applied Physics,2006,6(3):448-452
    [14] Nanjo H., Yao Y., Xia Z., et al. Spectroscopic ellipsometrical analysis of anodized filmformed on titanium in0.1M H2SO4solution[J]. e-Journal of Surface Science andNanotechnology,2005,3:345-349
    [15] Vanhumbeeck J.F., Tian H., Schryvers D., et al. Stress-assisted crystallisation in anodictitania[J]. Corrosion Science,2011,53(4):1269-1277
    [16] Lindgren T., Mwabora J.M., Avenda o E., et al. Photoelectrochemical and opticalproperties of nitrogen doped titanium dioxide films prepared by reactive DC magnetronsputtering[J]. The Journal of Physical Chemistry B,2003,107(24):5709-5716
    [17] Nettikaden V., Baron-Wieche A., Bailey P., et al. Formation of barrier-type anodic filmson sputtering-deposited Al–Ti alloys[J]. Corrosion Science,2010,52(11):3717-3724
    [18] Habazaki H., Shimizu K., Nagata S., et al. Ionic transport in amorphous anodic titaniastabilised by incorporation of silicon species[J]. Corrosion Science,2002,44(5):1047-1055
    [19] Habazaki H., Shimizu K., Nagata S., et al. Ionic Mobilities in Amorphous AnodicTitania[J]. Journal of The Electrochemical Society,2002,149(3): B70-B74
    [20] Bourdet P., Vacandio F., Argeme L., et al. Anodisation of sputtered titanium films: anelectrochemical and electrochemical quartz crystal microbalance study[J]. Thin Solid Films,2005,483(1-2):205-210
    [21] Dubey M., He H. Effect of titanium substrate morphology on the growth of TiO2nanotubes and their photovoltaic performance in dye-sensitized solar cells[J]. Nanoscienceand Nanotechnology Letters,2012,4(5):548-552
    [22] Shin Y., Lee S. Self-organized regular arrays of anodic TiO2nanotubes[J]. Nano Letters,2008,8(10):3171-3173
    [23] Delplancke J.L., Garnier A., Massiani Y., et al. Influence of the anodizing procedure onthe structure and the properties of titanium oxide films and its effect on copper nucleation[J].Electrochimica Acta,1994,39(8-9):1281-1289
    [24] Michaelis A., Delplancke J., Schultze J. Ellipsometric determination of the density ofTiO2passive films on Ti single crystals: combination of ellipsometry and coulometry[J].Materials Science Forum,1995,185-188:471-480
    [25] Ohtsuka T., Nomura N. The dependence of the optical property of Ti anodic oxide filmon its growth rate by ellipsometry[J]. Corrosion Science,1997,39(7):1253-1263
    [26] Habazaki H., Uozumi M., Konno H., et al. Crystallization of anodic titania on titaniumand its alloys[J]. Corrosion Science,2003,45(9):2063-2073
    [27] Wiesler D., Majkrzak C. Neutron reflectometry studies of surface oxidation[J]. Physica B:Condensed Matter,1994,198(1-3):181-186
    [28] Leach J., Pearson B. Crystallization in anodic oxide films[J]. Corrosion Science,1988,28(1):43-56
    [29] Yahalom J., Zahavi J. Electrolytic breakdown crystallization of anodic oxide films on A1,Ta and Ti[J]. Electrochimica Acta,1970,15(9):1429-1435
    [30] Nelson J., Oriani R. Stress generation during anodic oxidation of titanium andaluminum[J]. Corrosion Science,1993,34(2):307-326
    [31] Ohtsuka T., Otsuki T. The aging of the anodic oxide of titanium during potentiostaticcondition by ellipsometry[J]. Corrosion Science,2003,45(8):1793-1801
    [1] Henderson M.A. A surface science perspective on TiO2photocatalysis[J]. Surface ScienceReports,2011,66(6–7):185-297
