用户名: 密码: 验证码:
碳钢和耐候钢在若干典型环境下的腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁材料由于其优良的性能而被应用于几乎所有的工业领域,成为最重要的结构材料。碳钢是钢铁材料的基础之一,它不仅广泛应用于建筑、桥梁、铁道、车辆、船舶和各种机械制造工业,而且在近代的石油化学工业、海洋开发等方面,也得到大量使用。然而,碳钢在强腐蚀介质、大气、海水、土壤中都不耐腐蚀,绝大多数酸、碱、盐的水溶液对碳钢均有很强的腐蚀性。钢铁的腐蚀造成的经济危害和社会危害巨大,且对钢铁材料的防护费用非常高昂。幸运的是,在碳钢中添加少量合金元素,可以得到价格低廉、耐蚀性能较好的耐候钢。目前,耐候钢的耐大气腐蚀性能已达到普通钢材的2-8倍,被广泛应用于建筑及交通运输领域。作为重要的工业材料,碳钢和耐候钢的腐蚀行为和防护的研究日益受到重视。本论文以碳钢和耐候钢为研究对象,采用微区电化学手段和多种宏观电化学手段,结合物理表征,对薄液膜下的耐候钢、锈层覆盖的钢以及人工钝化膜覆盖碳钢的腐蚀行为进行了详细的研究。本论文的主要研究工作内容和成果包括:
     采用电化学阻抗谱(Electrochemical Impedance Spectroscopy, EIS),阴极极化曲线,电化学噪声(Electrochemical Noise, EN)等电化学手段,结合扫描电镜/能谱仪(SEM/EDS), X射线衍射(XRD)和拉曼光谱(Raman Spectrum)等考察了不同相对湿度(Relative Humidity, RH)和液膜厚度薄液膜下耐候钢的腐蚀行为。结果表明腐蚀初期液膜厚度为100μm时的腐蚀速率最大,其次是200μm和50μm,400μm液膜下腐蚀速率次之,本体溶液中最小。在100和50gm之间有一个电流密度极大值对应的液膜厚度。50gm液膜厚度下受阳极控制,其余液膜厚度下均受氧的扩散控制。腐蚀中后期,由于液膜厚度的减薄和锈层的生成,腐蚀行为变得复杂:对于50和100gm薄液膜,由于腐蚀初期的快速反应,腐蚀产物在电极表面堆积,腐蚀中后期受阳极控制,腐蚀速率下降;对于200μm薄液膜,在75%和85%RH下的腐蚀行为类似于50和100μm薄液膜,腐蚀中后期,腐蚀速率下降,在97%RH下,腐蚀速率持续上升,但因锈层致密度提高,上升幅度减小;对于400μm薄液膜和本体溶液中,氧的供应不足,锈层疏松多孔,腐蚀速率持续上升,腐蚀后期,液膜减薄到一定程度,氧的供应虽逐渐增多,但锈层逐渐加厚,腐蚀速率上升幅度减小。液膜厚度小于400gm时75%RH下锈层疏松多孔,85%和97%RH下相对较为致密,相对湿度和腐蚀试验时间对锈层的致密性有重要影响。
     应用微区电化学技术扫描电化学显微镜(Scanning Electrochemistry Microscopy, SECM)和宏观电化学技术如EIS,阴极极化曲线,结合SEM/EDS和XRD物理表征,考察并比较了干湿循环条件中锈层下碳钢和耐候钢的腐蚀行为,发现实验初期,两种钢的腐蚀行为相似,形成的锈层降低了Fe阳极溶解速率,从而提高碳钢和耐候钢的耐蚀性能;后期形成的锈层由于其组成和结构特征的变化,两种钢的腐蚀速率均增加;不同的是耐候钢的腐蚀速率较碳钢大,且自身锈层还原也较碳钢强,有利于锈层的形成,从而有利于长期的防护,但耐候钢的锈层在短期内并没有很好的保护性。两种钢的锈层在于湿循环条件下均不够致密,呈疏松多孔状,其组成主要有晶态的γ-FeOOH, Fe3O4和y-Fe2O3等。在实验周期内,锈层处于非稳定状态,相同干湿循环条件下,耐候钢的锈层较碳钢厚,后期较碳钢锈层致密。
     采用SECM和宏观电化学手段EIS, Mott-Schottky测试,以及XPS、光学显微镜研究了不同电位下生成的碳钢钝化膜的电化学性质及耐蚀性,发现碳钢在硼酸缓冲溶液中生成的钝化膜对成膜电位有依赖性。随着成膜电位的正移,钝化膜表面电化学反应活性降低。宏观电化学分析表明随着成膜电位的正移,电化学反应电阻增大,点缺陷密度降低,膜的导电性降低。在NaCl溶液中,0.7V电位下的钝化膜溶解较均匀,与其多孔结构有关。0.3V电位下生成的钝化膜的腐蚀速率最小,而0.7V电位下的其次,这是由于后者的多孔结构以及在含Cl-溶液中失去了自修复功能导致。-0.1V电位下的钝化膜腐蚀速率最快,在NaCl溶液中迅速溶解,生成了保护性较强的腐蚀产物。
     利用COMSOL Multiphysics建立数学模型进行数值模拟,进而求得不同电位下生成的钝化膜与电解液界面的速率常数,并与Origin拟合结果进行比较,发现,两种方法拟合出的数值变化规律相同,但数量级有差别,这可能是因为我们的实验条件受限于Origin拟合公式的设定条件。但COMSOL可以更直观建立腐蚀空间模型,有利于获得更准确动力学参数。
As the most important structural material, the steel is applied to almost the whole industrial domain for its excellent properties. Carbon steel is one of the foundation of steel, which is not only used widely in buildings, bridges, railways, vehicles, ships and all kinds of machine-making industrial, but also applied to petrochemical industry and ocean development abundantly. However, the corrosion resistance of carbon steel in highly aggressive medium, atmosphere, seawater and soil is so poor that he economic and social loss that the corrosion of steel brings about is particularly huge, and the cost for protection of steels is extremely high. Fortunately, the weathering steel which is low cost and highly protective can be obtained from the addition of trace alloy elements. At present, the corrosion resistance of weathering steel has reached to2-8times of ordinary steel. As important industrial materials, the investigations of the corrosion behavior and protection of carbon steel and weathering steel are increasingly paid attention to. In this dissertation, the corrosion behavior of weathering steel in TELs, the steels with rust and passive film were investigated via micro-and macro-electrochemical methods combining physical characterization exhaustively. The main contents and results are listed as follows:
