用户名: 密码: 验证码:
黄铜矿浸矿体系微生物对其表面性质的影响及分步溶解机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:中温菌浸出黄铜矿的速度慢,浸出率低,严重制约着生物浸出技术在实际生产中处理黄铜矿的应用。高温菌对黄铜矿显示出好的浸出效果,其浸矿潜力及浸矿机制越来越受到生物冶金领域研究者的重视。本论文在热力学分析基础上,采用吸附量、动电位、接触角测定等方法研究了中温菌和高温菌对黄铜矿表面性质的影响及与溶解机制的关系;并运用X射线衍射、拉曼光谱、扫描电镜和能谱等检测方法,以及电化学分析等手段,详细考察和比较了中温菌及高温菌作用下黄铜矿浸出过程的差别,深入讨论了导致黄铜矿浸出效果差异的原因及影响黄铜矿溶解机理的因素,从而揭示微生物浸出过程中黄铜矿的分步溶解机制。
     本文提出了黄铜矿的浸出是一个分步溶解过程,在低氧化还原电位下可转化为次生铜,次生铜的生成是深度溶解的关键,促进浸出,这是导致中温菌和高温菌浸出差异的关键原因之一。高温菌浸出过程中,Fe3+离子易于转化为铁矾沉淀,而高温菌氧化亚铁的速率远远低于其生成的速率,从而导致体系的氧化还原电位保持在较低的水平,黄铜矿可以转化为次生铜,有利于浸出;而中温菌浸出的过程中,体系的电位基本保持在高电位下,次生铜难以生成,浸出速度缓慢。而浸出过程中生成的硫膜、黄钾铁矾沉淀不是制约黄铜矿溶解的本质原因。论文的主要结论如下:
     (1)热力学分析结果表明:酸性条件下,黄铜矿可转化为Cu5FeS4, CuS, Cu2S的铜硫化合物,最终释放出Cu2+离子,不同温度条件下各组分优势区间的范围相近。高温酸性条件下,Fe3+离子更容易生成KFe3(SO4)2(OH)6沉淀;另外,溶液中离子浓度升高也促进了Fe3+离子转化为KFe3(SO4)2(OH)6沉淀。Fe3+离子的沉淀过程可降低浸出体系的氧化还原电位,从而影响黄铜矿的分解。
     (2)尽管不同能源物质培养的细菌在黄铜矿表面吸附的速度及程度有所差别,但中温菌和高温菌在黄铜矿表面的初步吸附及对其表面性质的影响规律相似,因此不是造成这两类细菌浸矿差异的主要因素。而随着微生物对黄铜矿作用时间的延长,黄铜矿接触角的变化与其溶解机制密切相关,溶解过程中会生成疏水的单质硫、铜硫化物及亲水的铁矾等,从而改变了矿物表面的接触角大小。中、高温菌作用下,黄铜矿接触角变化规律存在差异。
     (3)浸出体系的氧化还原电位决定了黄铜矿是否能生成次生铜,次生铜易氧化分解,从而促进浸出。中温菌浸出过程中,仅在浸出的最初几天电位较低,之后一直保持在较高的数值(550mV vs. SCE)以上。与之对应,浸出前几天的浸渣能检测到次生铜Cu2S,浸出速度相对较快;当电位达到较高数值时,次生铜的生成受到抑制,浸出速度缓慢。然而,黄铜矿的高温菌浸出过程中,体系的氧化还原电位一直保持在较低的水平(380-450mV vs. SCE),可生成Cu2S,此时的浸出效果较中温菌浸出大幅提高。
     (4)微生物浸出过程中,微生物的主要作用是氧化铁或者氧化硫。因此,高温菌和中温菌对黄铜矿显示出不同的浸出效果应该是基于其氧化铁或者硫的能力的差异。以单质硫为能源物质培养的高温菌氧化铁的能力明显弱于可溶性亚铁培养的中温菌。另外,温度升高,Fe3+离子易转化为铁矾沉淀而消耗。这是造成中温菌和高温菌浸出体系氧化还原电位差异的主要因素。
     (5)电化学研究结果表明:温度的变化和细菌的加入不改变黄铜矿的分解机理,但温度的升高和细菌的加入反应速度增大。另外,中温菌的浸出过程中,5天后黄铜矿电极的开路电位大幅降低,之后升高并保持在较高的电位值;而高温菌的浸出过程中,黄铜矿的开路电位迅速下降后一直保持在较低的水平;可见在中温菌浸出黄铜矿时,仅在浸出的前几天矿物易分解,之后浸出困难;而高温菌浸出的整个过程中,黄铜矿均易分解。
     (6)黄铜矿的浸出过程中,硫膜、黄钾铁矾沉淀不是制约黄铜矿溶解的本质原因。中温菌浸出中,铁氧化菌L. ferriphilum菌浸出黄铜矿的体系中加入硫氧化菌A. thiooxidans菌后,导致硫膜的消失,但铜浸出率提高不显著。而浸出中生成的铁矾疏松且脱落后黄铜矿表面没有铁矾沉积,不会阻碍浸出。另外,高温菌的浸出效果较中温菌浸出大幅提高,但浸渣中检测到硫和黄钾铁矾,进一步说明其不是制约黄铜矿溶解的本质原因。
Abstract:The speed of chalcoprite bioleaching by mesophilic bacteria and the leaching rate are slow and low, which largely restricts the application of bioleaching in the processing of chalcopyrite. On the contrary, chalcopyrite bioleached by thermophilic bacteria can be significantly improved, the mechanism in which has attracted increasingly attention from researchers. Based on thermomechanical analysis, this paper studied the effects of mesophile and thermophile on surface properties of chalcopyrite by using adsorption, zeta-potential, contact angle and bioleaching tests. XRD, Raman, SEM/EDS analysis and electrochemical experiments were employed to compare the different bioleaching process by mesophile and thermophile, deeply investigate the reasons for the different leaching efficiencies, further analyze the influencing factors of chalcopyrite decomposition mechanism, and reveal the stepwise dissolution mechanism of chalcopyrite.