    [2] Shibata T., Zhu Y. The effect of film formation conditions on the structure andcomposition of anodic oxide films on titanium[J]. Corrosion Science,1995,37(2):253-270
    [3] Diamanti M.V., Pedeferri M.P. Effect of anodic oxidation parameters on the titaniumoxides formation[J]. Corrosion Science,2007,49:939-948
    [4] Mantzila A.G., Prodromidis M.I. Development and study of anodic Ti/TiO2electrodes andtheir potential use as impedimetric immunosensors[J]. Electrochimica Acta,2006,51(17):3537-3542
    [5] Xia Z., Nanjo H., Tetsuka H., et al. Crystallization of the anodic oxide on titanium insulphuric acids solution at a very low potential[J]. Electrochemistry Communications,2007,9(4):850-856
    [6] Prusi A., Arsov L., Haran B., et al. Anodic behavior of Ti in KOH Solutions[J]. Journal ofThe Electrochemical Society,2002,149(11): B491-B498
    [7] Arsov L., Kormann C., Plieth W. In situ Raman spectra of anodically formed titaniumdioxide layers in solutions of H2SO4, KOH, and HNO3[J]. Journal of The ElectrochemicalSociety,1991,138(10):2964-2970
    [8] da Fonseca C., Traverse A., Tadjeddine A., et al. A characterization of titanium anodicoxides by X-ray absorption spectroscopy and grazing X-ray diffraction[J]. Journal ofElectroanalytical Chemistry,1995,388(1-2):115-122
    [9] Capek D., Gigandet M., Masmoudi M., et al. Long-time anodisation of titanium insulphuric acid[J]. Surface and Coatings Technology,2008,202(8):1379-1384
    [10] Ohtsuka T., Otsuki T. The aging of the anodic oxide of titanium during potentiostaticcondition by ellipsometry[J]. Corrosion Science,2003,45(8):1793-1801
    [11] Xia Z., Nanjo H., Aizawa T., et al. Growth process of atomically flat anodic films ontitanium under potentiostatical electrochemical treatment in H2SO4solution[J]. SurfaceScience,2007,601(22):5133-5141
    [12] Ohtsuka T., Guo J., Sato N. Raman spectra of the anodic oxide film on titanium in acidicsulfate and neutral phosphate solutions[J]. Journal of The Electrochemical Society,1986,133:2473-2476
    [13] Ohtsuka T., Nomura N. The dependence of the optical property of Ti anodic oxide filmon its growth rate by ellipsometry[J]. Corrosion Science,1997,39(7):1253-1263
    [14] Habazaki H., Uozumi M., Konno H., et al. Crystallization of anodic titania on titaniumand its alloys[J]. Corrosion Science,2003,45(9):2063-2073
    [15] Shibata T., Zhu Y. The effect of temperature on the growth of anodic oxide film ontitanium[J]. Corrosion Science,1995,37(1):133-144
    [16] Hwang B., Hwang J. Kinetic model of anodic oxidation of titanium in sulphuric acid[J].Journal of Applied Electrochemistry,1993,23(10):1056-1062
    [17] Macdonald D.D. The point defect model for the passive state[J]. Journal of TheElectrochemical Society,1992,139(12):3434-3449
    [18] Burstein G., Whillock G. The dissolution and repassivation of new titanium surfaces inalkaline methanolic solution: Part I. The phenomena[J]. Journal of The ElectrochemicalSociety,1989,136(5):1313-1319
    [19] Lu Q., Alberch J., Hashimoto T., et al. Porous anodic oxides on titanium and on a Ti–Walloy[J]. Corrosion Science,2008,50(2):548-553
    [20] Habazaki H., Shimizu K., Nagata S., et al. Ionic transport in amorphous anodic titaniastabilised by incorporation of silicon species[J]. Corrosion Science,2002,44(5):1047-1055
    [21] Zhuravlyova E., Iglesias-rubianes L., Pakes A. Oxygen evolution within barrier oxidefilms[J]. Corrosion Science,2002,44:2153-2159