     The corrosion behavior of weathering steel under thin electrolyte layer (TEL) at various relative humidities (RHs) was investigated by cathodic polarization curves, electrochemical impedance spectroscopy (EIS), OM, SEM/EDS, XRD and Raman spectroscopy. The results show that at the initial immersion stage (first2h), the100μm TEL has the largest corrosion rate, following by200μm and50μm, and then400μm. There is a point for the maximum value of corrosion rate between100and50μm, the corrosion under TEL is under the control of O2diffusion except50μm TEL which controlled by anodic process. For the50and100μm TEL, the corrosion rate is relatively large due to the sufficient supplement of oxygen in the initial stage and the rust accumulated, then the anodic reaction predominates the corrosion reaction, which results in the decrease of corrosion rate; In the case ofthe200μm TEL, the evolution of the corrosion resistance is similar to the first type at low RHs (75%and85%RH), while at97%RH, the corrosion rate keeps on increasing with the immersion time, and the relatively compact rust layer forms on the electrode. In the case of400and1000μm TEL, the porous and loose rust layers are formed on the electrode due to the insufficient oxygen in the beginning immersion, and the corrosion rate consistently increases due to the poor protectiveness of rust layer. In the later stage, the extent of the increasing of corrosion rate decrease due to the thick rust layers. For the thinner TELs less than400μm, the rust layers which form at75%RH are always porous and loose, while that of97%RH are compact, indicating that the RH and corrosion period has an significant influence on the density and then protectiveness of rust layer.
     SECM was used to investigate corrosion behavior of carbon steel and weathering steel under wet-dry cyclic conditions, combined with conventional electrochemical measurements such as polarization curves and EIS, and the physical characterization method of rust layers such as SEM and XRD. The results show that the rust layer formation in the initial stage reduces the Fe anodic dissolution rate, thereby improves the corrosion resistance of carbon steel and weathering steel, while the rust layer formation in the late period of the experimental results in higher corrosion rate due to the changes of its composition and structural characteristics. Weathering steel corrosion rate is higher than that of carbon steel, and the reduction rate of rust is also higher than that of carbon steel, which are conducive to the formation of rust layer, thus contributing to long-term protection of steel, but the rust layer of weathering steel is not very good protection in the short term. Rust layer is loose, porous and not dense enough, and the main composition of rust layer is crystalline γ-FeOOH, Fe3O4and γ-Fe2O3. The rust layer thickness of weathering steel is higher than that of carbon steel in the same wet-dry cycles condition.