     This paper presented the reason for different leaching efficiencies when chalcopyrite bioleached by mesophile and thermophile. The decomposition mechanism of chalcopyrite does not have a direct relation to the changes of bacteria or temperature. The dissolution of chalcopyrite is stepwise, and it can be transformed into Cu2S. Cu2S accelerated leaching process, which is the main reason for the different leaching efficiency. During leaching process by thermophilic bacteria, Fe3+is easy to be converted into jarosite, which can result in and keep a low redox potential, promoting the formation of Cu2S and leaching. While bioleaching by mesophilic bacteria, the redox potential maintaining on a high level hinders the generation of Cu2S and bioleaching. However, the generation of sulfur, jarosite precipitation is not the restraints for chalcopyrite dissolution.The main conclusions are as follows:
     (1) The thermodynamic analysis results show that chalcopyrite can be converted into Cu5FeS4, CuS, Cu2S copper sulfur compounds under the acidic conditions, eventually release the Cu2+ions. The existence range of components is nearly the same under different temperature conditions. In the acidity condition at high temperature, Fe3+ions are likely to generate KFe3(SO4)2(OH)6precipitation. In addition, the high ion concentration in the solution also promotes Fe3+ions converting into KFe3(SO4)2(OH)6precipitation. The precipitation process can reduce the redox potential of leaching system, which affects the decomposition of chalcopyrite.
     (2) Due to a similar impact to chalcopyrite surface, the effect of mesophile and thermophile on chalcopyrite surface properties is not the key factor to influence the different leaching efficiency. While in the leaching system, the changes of contact angle have a tight connection with the stepwise dissolution mechanism of chalcopyrite. Due to the formation of hydrophobic elemental sulfur, copper sulfides and hydrophilic jarosite, the contact angle of chalcopyrite increased before they are reduced.
     (3) The key factor to reduce chalcopyrite to Cu2S is determined by the redox potential of leaching system, which restricts the leaching rate of chalcopyrite. During bioleaching by mesophile, the redox potential remained at high value (more than550mV vs. SCE) except the first few days. The leaching residue during the initial days is detected to be Cu2S and the bioleaching rate was relatively fast. However, when the potential rose to a high value, Cu2S cannot be detected in the residue, which approved that the reduction of chalcopyrite is restrained and leaching speed is hindered. Throughout the whole bioleaching process of chalcopyrite by mesophilic bacteria, the redox potential of the system keep in high value, which is not beneficial to the reduction reaction, hindering the leaching of chalcopyrite. During chalcopyrite bioleaching by thermophile, the redox potential has stabilized at a relative low level (380-450mV vs. SCE), which enhanced the leaching efficiency of chalcopyrite.
     (4) During microbial leaching process, the role of microbes is to determine the oxidation of ferric ions or sulfur. Therefore, mesophilic bacteria and thermophilic bacteria showing different patterns of chalcopyrite leaching effects should be based on its iron oxide or sulfur capacity differences. For thermophilic bacteria using elemental sulfur as energy material, its ability of oxidizing ferrous is significantly weaker than the ability of bacteria cultured at medium temperature. In addition, when the temperature rises, Fe3+ions are easily transformed into jarosite and Fe3+ions consumption ensues. This is the critical factor that results in different redox potential at high temperature and medium temperature leaching systems.
     (5) The electrochemical research results present that the changes of temperature or bacteria do not alter the decomposition mechanism of chalcopyrite, but they enhanced the decomposition. In addition, during bioleaching by mesophilic bacteria, the open circuit potential of chalcopyrite sharply declined after5days, and then rose and kept at a high value. By contrast, during the bioleaching process by thermophilic bacteria, the open circuit potential of chalcopyrite dropped rapidly and kept at lower level. Obviously, chalcopyrite can be easily decomposed only in the first few days of bioleaching by mesophile but it become tough afterwards. However, it can easy be dissolved during the whole process when bioleached by thermophile.