    [22] Delplancke J.L., Garnier A., Massiani Y., et al. Influence of the anodizing procedure onthe structure and the properties of titanium oxide films and its effect on copper nucleation[J].Electrochimica Acta,1994,39(8-9):1281-1289
    [1] Roy P., Berger S., Schmuki P. TiO2nanotubes: synthesis and applications[J]. AngewandteChemie International Edition,2011,50(13):2904-2939
    [2] Regonini D., Bowen C., Jaroenworaluck A., et al. A review of growth mechanism,structure and crystallinity of anodized TiO2nanotubes[J]. Materials Science and EngineeringR: Reports,2013,74(12):377-406
    [3] Liu G., Hoivik N., Wang K., et al. Engineering TiO2nanomaterials for CO2conversion/solar fuels[J]. Solar Energy Materials and Solar Cells,2012,105:53-68
    [4] Liu G., Hoivik N., Wang K. Small diameter TiO2nanotubes with enhancedphotoresponsivity[J]. Electrochemistry Communications,2013,28:107-110
    [5] Zwilling V., David D., Perrin M.Y., et al. Structure and physicochemistry of anodic oxidefilms on titanium and TA6V alloy[J]. Surface And Interface Analysis,1999,637:629-637
    [6] Gong D., Grimes C., Varghese O.K., et al. Titanium oxide nanotube arrays prepared byanodic oxidation[J]. Journal of Materials Research,2001,16(12):3331-3334
    [7] Macak J.M., Tsuchiya H., Schmuki P. High-aspect-ratio TiO2nanotubes by anodization oftitanium[J]. Angewandte Chemie International Edition,2005,44(14):2100-2102
    [8] Macak J.M., Tsuchiya H., Taveira L., et al. Smooth anodic TiO2nanotubes[J]. AngewandteChemie International Edition,2005,44(45):7463-7465
    [9] Prakasam H.E., Shankar K., Paulose M., et al. A new benchmark for TiO2nanotube arraygrowth by anodization[J]. The Journal of Physical Chemistry C,2007,111(20):7235-7241
    [10] Masuda H., Fukuda K. Ordered metal nanohole arrays made by a two-step replication ofhoneycomb structures of anodic alumina[J]. Science,1995,268(5216):1466-1468
    [11] Masuda H., Yamada H., Satoh M., et al. Highly ordered nanochannel-array architecturein anodic alumina[J]. Applied Physics Letters,1997,71(19):2770-2772
    [12] Shin Y., Lee S. Self-organized regular arrays of anodic TiO2nanotubes[J]. Nano Letters,2008,8(10):3171-3173
    [13] Li S., Zhang G., Guo D., et al. Anodization fabrication of highly ordered TiO2nanotubes[J]. The Journal of Physical Chemistry C,2009,113(29):12759-12765
    [14] Zhang Z., Wang P. Optimization of photoelectrochemical water splitting performance onhierarchical TiO2nanotube arrays[J]. Energy&Environmental Science,2012,5(4):6506-6512
    [15] Li J., Lin C.J., Lin C.G. A photoelectrochemical study of highly ordered TiO2nanotubearrays as the photoanodes for cathodic protection of304stainless steel[J]. Journal of TheElectrochemical Society,2011,158(3): C55-C62
    [16] Valota A., LeClere D., Skeldon P., et al. Influence of water content on nanotubular anodictitania formed in fluoride/glycerol electrolytes[J]. Electrochimica Acta,2009,54(18):4321-4327
    [17] Su Z., Zhou W. Formation mechanism of porous anodic aluminium and titaniumoxides[J]. Advanced Materials,2008,20(19):3663-3667
    [18] Kim D., Ghicov A., Albu S.P., et al. Bamboo-type TiO2nanotubes: improved conversionefficiency in dye-sensitized solar cells[J]. Journal of The American Chemical Society,2008,130(49):16454-16455