     Passive films formed on carbon steel by different passivation potentials in borate buffer solution and their degradation behavior were studied by EIS, Mott-Schottky analysis and SECM, while the film composition and morphology were investigated by XPS and OM. The results show that the electrochemical reactivity on the surface of passive film is weakened as the film formation potential increases due to slower charge transfer rate. The heterogeneous electron transfer rate constant k calculated from approach curves decreases linearly with substrate potential increasing, resulting from different electrochemical reactivity on the surface of substrate. The electrochemical reaction resistance of the film increases with film formation potential increasing, while the point defect density decreases, indicating the film becomes less conductive. The ratio Fe3+/Fe2+and the percentage of oxyhydroxide species increase simultaneously as the film formation potential shifts from-0.1V to0.7V. Immersed in NaCl solution, the film formed at0.3V has the strongest corrosion resistance followed by that of0.7V which is porous and loose the self-repair ability in NaCl solution. The corrosion rate of-0.1V is fastest and accompanied by the formation of corrosion product with high protectiveness.
     The probe approach curves for different reaction rate constant of substrate were also simulated by COMSOL Multiphysics, and the heterogeneous rate constants at the interface of passive films formed at different potential and electrolyte are obtained. Comparing the fitting results by COMSOL and Origin, it is can be found that the variation tendency of ks by the potential of the substrate is similar to each other, but there is a difference in the real value of ks. The probable reason is the distinction of our experiment condition and the condition which in the expression of Origin. Since the Comsol simulation is based on the real corrosion spatial model, the fitting result is more accurate than that got from Origin fitting.
引文
[1]蔡元兴,刘科高,郭晓斐,常用金属材料的耐蚀性能[M],冶金工业出版社,2011,44-50.
    [2]王传雅,戚正风,耐候钢的化学成分和性能[J],特殊钢,1997,18(1):13-19.
    [3]陆匠心,李爱柏,李白刚,宝钢耐候钢产品开发的现状及展望[J],中国冶金,2004,7(12):23-28.
    [4]S. W. Dean, E. Rhea, Atmospheric corrosion of metals:a symposium [M], American Society for Testing and Materials,1982.
    [5]D. W. Rice, In Door Atmospheric Corrosion [M], Wiley, New York,1982.
    [6]N. D. Tomashov, Development of the Electrochemical Theory of Metallic Corrosion [J], Corrosion,1964,20(1):7t-14t.
    [7]F. Mansfeld, J. V. Kenkel, Electrochemical Measurements of Time-of-Wetness and Atmospheric Corrosion Rates [J], Corrosion,1977,33(1):13-16.
    [8]F. Mansfeld, S. Tsai, Laboratory studies of atmospheric corrosion—Ⅰ. Weight loss and electrochemical measurements [J], Corrosion Science,1980,20(7):853-872.
    [9]M. Stratmann, H. Streckel, On the atmospheric corrosion of metals which are covered with thin electrolyte layers—Ⅰ. Verification of the experimental technique [J], Corrosion Science,1990,30(6-7):681-696.
    [10]程英亮,铝合金在本体溶液以及薄层液膜下的腐蚀电化学研究[D],杭州,浙江大学化学系,2003.
    [11]P. J. Sereda, Atmospheric Factors Affecting the Corrosion of Steel [J], Industrial & Engineering Chemistry,1960,52(2):157-160.
    [12]W. H. J. Vernon, A Laboratory study of the atmospheric corrosion of metals. Part Ⅱ.—Iron:the primary oxide film. Part Ⅲ.—The secondary product or rust (influence of sulphur dioxide, carbon dioxide,and Suspended Particles on the Rusting of Iron [J], Transactions of the Faraday Society,1935,31(1):1668-1700.
    [13]王海涛,韩恩厚,柯伟,碳钢、低合金钢大气腐蚀的灰色模型预测及灰色关联分析[J],腐蚀科学与防护技术,2006,18(4):278-280.
    [14]F. Mansfeld, J. V. Kenkel, Electrochemical monitoring of atmospheric corrosion phenomena [J], Corrosion Science,1976,16(3):111-122.
    [15]T. Tsuru, K. I. Tamiya, A. Nishikata, Formation and growth of micro-droplets during the initial stage of atmospheric corrosion [J], Electrochimica Acta,2004, 49(17-18):2709-2715.
    [16]J. Zhang, J. Wang, Y. Wang, Electrochemical investigations of micro-droplets formed on metals during the deliquescence of salt particles in atmosphere [J], Electrochemistry Communications,2005,7(4):443-448.
    [17]C. Li, Y. Ma, Y. Li, F. Wang, EIS monitoring study of atmospheric corrosion under variable relative humidity [J], Corrosion Science,2010,52(11):3677-3686.
    [18]T. Tsuru, A. Nishikata, J. Wang, Electrochemical studies on corrosion under a water film [J], Materials Science and Engineering:A,1995,198(1-2):161-168.
    [19]C. Thee, L. Hao, J. Dong, X. Mu, X. Wei, X. Li, W. Ke, Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition [J], Corrosion Science,2014,78(0):130-137.
    [20]N. Xu, L. Zhao, C. Ding, C. Zhang, R. Li, Q. Zhong, Laboratory observation of dew formation at an early stage of atmospheric corrosion of metals [J], Corrosion Science,2002,44(1):163-170.