     (6) During bioleaching of chalcopyrite, sulfur and jarosite precipitation are not the restraints for chalcopyrite dissolution. During bioleaching by mesophilic bacteria, when add sulfur-oxidizing A. thiooxidans in the leaching system by iron-oxidizing L. ferriphilum, the sulfur membrane disappeared, but copper leaching rate was not significant improved. During bioleaching, the jarosite precipitate was loose and fall off from chalcopyrite surface. Hence, it cannot hinder the leaching. In addition, during bioleaching by thermophilic bacteria, the leaching effect has been largely enhanced compared to bioleaching by mesophilic bacteria, though sulfur and jarosite has been detected in the leaching residue. It further illustrates that chalcopyrite dissolution cannot be restricted by sulfur and jarosite precipitation.
引文
[1]Mousavi S M, Yaghmaei S, Vossoughi M, Roostaazad R, Jafari A, Ebrahimi M, Chabok O H, Turunen I. The effects of Fe(Ⅱ) and Fe(Ⅲ) concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor [J]. Bioresource Technology,2008,99:2840-2845.
    [2]Acevedo F. The use of reactors in biomining processes [J]. EJB Electronic Journal of Biotechnology,2000,3:1-9.
    [3]Yang Y, Diao M, Liu K, Qian L, Nguyen A V, Qiu G. Column bioleaching of low-grade copper ore by Acidithiobacillus ferrooxidans in pure and mixed cultures with a heterotrophic acidophile Acidiphilium sp [J]. Hydrometallurgy, 2013,131-132:93-98.
    [4]Manafi Z, Abdollahi H, Tuovinen O H. Shake flask and column bioleaching of a pyritic porphyry copper sulphide ore [J]. Int J Miner Process,2013,119:16-20.
    [5]Vakylabad A B, Ranjbar M, Manafi Z, Bakhtiari F. Tank bioleaching of copper from combined flotation concentrate and smelter dust [J]. International Biodeterioration & Biodegradation,2011,65:1208-1214.
    [6]Behrad Vakylabad A. A comparison of bioleaching ability of mesophilic and moderately thermophilic culture on copper bioleaching from flotation concentrate and smelter dust [J]. Int J Miner Process,2011,101:94-99.
    [7]王文潜,王喜良.难浸金矿预氧化处理方法评价及新进展[J].云南冶金,1997,26:30-34.
    [8]Yuan X, Xie X, Fan F, Zhu W, Liu N, Liu J. Effects of mutation on a new strain Leptospirillum ferriphilum YXW and bioleaching of gold ore [J]. Transactions of Nonferrous Metals Society of China,2013,23:2751-2758.
    [9]Shin D, Jeong J, Lee S, Pandey B D, Lee J. Evaluation of bioleaching factors on gold recovery from ore by cyanide-producing bacteria [J]. Minerals Engineering, 2013,48:20-24.
    [10]李俊萌.难处理金矿石预处理工艺研究与应用现状[J].有色矿山,2002,31:21-29.
    [11]王玉棉,李军强.微生物浸矿的技术现状及展望[J].甘肃冶金,2004,26:36-39.
    [12]Zokaei-Kadijani S, Safdari J, Mousavian M A, Rashidi A. Study of oxygen mass transfer coefficient and oxygen uptake rate in a stirred tank reactor for uranium ore bioleaching [J]. Annals of Nuclear Energy,2013,53:280-287.
    [13]Qiu G, Li Q, Yu R, Sun Z, Liu Y, Chen M, Yin H, Zhang Y, Liang Y, Xu L, Sun L, Liu X. Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium [J]. Bioresource Technology,2011,102: 4697-4702.
    [14]Abhilash, Mehta K D, Kumar V, Pandey B D, Tamrakar P K. Bioleaching-An Alternate Uranium Ore Processing Technology for India [J]. Energy Procedia, 2011,7:158-162.
    [15]Munoz J A, Gonzalez F, Ballester A, Blazquez M L. Bioleaching of a Spanish uranium ore [J]. FEMS Microbiology Reviews,1993,11:109-119.
    [16]Brierley J A, Brierley C L. Present and future commercial applications of biohydrometallurgy [J]. Hydrometallurgy,2001,59:233-239.
    [17]Ehrlich H L. Past, present and future of biohydrometallurgy [J]. Hydrometallurgy, 2001,59:127-134.
    [18]Choi M S, Cho K S, Kim D S, Ryu H W. Bioleaching of uranium from low grade black schists by Acidithiobacillus ferrooxidans [J]. World Journal of Microbiology & Biotechnology,2005,21:377-380.