    [19] Paramasivam I., Macak J., Selvam T., et al. Electrochemical synthesis of self-organizedTiO2nanotubular structures using an ionic liquid (BMIM-BF4)[J]. Electrochimica Acta,2008,54(2):643-648
    [20] John S.E., Mohapatra S.K., Misra M. Double-wall anodic titania nanotube arrays forwater photooxidation[J]. Langmuir,2009,25(14):8240-8247
    [21] Wender H., Feil A.F., Diaz L.B., et al. Self-organized TiO2nanotube arrays: synthesis byanodization in an ionic liquid and assessment of photocatalytic properties[J]. ACS AppliedMaterials&Interfaces,2011,3(4):1359-1365
    [22] Li H., Qu J., Cui Q., et al. TiO2nanotube arrays grown in ionic liquids: high-efficiency inphotocatalysis and pore-widening[J]. Journal of Materials Chemistry,2011,21(26):9487-9490
    [23] Li H., Martha S.K., Unocic R.R., et al. High cyclability of ionic liquid–produced TiO2nanotube arrays as an anode material for lithium-ion batteries[J]. Journal of Power Sources,2012,218:88-92
    [24] Yang Y., Albu S.P., Kim D., et al. Enabling the anodic growth of highly ordered V2O5nanoporous/nanotubular structures[J]. Angewandte Chemie,2011,123(39):9237-9241
    [25] Xia Z., Nanjo H., Tetsuka H., et al. Crystallization of the anodic oxide on titanium insulphuric acids solution at a very low potential[J]. Electrochemistry Communications,2007,9(4):850-856
    [26] Yu Y., Wu H.H., Zhu B.L., et al. Preparation, characterization and photocatalyticactivities of F-doped TiO2nanotubes[J]. Catalysis Letters,2008,121(1-2):165-171
    [27] Lu N., Quan X., Li J., et al. Fabrication of boron-doped TiO2nanotube array electrodeand investigation of its photoelectrochemical capability[J]. The Journal of Physical ChemistryC,2007,111(32):11836-11842
    [28] Li J., Lu N., Quan X., et al. Facile method for fabricating boron-doped TiO2nanotubearray with enhanced photoelectrocatalytic properties[J]. Industrial&Engineering ChemistryResearch,2008,47(11):3804-3808
    [29] Xiao L., Johnson K.E. Electrochemistry of1-butyl-3-methyl-1H-imidazoliumtetrafluoroborate ionic liquid[J]. Journal of The Electrochemical Society,2003,150(6):E307-E311
    [30] Albu S.P., Ghicov A., Aldabergenova S., et al. Formation of double-walled TiO2nanotubes and robust anatase membranes[J]. Advanced Materials,2008,20(21):4135-4139
    [31] Houser J.E., Hebert K.R. The role of viscous flow of oxide in the growth of self-orderedporous anodic alumina films[J]. Nature Materials,2009,8(5):415-420
    [32] Pan D., Xi C., Li Z., et al. Electrophoretic fabrication of highly robust, efficient, andbenign heterojunction photoelectrocatalysts based on graphene-quantum-dot sensitized TiO2nanotube arrays[J]. Journal of Materials Chemistry A,2013,1:3551-3555
    [33] Kongkanand A., Tvrdy K., Takechi K., et al. Quantum dot solar cells. Tuningphotoresponse through size and shape control of CdSe-TiO2architecture[J]. Journal of TheAmerican Chemical Society,2008,130(12):4007-4015
    [34] Tian M., Wu G., Chen A. Unique electrochemical catalytic behavior of Pt nanoparticlesdeposited on TiO2nanotubes[J]. ACS Catalysis,2012,2(3):425-432
    [35] Chen S., Malig M., Tian M., et al. Electrocatalytic activity of PtAu nanoparticlesdeposited on TiO2nanotubes[J]. The Journal of Physical Chemistry C,2012,116(5):3298-3304
    [36] Zhang Z., Yu Y., Wang P. Hierarchical top-porous/bottom-yubular TiO2nanostructuresdecorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition ofsynergistic pollutants[J]. ACS Applied Materials&Interfaces,2012,4(2):990-996