    [21]李晓刚,董超芳,肖葵,杜翠薇等,金属大气腐蚀初期行为与机理[M],科学出版社,北京,2009,44-58.
    [22]T. E. Graedel, R. P. Frankenthal, Corrosion Mechanisms for Iron and Low Alloy Steels Exposed to the Atmosphere [J], Journal of The Electrochemical Society,1990, 137(8):2385-2394.
    [23]F. Corvo, N. Betancourt, A. Mendoza, The influence of airborne salinity on the atmospheric corrosion of steel [J], Corrosion Science,1995,37(12):1889-1901.
    [24]M. Morcillo, B. Chico, E. Otero, L. Mariaca, Effect of marine aerosol on atmospheric corrosion [J], Materials Performance,1999,38(4):72-77.
    [25]T. Nishimura, H. Katayama, K. Noda, T. Kodama, Electrochemical Behavior of Rust Formed on Carbon Steel in a Wet/Dry Environment Containing Chloride Ions [J], Corrosion,2000,56(9):935-941.
    [26]T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, H. Uchida, Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J], Corrosion Science,2006,48(9):2799-2812.
    [27]T. Kamimura, S. Nasu, T. Segi, T. Tazaki, H. Miyuki, S. Morimoto, T. Kudo, Influence of cations and anions on the formation of β-FeOOH [J], Corrosion Science, 2005,47(10):2531-2542.
    [28]T. Ishikawa, R. Katoh, A. Yasukawa, K. Kandori, T. Nakayama, F. Yuse, Influences of metal ions on the formation of β-FeOOH particles [J], Corrosion Science,2001,43(9):1727-1738.
    [29]P. Marcus, V. Maurice, H. H. Strehblow, Localized corrosion (pitting):A model of passivity breakdown including the role of the oxide layer nanostructure [J], Corrosion Science,2008,50(9):2698-2704.
    [30]J. A. Gonzalez, J. M. Miranda, N. Birbilis, S. Feliu, Electrochemical Techniques for Studying Corrosion of Reinforcing Steel:Limitations and Advantages [J], Corrosion,2005,61(1):37-50.
    [31]A. M. Hassanein, G. K. Glass, N. R. Buenfeld, Protection current distribution in reinforced concrete cathodic protection systems [J], Cement and Concrete Composites, 2002,24(1):159-167.
    [32]H. H. Uhlig, R. W. Revie, Corrosion and Corrosion Control [M], John Wiley and Sons, New York,1985.
    [33]I. M. Allam, J. S. Arlow, H. Saricimen, Initial stages of atmospheric corrosion of steel in the Arabian Gulf [J], Corrosion Science,1991,32(4):417-432.
    [34]M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, T. Misawa, The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J], Corrosion Science,1994,36(2):283-299.
    [35]M. Yamashita, H. Konishi, T. Kozakura, J. Mizuki, H. Uchida, In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays [J], Corrosion Science,2005,47(10):2492-2498.
    [36]F. Farelas, M. Galicia, B. Brown, S. Nesic, H. Castaneda, Evolution of dissolution processes at the interface of carbon steel corroding in a CO2 environment studied by EIS [J], Corrosion Science,2010,52(2):509-517.
    [37]C. De Waard, D. E. Milliams, Carbonic Acid Corrosion of Steel [J], Corrosion, 1975,31(5):177-181.
    [38]J. K. Heuer, J. F. Stubbins, An XPS characterization of FeCO2 films from CO2 corrosion [J], Corrosion Science,1999,41(7):1231-1243.
    [39]A. L. Morales, D. Cartagena, J. L. Rendon, A. Valencia, The Relation between Corrosion Rate and Corrosion Products from Low Carbon Steel [J], physica status solidi (b),2000,220(1):351-356.
    [40]M. B. Valcarce, M. Vazquez, Carbon steel passivity examined in solutions with a low degree of carbonation:The effect of chloride and nitrite ions [J], Materials Chemistry and Physics,2009,115(1):313-321.
    [41]M. Jeannin, D. Calonnec, R. Sabot, P. Refait, Role of a clay sediment deposit on the corrosion of carbon steel in 0.5 mol L-x NaCl solutions [J], Corrosion Science, 2010,52(6):2026-2034.
    [42]S. Nesic, Key issues related to modelling of internal corrosion of oil and gas pipelines-A review [J], Corrosion Science,2007,49(12):4308-4338.
    [43]C. Barchiche, R. Sabot, M. Jeannin, P. Refait, Corrosion of carbon steel in sodium methanoate solutions [J], Electrochimica Acta,2010,55(6):1940-1947.
    [44]J. Duan, S. Wu, X. Zhang, G. Huang, M. Du, B. Hou, Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J], Electrochimica Acta,2008, 54(1):22-28.