    [19]蔡春晖.抚州矿铀矿石渗滤浸出工业性试验研[J].铀矿冶,2002,21:85-88.
    [20]钟平汝,李铁球,毛拥军.渗滤浸出法处理抚州铀矿石[J].铀矿冶,2004,23:13-17.
    [21]袁宗仪.应用矿业生物工程技术回收利用难选矿产资源[J].湿法冶金,1998:6-13.
    [22]Whittington B I, McDonald R G, Johnson J A, Muir D M. Pressure acid leaching of arid-region nickel laterite ore:Part I:effect of water quality [J]. Hydrometallurgy,2003,70:31-46.
    [23]Fonti V, Dell'Anno A, Beolchini F. Influence of biogeochemical interactions on metal bioleaching performance in contaminated marine sediment [J]. Water Research,2013,47:5139-5152.
    [24]Dinkla I J T, Gonzalez-Contreras P, Gahan C S, Weijma J, Buisman C J N, Henssen M J C, Sandstrom A. Quantifying microorganisms during biooxidation of arsenite and bioleaching of zinc sulfide [J]. Minerals Engineering,2013,48: 25-30.
    [25]Cameron R A, Lastra R, Gould W D, Mortazavi S, Thibault Y, Bedard P L, Morin L, Koren D W, Kennedy K J. Bioleaching of six nickel sulphide ores with differing mineralogies in stirred-tank reactors at 30℃ [J]. Minerals Engineering, 2013,49:172-183.
    [26]Kim S, Bae J, Park H, Cha D. Bioleaching of cadmium and nickel from synthetic sediments by Acidithiobacillus ferrooxidans [J]. Environmental Geochemistry and Health,2005,27:229-235.
    [27]Salo-Zieman V L A, Kinnunen P H M, Puhakka J A. Bioleaching of acid-consuming low-grade nickel ore with elemental sulfur addition and subsequent acid generation [J]. Journal of Chemical Technology and Biotechnology,2006,81:34-40.
    [28]Santos L R G, Barbosa A F, Souza A D, Leao V A. Bioleaching of a complex nickel-iron concentrate by mesophile bacteria [J]. Minerals Engineering,2006, 19:1251-1258.
    [29]Pradhan N, Nathsarma K C, Rao K S, Sukla L B, Mishra B K. Heap bioleaching of chalcopyrite:A review [J]. Minerals Engineering,2008,21:355-365.
    [30]Nielsen A M, Beck J V. Chalcocite Oxidation and Coupled Carbon Dioxide Fixation by Thiobacillus ferrooxidans [J]. Science (New York, N.Y.),1972,175: 1124-1126.
    [31]Tuovinen O H, Kelly D P. Studies on the growth of Thiobacillus ferrooxidans. II. Toxicity of uranium to growing cultures and tolerance conferred by mutation, other metal cations and EDTA [J]. Archiv fur Mikrobiologie,1974,95:153-164.
    [32]Tuovinen O H, Kelly D P. Studies on the growth of Thiobacillus ferrooxidans. V. Factors affecting growth in liquid culture and development of colonies on solid media containing inorganic sulphur compounds [J]. Archives of microbiology, 1974,98:351-364.
    [33]Tuovinen O H, Kelly D P. Studies on the growth of Thiobacillus ferrooxidans. IV. Influence of monovalent metal cations on ferrous iron oxidation and uranium toxicity in growing cultures [J]. Archives of microbiology,1974,98:167-174.
    [34]Lewis A J, Miller J D. Stannous and cuprous ion oxidation by Thiobacillus ferrooxidans [J]. Canadian journal of microbiology,1977,23:319-324.
    [35]Eccleston M, Kelly D P. Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulfate [J]. Journal of bacteriology,1978,134:718-727.
    [36]Liu H, Yang F, Lin H, Huang C, Fang H, Tsai W, Cheng Y. Artificial neural network to predict the growth of the indigenous Acidthiobacillus thiooxidans [J]. Chemical Engineering Journal,2008,137:231-237.
    [37]Liu H, Yang F, Huang C, Fang H, Cheng Y. Sensitivity analysis of the semiempirical model for the growth of the indigenous Acidithiobacillus thiooxidans [J]. Chemical Engineering Journal,2007,129:105-112.
    [38]Liu H, Lan Y, Cheng Y. Optimal production of sulphuric acid by Thiobacillus thiooxidans using response surface methodology [J]. Process Biochemistry, 2004,39:1953-1961.
    [39]Lizama H M, Suzuki I. Bacterial leaching of a sulfide ore by Thiobacillus ferrooxidans and Thiobacillus thiooxidans:I. Shake flask studies [J]. Biotechnology and bioengineering,1988,32:110-116.
    [40]Tsuchiya H M, Trivedi N C, Schuler M L. Letter:Microbial mutualism in ore leaching [J]. Biotechnology and bioengineering,1974,16:991-995.