    [1] Zhu K., Vinzant T.B., Neale N.R., et al. Removing structural disorder from oriented TiO2nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitizedsolar cells[J]. Nano Letters,2007,7(12):3739-3746
    [2] Seyeux A., Berger S., LeClere D., et al. Influence of surface condition on nanoporous andnanotubular film formation on titanium[J]. Journal of The Electrochemical Society,2009,156(2): K17-K22
    [3] Kim D., Ghicov A., Schmuki P. TiO2Nanotube arrays: Elimination of disordered toplayers (“nanograss”) for improved photoconversion efficiency in dye-sensitized solar cells[J].Electrochemistry Communications,2008,10(12):1835-1838
    [4] Smith Y.R., Sarma B., Mohanty S.K., et al. Single-step anodization for synthesis ofhierarchical TiO2nanotube arrays on foil and wire substrate for enhancedphotoelectrochemical water splitting[J]. International Journal of Hydrogen Energy,2013,38:2062-2069
    [5] Shin Y., Lee S. Self-organized regular arrays of anodic TiO2nanotubes[J]. Nano Letters,2008,8(10):3171-3173
    [6] Li S., Zhang G., Guo D., et al. Anodization fabrication of highly ordered TiO2nanotubes[J]. The Journal of Physical Chemistry C,2009,113(29):12759-12765
    [7] Zhang Z., Yu Y., Wang P. Hierarchical top-porous/bottom-yubular TiO2nanostructuresdecorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition ofsynergistic pollutants[J]. ACS Applied Materials&Interfaces,2012,4(2):990-996
    [8] Xiao F. Construction of highly ordered ZnO-TiO2nanotube arrays (ZnO/TNTs)heterostructure for photocatalytic application[J]. ACS Applied Materials&Interfaces,2012,4(12):7055-7063
    [9] Zhang Z., Wang P. Optimization of photoelectrochemical water splitting performance onhierarchical TiO2nanotube arrays[J]. Energy&Environmental Science,2012,5(4):6506-6512
    [10] Li J., Lin C.J., Lin C.G. A photoelectrochemical study of highly ordered TiO2nanotubearrays as the photoanodes for cathodic protection of304stainless steel[J]. Journal of TheElectrochemical Society,2011,158(3): C55-C62
    [11] Wang F., Liu Y., Dong W., et al. Tuning TiO2photoelectrochemical properties bynanoring/nanotube combined structure[J]. The Journal of Physical Chemistry C,2011,115(30):14635-14640
    [12] John S.E., Mohapatra S.K., Misra M. Double-wall anodic titania nanotube arrays forwater photooxidation[J]. Langmuir,2009,25(14):8240-8247
    [13] Macak J.M., Tsuchiya H., Taveira L., et al. Smooth anodic TiO2nanotubes[J].Angewandte Chemie International Edition,2005,44(45):7463-7465
    [14] Zhang Z., Hossain M.F., Takahashi T. Photoelectrochemical water splitting on highlysmooth and ordered TiO2nanotube arrays for hydrogen generation[J]. International Journal ofHydrogen Energy,2010,35(16):8528-8535
    [15] Ye M., Xin X., Lin C., et al. High efficiency dye-sensitized solar cells based onhierarchically structured nanotubes[J]. Nano Letters,2011,11(8):3214-3220
    [16] Taveira L., Macak J., Tsuchiya H., et al. Initiation and growth of self-organized TiO2nanotubes anodically formed in NH4F/(NH4)2SO4electrolytes[J]. Journal of TheElectrochemical Society,2005,152(10): B405-B410
    [17] Yasuda K., Macak J.M., Berger S., et al. Mechanistic aspects of the self-organizationprocess for oxide nanotube formation on valve metals[J]. Journal of The ElectrochemicalSociety,2007,154(9): C472-C478