    [45]F. Corvo, J. Minotas, J. Delgado, C. Arroyave, Changes in atmospheric corrosion rate caused by chloride ions depending on rain regime [J], Corrosion Science,2005, 47(4):883-892.
    [46]王光雍,舒启茂,材料在大气、海水、土壤环境中腐蚀数据积累及腐蚀与防护研究的意义与进展[J],中国科学基金,1992,6(1):40.
    [47]K. Asami, M. Kikuchi, In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years [J], Corrosion Science,2003,45(11):2671-2688.
    [48]Y. Ma, Y. Li, F. Wang, Corrosion of low carbon steel in atmospheric environments of different chloride content [J], Corrosion Science,2009,51(5): 997-1006.
    [49]D. de la Fuente, I. Diaz, J. Simancas, B. Chico, M. Morcillo, Long-term atmospheric corrosion of mild steel [J], Corrosion Science,2011,53(2):604-617.
    [50]J. H. Wang, F. I. Wei, H. C. Shin, Modeling of Atmospheric Corrosion Behavior of Weathering Steel in Sulfur Dioxide-Polluted Atmospheres [J], Corrosion,1996, 52(12):900-909.
    [51]J. H. Wang, F. I. Wei, Y. S. Chang, H. C. Shih, The corrosion mechanisms of carbon steel and weathering steel in SO2 polluted atmospheres [J], Materials Chemistry and Physics,1997,47(1):1-8.
    [52]L. Hao, S. Zhang, J. Dong, W. Ke, Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments [J], Corrosion Science,2011,53(12): 4187-4192.
    [53]L. Hao, S. Zhang, J. Dong, W. Ke, Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere [J], Corrosion Science,2012,59(0):270-276.
    [54]A. Nishikata, Y. Ichihara, T. Tsuru, An application of electrochemical impedance spectroscopy to atmospheric corrosion study [J], Corrosion Science,1995,37(6): 897-911.
    [55]H. Katayama, K. Noda, H. Masuda, M. Nagasawa, M. Itagaki, K. Watanabe, Corrosion simulation of carbon steels in atmospheric environment [J], Corrosion Science,2005,47(10):2599-2606.
    [56]C. Fiaud, M. Keddam, A. Kadri, H. Takenouti, Electrochemical impedance in a thin surface electrolyte layer. Influence of the potential probe location [J], Electrochimica Acta,1987,32(3):445-448.
    [57]K. W. Chung, K. B. Kim, A study of the effect of concentration build-up of electrolyte on the atmospheric corrosion of carbon steel during drying [J], Corrosion Science,2000,42(3):517-531.
    [58]A. Nishikata, Y. Ichihara, T. Tsuru, Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer [J], Electrochimica Acta,1996,41(7-8): 1057-1062.
    [59]Y. Tsutsumi, A. Nishikata, T. Tsuru, Initial Stage of Pitting Corrosion of Type 304 Stainless Steel under Thin Electrolyte Layers Containing Chloride Ions [J], Journal of The Electrochemical Society,2005,152(9):B358-B363.
    [60]M. Stratmann, The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers—A new experimental technique [J], Corrosion Science,1987,27(8):869-872.
    [61]王佳,水流彻,使用Kelvin探头参比电极技术进行薄液层下电化学测量[J],中国腐蚀与防护学报,1995,15(3):173-179.
    [62]邹锋,韩薇,线性回归法进行Kelvin电位测试[J],腐蚀科学与防护技术,1995,7(1):17-22.
    [63]A. Q. Fu, X. Tang, Y. F. Cheng, Characterization of corrosion of X70 pipeline steel in thin electrolyte layer under disbonded coating by scanning Kelvin probe [J], Corrosion Science,2009,51(1):186-190.
    [64]W. P. Iverson, Transient voltage changes produced in corroding metals and alloys [J], Journal of The Electrochemical Society,1968,115(6):617-618.
    [65]T. Okada, A theoretical analysis of the electrochemical noise during the induction period of pitting corrosion in passive metals:Part 1. The current noise associated with the adsorption/desorption processes of halide ions on the passive film surface [J], Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991,297(2):349-359.
    [66]B. Zhao, J. H. Li, R. G. Hu, R. G. Du, C. J. Lin, Study on the corrosion behavior of reinforcing steel in cement mortar by electrochemical noise measurements [J], Electrochimica Acta,2007,52(12):3976-3984.
    [67]A. Legat, V. Dolecek, Corrosion Monitoring System Based on Measurement and Analysis of Electrochemical Noise [J], Corrosion,1995,51(4):295-300.
    [68]J. F. Chen, W. F. Bogaerts, Electrochemical Emission Spectroscopy for Monitoring Uniform and Localized Corrosion [J], Corrosion,1996,52(10):753-759.