    [41]张成桂.嗜酸氧化亚铁硫杆菌适应与活化元素硫的分子机制研究[D].博士学位论文,2008,中南大学.
    [42]Das A, Modak J, Natarajan K A. Surface chemical studies of Thiobacillus ferrooxidans with reference to copper tolerance [J]. Antonie van Leeuwenhoek, 1998,73:215-222.
    [43]Kondratyeva T F, Pivovarova T A, Muntyan L N, Karavaiko G I, Strain diversity of Thiobacillus ferrooxidans and its significance in biohydrometallurgy, in:R. Amils, A. Ballester (Eds.) Process Metallurgy, Elsevier,1999, pp.89-96.
    [44]Jack Barrett M N H, G.L. Karavaiko, P.A. Spencer. Metal extraction by bacterial oxidation of minerals [J]. Ellis Horwood,1993,115.
    [45]Ndlovu S, Monhemius A J. The influence of crystal orientation on the bacterial dissolution of pyrite [J]. Hydrometallurgy,2005,78:187-197.
    [46]Al-Harahsheh M, Rutten F, Briggs D, Kingman S. Preferential oxidation of chalcopyrite surface facets characterized by ToF-SIMS and SEM [J]. Applied Surface Science,2006,252:7155-7158.
    [47]A.E. Torma H S. Relation between the solubility product and the rate of metal sulfide oxidation by T. ferrooxidans [J]. Journal of Fermentation Technology, 1978,56:173-178.
    [48]Balaz P, Achimovicova M. Selective leaching of antimony and arsenic from mechanically activated tetrahedrite, jamesonite and enargite [J]. Int J Miner Process,2006,81:44-50.
    [49]Vilcaez J, Yamada R, Inoue C. Effect of pH reduction and ferric ion addition on the leaching of chalcopyrite at thermophilic temperatures [J]. Hydrometallurgy, 2009,96:62-71.
    [50]Qiu T, Nie G, Wang J, Cui L. Kinetic process of oxidative leaching of chalcopyrite under low oxygen pressure and low temperature [J]. Transactions of Nonferrous Metals Society of China,2007,17:418-422.
    [51]Misra M, Fuerstenau M C. Chalcopyrite leaching at moderate temperature and ambient pressure in the presence of nanosize silica [J]. Minerals Engineering, 2005,18:293-297.
    [52]Leahy M J, Davidson M R, Schwarz M P. A model for heap bioleaching of chalcocite with heat balance:Bacterial temperature dependence [J]. Minerals Engineering,2005,18:1239-1252.
    [53]Komnitsas C, Pooley F D. Bacterial oxidation of an arsenical gold sulphide concentrate from Olympias, Greece [J]. Minerals Engineering,1990,3:295-306.
    [54]Dorado A D, Sole M, Lao C, Alfonso P, Gamisans X. Effect of pH and Fe(III) ions on chalcopyrite bioleaching by an adapted consortium from biogas sweetening [J]. Minerals Engineering,2012,39:36-38.
    [55]Nazari G, Asselin E. Morphology of chalcopyrite leaching in acidic ferric sulfate media [J]. Hydrometallurgy,2009,96:183-188.
    [56]Klauber C. A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution [J]. Int J Miner Process,2008,86:1-17.
    [57]Ahmadi A, Schaffie M, Petersen J, Schippers A, Ranjbar M. Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density [J]. Hydrometallurgy,2011,106: 84-92.
    [58]K.S.N. Murthy K A N. The role of surface attachment of Thiobacillus ferrooxidans on the biooxidation of pyrite [J]. Minerals and Metallurgical Processing,2000,17:20-25.
    [59]Sampson M I, Phillips C V, Blake R C. Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides [J]. Minerals Engineering,2000, 13:373-389.
    [60]Third K A, Cord-Ruwisch R, Watling H R. The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching [J]. Hydrometallurgy,2000, 57:225-233.
    [61]Tributsch H. Direct versus indirect bioleaching [J]. Hydrometallurgy,2001,59: 177-185.
    [62]Crundwell F K. How do bacteria interact with minerals [J]. Hydrometallurgy, 2003,71:75-81.
    [63]Stott M B, Sutton D C, Watling H R, Franzmann P D. Comparative leaching of chalcopyrite by selected acidophilic Bacteria and Archaea [J]. Geomicrobiol J, 2003,20:215-230.
    [64]Cordoba E M, Munoz J A, Blazquez M L, Gonzalez F, Ballester A. Leaching of chalcopyrite with ferric ion. Part I:General aspects [J]. Hydrometallurgy,2008, 93:81-87.
    [65]Klauber C. A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution [J]. Int J Miner Process,2008,86:1-17.