    [18] Macak J.M., Tsuchiya H., Schmuki P. High-aspect-ratio TiO2nanotubes by anodizationof titanium[J]. Angewandte Chemie International Edition,2005,44(14):2100-2102
    [1] Valota A., LeClere D., Skeldon P., et al. Influence of water content on nanotubular anodictitania formed in fluoride/glycerol electrolytes[J]. Electrochimica Acta,2009,54(18):4321-4327
    [2] Kim D., Ghicov A., Schmuki P. TiO2Nanotube arrays: Elimination of disordered toplayers ("nanograss") for improved photoconversion efficiency in dye-sensitized solar cells[J].Electrochemistry Communications,2008,10(12):1835-1838
    [3] John S.E., Mohapatra S.K., Misra M. Double-wall anodic titania nanotube arrays for waterphotooxidation[J]. Langmuir,2009,25(14):8240-8247
    [4] Paramasivam I., Macak J., Selvam T., et al. Electrochemical synthesis of self-organizedTiO2nanotubular structures using an ionic liquid (BMIM-BF4)[J]. Electrochimica Acta,2008,54(2):643-648
    [5] Wender H., Feil A.F., Diaz L.B., et al. Self-organized TiO2nanotube arrays: synthesis byanodization in an ionic liquid and assessment of photocatalytic properties[J]. ACS AppliedMaterials&Interfaces,2011,3(4):1359-1365
    [6] Li H., Qu J., Cui Q., et al. TiO2nanotube arrays grown in ionic liquids: high-efficiency inphotocatalysis and pore-widening[J]. Journal of Materials Chemistry,2011,21(26):9487-9490
    [7] Li H., Martha S.K., Unocic R.R., et al. High cyclability of ionic liquid–produced TiO2nanotube arrays as an anode material for lithium-ion batteries[J]. Journal of Power Sources,2012,218:88-92
    [8] Neupane M.P., Park I.S., Bae T.S., et al. Synthesis and morphology of TiO2nanotubes byanodic oxidation using surfactant based fluorinated electrolyte[J]. Journal of TheElectrochemical Society,2011,158(8): C242-C245
    [9] So S., Lee K., Schmuki P. Ultrafast growth of highly ordered anodic TiO2nanotubes inlactic acid electrolytes[J]. Journal of The American Chemical Society,2012,134(28):11316-11318
    [10] Xiao F. Construction of highly ordered ZnO-TiO2nanotube arrays (ZnO/TNTs)heterostructure for photocatalytic application[J]. ACS Applied Materials&Interfaces,2012,4(12):7055-7063
    [11] Regonini D., Bowen C., Jaroenworaluck A., et al. A review of growth mechanism,structure and crystallinity of anodized TiO2nanotubes[J]. Materials Science and EngineeringR: Reports,2013,74(12):377-406
    [12] Di Quarto F., Piazza S., Sunseri C. Electrical and mechanical breakdown of anodic filmson tungsten in aqueous electrolytes[J]. Journal of Electroanalytical Chemistry,1988,248(1):99-115
    [13] Kakihana M., Tomita K., Petrykin V., et al. Chelating of titanium by lactic acid in thewater-soluble diammonium tris (2-hydroxypropionato) titanate (IV)[J]. Inorganic Chemistry,2004,43(15):4546-4548
    [14] Zhang Z., Wang P. Optimization of photoelectrochemical water splitting performance onhierarchical TiO2nanotube arrays[J]. Energy&Environmental Science,2012,5(4):6506-6512
    [15] Cong Y., Zhang J., Chen F., et al. Synthesis and characterization of nitrogen-doped TiO2nanophotocatalyst with high visible light activity[J]. The Journal of Physical Chemistry C,2007,111(19):6976-6982
    [16] Yu J.C., Yu J., Ho W., et al. Effects of F-doping on the photocatalytic activity andmicrostructures of nanocrystalline TiO2powders[J]. Chemistry of Materials,2002,14(9):3808-3816

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700