    [69]K. Hladky, J. L. Dawson, The measurement of localized corrosion using electrochemical noise [J], Corrosion Science,1981,21(4):317-322.
    [70]J. Stewart, D. E. Williams, The initiation of pitting corrosion on austenitic stainless steel:on the role and importance of sulphide inclusions [J], Corrosion Science,1992,33(3):457-474.
    [71]A. Chen, F. Cao, X. Liao, W. Liu, L. Zheng, J. Zhang, C. Cao, Study of pitting corrosion on mild steel during wet-dry cycles by electrochemical noise analysis based on chaos theory [J], Corrosion Science,2013,66(0):183-195.
    [72]M. Stratmann, K. Bohnenkamp, H. J. Engell, An electrochemical study of phase-transitions in rust layers [J], Corrosion Science,1983,23(9):969-985.
    [73]I. Suzuki, N. Masuko, Y. Hisamatsu, Electrochemical properties of iron rust [J], Corrosion Science,1979,19(8):521-535.
    [74]H. Okada, Y. Hosoi, H. Naito, Electrochemical Reduction of Thick Rust Layers Formed on Steel Surfaces [J], Corrosion,1970,26(10):429-430.
    [75]T. Misawa, K. Asami, K. Hashimoto, S. Shimodaira, The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J], Corrosion Science,1974,14(4):279-289.
    [76]P. Refait, J. M. R. Genin, The oxidation of ferrous hydroxide in chloride-containing aqueous media and pourbaix diagrams of green rust one [J], Corrosion Science,1993,34(5):797-819.
    [77]K. E. Garcia, A. L. Morales, C. A. Barrero, J. M. Greneche, New contributions to the understanding of rust layer formation in steels exposed to a total immersion test [J], Corrosion Science,2006,48(9):2813-2830.
    [78]A. Raman, A. Razvan, B. Kuban, K. A. Clement, W. E. Graves, Characteristics of the Rust from Weathering Steels in Louisiana Bridge Spans [J], Corrosion,1986, 42(8):447-455.
    [79]U. R. Evans, Electrochemical mechanism of atmospheric rusting [J], Nature, 1965,206(4988):980-982
    [80]S. Nasrazadani, A. Raman, Formation and Transformation of Magnetite (Fe3O4) on Steel Surfaces Under Continuous and Cyclic Water Fog Testing [J], Corrosion, 1993,49(4):294-300.
    [81]T. Misawa, T. Kyuno, W. Suetaka, S. Shimodaira, The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels [J], Corrosion Science,1971,11(1):35-48.
    [82]L. Bousselmi, C. Fiaud, B. Tribollet, E. Triki, The characterisation of the coated layer at the interface carbon steel-natural salt water by impedance spectroscopy [J], Corrosion Science,1997,39(9):1711-1724.
    [83]O. E. Gjorv, O. Vennesland, A. H. S. El-Busaidy, Diffusion of dissolved oxygen through concrete [J], Material Performance,1987,25(12):39-44.
    [84]J. A. Gonzalez, J. M. Miranda, E. Otero, S. Feliu, Effect of electrochemically reactive rust layers on the corrosion of steel in a Ca(OH)2 solution [J], Corrosion Science,2007,49(2):436-448.
    [85]Y. Zou, J. Wang, Y. Y. Zheng, Electrochemical techniques for determining corrosion rate of rusted steel in seawater [J], Corrosion Science,2011,53(1):208-216.
    [86]S. J. Ahn, H. S. Kwon, Effects of solution temperature on electronic properties of passive film formed on Fe in pH 8.5 borate buffer solution [J], Electrochimica Acta, 2004,49(20):3347-3353.
    [87]U. Stimming, Photoelectrochemical studies of passive films [J], Electrochimica Acta,1986,31(4):415-429.
    [88]C. Y. Chao, L. F. Lin, D. D. Macdonald, A Point Defect Model for Anodic Passive Films:Ⅰ. Film Growth Kinetics [J], Journal of The Electrochemical Society, 1981,128(6):1187-1194.
    [89]L. F. Lin, C. Y. Chao, D. D. Macdonald, A Point Defect Model for Anodic Passive Films:Ⅱ. Chemical Breakdown and Pit Initiation [J], Journal of The Electrochemical Society,1981,128(6):1194-1198.
    [90]C. Y. Chao, L. F. Lin, D. D. Macdonald, A Point Defect Model for Anodic Passive Films:Ⅲ. Impedance Response [J], Journal of The Electrochemical Society, 1982,129(9):1874-1879.
    [91]D. D. Macdonald, The Point Defect Model for the Passive State [J], Journal of The Electrochemical Society,1992,139(12):3434-3449.