    [66]Pinches A, Al-Jaid F O, Williams D J A, Atkinson B. Leaching of chalcopyrite concentrates with Thiobacilus ferrooxidans in batch culture [J]. Hydrometallurgy,1976,2:87-103.
    [67]Sandstrom A, Shchukarev A, Paul J. XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential [J]. Minerals Engineering,2005,18:505-515.
    [68]Parker A, Klauber C, Kougianos A, Watling H R, van Bronswijk W. An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite [J]. Hydrometallurgy,2003,71:265-276.
    [69]Scott D J. The mineralogy of copper leaching:concentrates and heaps [J]. Copper Hydrometallurgy Short Course,1995,65.
    [70]I. Lazaro M J N. The Mechanism of the Dissolution and Passivation of Chalcopyrite:An Electrochemical Study [J]. Hydrometallurgy 2003:Proceedings of the 5th International Symposium,2003,13:405-418.
    [71]Parker A J, Paul R L, Power G P. Electrochemistry of the oxidative leaching of copper from chalcopyrite [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1981,118:305-316.
    [72]Buckley A, Woods R. An X-ray photoelectron spectroscopic study of the oxidation of chalcopyrite [J]. Australian Journal of Chemistry,1984,37: 2403-2413.
    [73]Beech I B, Sunner J. Biocorrosion:towards understanding interactions between biofilms and metals [J]. Current Opinion in Biotechnology,2004,15:181-186.
    [74]Kinzler K, Gehrke T, Telegdi J, Sand W. Bioleaching-a result of interfacial processes caused by extracellular polymeric substances (EPS) [J]. Hydrometallurgy,2003,71:83-88.
    [75]Sand W. Microbial life in geothermal waters [J]. Geothermics,2003,32: 655-667.
    [76]Rohwerder T, Gehrke T, Kinzler K, Sand W. Bioleaching review part A [J]. Applied Microbiology and Biotechnology,2003,63:239-248.
    [77]Ahonen L, Tuovinen O H. Catalytic effects of silver in the microbiological leaching of finely ground chalcopyrite-containing ore materials in shake flasks [J]. Hydrometallurgy,1990,24:219-236.
    [78]Mehta A P, Murr L E. Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides [J]. Hydrometallurgy,1983,9:235-256.
    [79]Sadowski Z, Jazdzyk E, Karas H. Bioleaching of copper ore flotation concentrates [J]. Minerals Engineering,2003,16:51-53.
    [80]Hiroyoshi N, Hirota M, Hirajima T, Tsunekawa M. A case of ferrous sulfate addition enhancing chalcopyrite leaching [J]. Hydrometallurgy,1997,47:37-45.
    [81]Hiroyoshi N, Kuroiwa S, Miki H, Tsunekawa M, Hirajima T. Synergistic effect of cupric and ferrous ions on active-passive behavior in anodic dissolution of chalcopyrite in sulfuric acid solutions [J]. Hydrometallurgy,2004,74:103-116.
    [82]Hiroyoshi N, Miki H, Hirajima T, Tsunekawa M. A model for ferrous-promoted chalcopyrite leaching [J]. Hydrometallurgy,2000,57:31-38.
    [83]Hiroyoshi N, Miki H, Hirajima T, Tsunekawa M. Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions [J]. Hydrometallurgy, 2001,60:185-197.
    [84]Stott M B, Watling H R, Franzmann P D, Sutton D. The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching [J]. Minerals Engineering,2000,13:1117-1127.
    [85]Li Y, Kawashima N, Li J, Chandra A P, Gerson A R. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite [J]. Advances in Colloid and Interface Science,2013,197-198:1-32.
    [86]Mahlangu T, Gudyanga F P, Simbi D J. Reductive leaching of stibnite (Sb2S3) flotation concentrates using metallic iron in a hydrochloric acid medium Ⅱ: Kinetics [J]. Hydrometallurgy,2007,88:132-142.
    [87]Bevilaqua D, Leite A L L C, Garcia Jr O, Tuovinen O H. Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks [J]. Process Biochemistry,2002,38:587-592.
    [88]D'Hugues P, Foucher S, Galle-Cavalloni P, Morin D. Continuous bioleaching of chalcopyrite using a novel extremely thermophilic mixed culture [J]. Int J Miner Process,2002,66:107-119.
    [89]邹平,杨家明,赵有才.嗜热嗜酸菌生物浸出低品位原生硫化铜矿[J].云南冶金,2003,32:66-69.
    [90]Gu G, Su L, Chen M, Sun X, Zhou H. Bio-leaching effects of Leptospirillum ferriphilum on the surface chemical properties of pyrite [J]. Mining Science and Technology (China),2010,20:286-291.
    [91]Gu G, Zhao K, Qiu G, Hu Y, Sun X. Effects of Leptospirillum ferriphilum and Acidithiobacillus caldus on surface properties of pyrrhotite [J]. Hydrometallurgy, 2009,100:72-75.
    [92]Liu H, Gu G, Xu Y. Surface properties of pyrite in the course of bioleaching by pure culture of Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans [J]. Hydrometallurgy,2011,108:143-148.
    [93]Sampson M I, Blake R C. The cell attachment and oxygen consumption of two strains of Thiobacillus ferrooxidans [J]. Minerals Engineering,1999,12: 671-686.
    [94]C. Mustin J B, P. Marion. Corrosion and electrochemical oxidation of a pyrite by Thiobacillus ferrooxidans [J]. Applied and Environmental Microbiology,1992, 58:1175-1182.
    [95]Ting Y P, Kumar A S, Rahman M, Chia B K. Innovative use of Thiobacillus ferrooxidans for the biological machining of metals [J]. Acta Biotechnol,2000, 20:87-96.
    [96]杨显万,沈庆峰,郭玉霞.微生物湿法冶金[M].2003.
    [97]Tilman Gehrke J T, Dominique Thierry, Wolfgang Sand. Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching [J]. Applied and Enviromental Microbiology,1998,64:2743-2747.
    [98]Zhu J, Li Q, Jiao W, Jiang H, Sand W, Xia J, Liu X, Qin W, Qiu G, Hu Y, Chai L. Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite [J]. Colloids and Surfaces B:Biointerfaces,2012,94:95-100.
    [99]Sharma P K, Das A, Rao K H, Forssberg K S E. Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions [J]. Hydrometallurgy,2003,71:285-292.
    [100]Vilinska A, Rao K H, Forssberg K S E. Selective coagulation in chalcopyrite/ pyrite mineral system using Acidithiobacillus group bacteria [J]. Biohydrometallury:From the Single Cell to the Environment,2007,20-21: 366-370.
    [101]Klauber C, Parker A, van Bronswijk W, Watling H. Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy [J]. Int J Miner Process,2001,62:65-94.
    [102]Ojumu T V, Petersen J. The kinetics of ferrous ion oxidation by Leptospirillum ferriphilum in continuous culture:The effect of pH [J]. Hydrometallurgy,2011, 106:5-11.
    [103]Ojumu T V, Hansford G S, Petersen J. The kinetics of ferrous-iron oxidation by Leptospirillum ferriphilum in continuous culture:The effect of temperature [J]. Biochemical Engineering Journal,2009,46:161-168.
    [104]Zhao X, Wang R, Lu X, Lu J, Li C, Li J. Bioleaching of chalcopyrite by Acidithiobacillus ferrooxidans [J]. Minerals Engineering,2013,53:184-192.
    [105]Sasaki K, Takatsugi K, Tuovinen O H. Spectroscopic analysis of the bioleaching of chalcopyrite by Acidithiobacillus caldus [J]. Hydrometallurgy,2012, 127-128:116-120.
    [106]Sasaki K, Takatsugi K, Kaneko K, Kozai N, Ohnuki T, Tuovinen O H, Hirajima T. Characterization of secondary arsenic-bearing precipitates formed in the bioleaching of enargite by Acidithiobacillus ferrooxidans [J]. Hydrometallurgy, 2010,104:424-431.
    [107]Sasaki K, Nakamuta Y, Hirajima T, Tuovinen O H. Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans [J]. Hydrometallurgy,2009,95:153-158.
    [108]Li H, Qiu G, Hu Y, Cang D, Wang D. Electrochemical behavior of chalcopyrite in presence of Thiobacillus ferrooxidans [J]. Transactions of Nonferrous Metals Society of China,2006,16:1240-1245.
    [109]Romano P, Blazquez M L, Alguacil F J, Munoz J A, Ballester A, Gonzalez F. Comparative study on the selective chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria [J]. FEMS Microbiology Letters,2001,196:71-75.
    [110]Hiroyoshi N, Kitagawa H, Tsunekawa M. Effect of solution composition on the optimum redox potential for chalcopyrite leaching in sulfuric acid solutions [J]. Hydrometallurgy,2008,91:144-149.
    [111]Antonijevic M M, Bogdanovic G D. Investigation of the leaching of chalcopyritic ore in acidic solutions [J]. Hydrometallurgy,2004,73:245-256.
    [112]Komnitsas C, Pooley F D. Optimization of the bacterial oxidation of an arsenical gold sulphide concentrate from Olympias, Greece [J]. Minerals Engineering,1991,4:1297-1303.
    [113]Ghahremaninezhad A, Asselin E, Dixon D G. Electrochemical evaluation of the surface of chalcopyrite during dissolution in sulfuric acid solution [J]. Electrochimica Acta,2010,55:5041-5056.
    [114]Hiroyoshi N, Arai M, Miki H, Tsunekawa M, Hirajima T. A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions [J]. Hydrometallurgy,2002,63:257-267.