    [92]A. M. P. Simoes, M. G. S. Ferreira, B. Rondot, M. da Cunha Belo, Study of Passive Films Formed on AISI 304 Stainless Steel by Impedance Measurements and Photoelectrochemistry [J], Journal of The Electrochemical Society,1990,137(1): 82-87.
    [93]A. Di Paola, D. Shukla, U. Stimming, Photoelectrochemical study of passive films on stainless steel in neutral solutions [J], Electrochimica Acta,1991,36(2): 345-352.
    [94]D. G. Li, Y. R. Feng, Z. Q. Bai, J. W. Zhu, M. S. Zheng, Influence of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution [J], Electrochimica Acta,2007,52(28):7877-7884.
    [95]C. O. A. Olsson, D. Landolt, Passive films on stainless steels—chemistry, structure and growth [J], Electrochimica Acta,2003,48(9):1093-1104.
    [96]Y. F. Cheng, J. L. Luo, Electronic structure and pitting susceptibility of passive film on carbon steel [J], Electrochimica Acta,1999,44(17):2947-2957.
    [97]Y. F. Cheng, C. Yang, J. L. Luo, Determination of the diffusivity of point defects in passive films on carbon steel [J], Thin Solid Films,2002,416(1-2):169-173.
    [98]E. Sosa, R. Cabrera-Sierra, M. T. Oropeza, F. Hernandez, N. Casillas, R. Tremont, C. Cabrera, I. Gonzalez, Electrochemically grown passive films on carbon steel (SAE 1018) in alkaline sour medium [J], Electrochimica Acta,2003,48(12): 1665-1674.
    [99]M. A. Golozar, A. Ashrafi, S. Mallakpour, EIS investigation of passive film formation on mild steel in oxalic acid solution [J], Journal of Applied Electrochemistry,2008,38(2):225-229.
    [100]V. A. Alves, C. M. A. Brett, Characterisation of passive films formed on mild steels in bicarbonate solution by EIS [J], Electrochimica Acta,2002,47(13-14): 2081-2091.
    [101]L. Hamadou, A. Kadri, N. Benbrahim, Characterisation of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy [J], Applied Surface Science,2005,252(5):1510-1519.
    [102]M. Sanchez, J. Gregori, M. C. Alonso, J. J. Garcia-Jareno, F. Vicente, Anodic growth of passive layers on steel rebars in an alkaline medium simulating the concrete pores [J], Electrochimica Acta,2006,52(1):47-53.
    [103]M. Sanchez, J. Gregori, C. Alonso, J. J. Garcia-Jareno, H. Takenouti, F. Vicente, Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores [J], Electrochimica Acta, 2007,52(27):7634-7641.
    [104]K. Yazdanfar, X. Zhang, P. G. Keech, D. W. Shoesmith, J. C. Wren, Film conversion and breakdown processes on carbon steel in the presence of halides [J], Corrosion Science,2010,52(4):1297-1304.
    [105]S. Modiano, C. S. Fugivara, A. V. Benedetti, Effect of citrate ions on the electrochemical behaviour of low-carbon steel in borate buffer solutions [J], Corrosion Science,2004,46(3):529-545.
    [106]N. Ramasubramanian, N. Preocanin, R. D. Davidson, Analysis of Passive Films on Stainless Steel by Cyclic Voltammetry and Auger Spectroscopy [J], Journal of The Electrochemical Society,1985,132(4):793-798.
    [107]M. J. Carmezim, A. M. Simoes, M. F. Montemor, M. D. Belo, Capacitance behaviour of passive films on ferritic and austenitic stainless steel [J], Corrosion Science,2005,47(3):581-591.
    [108]N. E. Hakiki, M. Da Cunha Belo, A. M. P. Simoes, M. G. S. Ferreira, Semiconducting Properties of Passive Films Formed on Stainless Steels:Influence of the Alloying Elements [J], Journal of The Electrochemical Society,1998,145(11): 3821-3829.
    [109]C. O. A. Olsson, The influence of nitrogen and molybdenum on passive films formed on the austenoferritic stainless steel 2205 studied by AES and XPS [J], Corrosion Science,1995,37(3):467-479.
    [110]D. D. Macdonald, I. Nicic, The passivity of Type 316L stainless steel in borate buffer solution [J], Journal of Nuclear Materials,2008,379(1-3):54-58.
    [111]A. J. Bard, F.-R. F. Fan, J. Kwak, O. Lev, Scanning Electrochemical Microscopy. Introduction and Principles [J], Analytical Chemistry,1989,61(2): 132-138.
    [112]A. J. Bard, M. V. Mirkin, Scanning Electrochemical Microscopy [M], Marcel Dekker, Inc., New York,2001.