    [115]Hiroyoshi N, Kuroiwa S, Miki H, Tsunekawa M, Hirajima T. Effects of coexisting metal ions on the redox potential dependence of chalcopyrite leaching in sulfuric acid solutions [J]. Hydrometallurgy,2007,87:1-10.
    [116]Karimi G R, Rowson N A, Hewitt C J. Bioleaching of copper via iron oxidation from chalcopyrite at elevated temperatures [J]. Food and Bioproducts Processing,2010,88:21-25.
    [117]Zeng W, Qiu G, Zhou H, Liu X, Chen M, Chao W, Zhang C, Peng J. Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate [J]. Hydrometallurgy,2010,100: 177-180.
    [118]Parker G K, Hope G A, Woods R. Gold-enhanced Raman observation of chalcopyrite leaching [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,325:132-140.
    [119]Zhang L, Peng J, Wei M, Ding J, Zhou H. Bioleaching of chalcopyrite with Acidianus manzaensis YN25 under contact and non-contact conditions [J]. Transactions of Nonferrous Metals Society of China,2010,20:1981-1986.
    [120]Vilcaez J, Suto K, Inoue C. Bioleaching of chalcopyrite with thermophiles: Temperature-pH-ORP dependence [J]. Int J Miner Process,2008,88:37-44.
    [121]Gautier V, Escobar B, Vargas T. Cooperative action of attached and planktonic cells during bioleaching of chalcopyrite with Sulfolobus metallicus at 70 C [J]. Hydrometallurgy,2008,94:121-126.
    [122]Rodriguez Y, Ballester A, Blazquez M L, Gonzalez F, Munoz J A. New information on the chalcopyrite bioleaching mechanism at low and high temperature [J]. Hydrometallurgy,2003,71:47-56.
    [123]Cordoba E M, Munoz J A, Blazquez M L, Gonzalez F, Ballester A. Leaching of chalcopyrite with ferric ion. Part IV:The role of redox potential in the presence of mesophilic and thermophilic bacteria [J]. Hydrometallurgy,2008,93: 106-115.
    [124]Cordoba E M, Munoz J A, Blazquez M L, Gonzalez F, Ballester A. Leaching of chalcopyrite with ferric ion. Part II:Effect of redox potential [J]. Hydrometallurgy,2008,93:88-96.
    [125]Cordoba E M, Munoz J A, Blazquez M L, Gonzalez F, Ballester A. Passivation of chalcopyrite during its chemical leaching with ferric ion at 68℃ [J]. Minerals Engineering,2009,22:229-235.
    [126]Kametani H, Aoki A. Effect of suspension potential on the oxidation rate of copper concentrate in a sulfuric acid solution [J]. MTB,1985,16:695-705.
    [127]Hirato T, Majima H, Awakura Y. The leaching of chalcopyrite with ferric sulfate [J]. MTB,1987,18:489-496.
    [128]Hansford G S, Vargas T. Chemical and electrochemical basis of bioleaching processes [J]. Hydrometallurgy,2001,59:135-145.
    [129]Zeng W, Qiu G, Zhou H, Chen M. Electrochemical behaviour of massive chalcopyrite electrodes bioleached by moderately thermophilic microorganisms at 48℃ [J]. Hydrometallurgy,2011,105:259-263.
    [130]Nava D, Gonzalez I, Leinen D, Ramos-Barrado J R. Surface characterization by X-ray photoelectron spectroscopy and cyclic voltammetry of products formed during the potentiostatic reduction of chalcopyrite [J]. Electrochimica Acta, 2008,53:4889-4899.
    [131]Eghbalnia M, Dixon D G. Electrochemical study of leached chalcopyrite using solid paraffin-based carbon paste electrodes [J]. Hydrometallurgy,2011,110: 1-12.
    [132]Mikhlin Y L, Tomashevich Y V, Asanov I P, Okotrub A V, Varnek V A, Vyalikh D V. Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS2) reacted in acidic solutions [J]. Applied Surface Science, 2004,225:395-409.
    [133]Liang C L, Xia J L, Yang Y, Nie Z Y, Zhao X J, Zheng L, Ma C Y, Zhao Y D. Characterization of the thermo-reduction process of chalcopyrite at 65 degrees C by cyclic voltammetry and XANES spectroscopy [J]. Hydrometallurgy,2011, 107:13-21.
    [134]Elsherief A E. The influence of cathodic reduction, Fe2+ and Cu2+ ions on the electrochemical dissolution of chalcopyrite in acidic solution [J]. Minerals Engineering,2002,15:215-223.
    [135]Warren H S, Wadsworth T, Wang H. The effect of electrolytecomposition on the cathodic reduction of CuFeS2 [J]. Hydrometallurgy,1985,14:133-138.
    [136]Gomez C, Figueroa M, Munoz J, Blazquez M L, Ballester A. Electrochemistry of chalcopyrite [J]. Hydrometallurgy,1996,43:331-344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700