    [113]M. V. M. A. J. Bard, P. R. Unwin, D. O. Wipf, Scanning Electrochemical Microscopy.12. Theory and Experiment of the Feedback Mode with Finite Heterogeneous Electron-Transfer Kinetics and Arbitrary Substrate Size [J], The Journal of Physical Chemistry,1992,96(4):1861-1868.
    [114]R. D. Martin, P. R. Unwin, Theory and Experiment for the Substrate Generation/Tip Collection Mode of the Scanning Electrochemical Microscope: Application as an Approach for Measuring the Diffusion Coefficient Ratio of a Redox Couple [J], Analytical Chemistry,1998,70(2):276-284.
    [115]S. B. Basame, H. S. White, Scanning electrochemical microscopy of native titanium oxide films. Mapping the potential dependence of spatially-localized electrochemical reactions [J], The Journal of Physical Chemistry,1995,99(44): 16430-16435.
    [116]D. O. Wipf, A. J. Bard, Scanning Electrochemical Microscopy:X. High Resolution Imaging of Active Sites on an Electrode Surface [J], Journal of The Electrochemical Society,1991,138(5):L4-L6.
    [117]A. J. Bard, G. Denuault, C. Lee, D. Mandler, D. O. Wipf, Scanning electrochemical microscopy-a new technique for the characterization and modification of surfaces [J], Accounts of Chemical Research,1990,23(11):357-363.
    [118]A. J. Bard, W. J. Miao, Z. F. Ding, Solution viscosity effects on the heterogeneous electron transfer kinetics of ferrocenemethanol in dimethyl sulfoxide-water mixtures [J], Journal of Physical Chemistry B,2002,106(6): 1392-1398.
    [119]R. Cornut, C. Lefrou, A unified new analytical approximation for negative feedback currents with a microdisk SECM tip [J], Journal of Electroanalytical Chemistry,2007,608(1):59-66.
    [120]H. Shiku, T. Shiraishi, S. Aoyagi, Y. Utsumi, M. Matsudaira, H. Abe, H. Hoshi, S. Kasai, H. Ohya, T. Matsue, Respiration activity of single bovine embryos entrapped in a cone-shaped microwell monitored by scanning electrochemical microscopy [J], Analytica Chimica Acta,2004,522(1):51-58.
    [121]T. Wilhelm, G. Wittstock, Patterns of functional proteins formed by local electrochemical desorption of self-assembled monolayers [J], Electrochimica Acta, 2001,47(1-2):275-281.
    [122]R. M. Wightman, Voltammetry with Microscopic Electrodes in New Domains [J], Science,1988,240(4851):415-420.
    [123]J. Kwak, A. J. Bard, Scanning Electrochemical Microscopy. Theory of the Feedback Mode [J], Analytical Chemistry,1989,61(11):1221-1227.
    [124]Y. Shao, M. V. Mirkin, Probing Ion Transfer at the Liquid/Liquid Interface by Scanning Electrochemical Microscopy (SECM) [J], The Journal of Physical Chemistry B,1998,102(49):9915-9921.
    [125]H. Xiong, J. Guo, S. Amemiya, Probing Heterogeneous Electron Transfer at an Unbiased Conductor by Scanning Electrochemical Microscopy in the Feedback Mode [J], Analytical Chemistry,2007,79(7):2735-2744.
    [126]R. Cornut, S. Griveau, C. Lefrou, Accuracy study on fitting procedure of kinetics SECM feedback experiments [J], Journal of Electroanalytical Chemistry, 2010,650(1):55-61.
    [127]E. Volker, C. G. Inchauspe, E. J. Calvo, Scanning electrochemical microscopy measurement of ferrous ion fluxes during localized corrosion of steel [J], Electrochemistry Communications,2006,8(1):179-183.
    [128]R.M. Souto, Y. Gonzalez-Garcia, S. Gonzalez, In situ monitoring of electroactive species by using the scanning electrochemical microscope. Application to the investigation of degradation processes at defective coated metals [J], Corrosion Science,2005,47(12):3312-3323.
    [129]N. Baltes, L. Thouin, C. Amatore, J. Heinze, Imaging Concentration Profiles of Redox-Active Species with Nanometric Amperometric Probes:Effect of Natural Convection on Transport at Microdisk Electrodes [J], Angew. Chem. Int. Ed.,2004, 43(11):1431-1435.
    [130]K. Fushimi, M. Seo, An SECM observation of dissolution distribution of ferrous or ferric ion from a polycrystalline iron electrode [J], Electrochimica Acta, 2001,47(1-2):121-127.
    [131]A. C. Bastos, A. M. SimOes, S. Gonzalez, Y. Gonzalez-Garcia, R. M. Souto, Imaging concentration profiles of redox-active species in open-circuit corrosion processes with the scanning electrochemical microscope [J], Electrochemistry Communications,2004,6(11):1212-1215.
    [132]J. W. Still, D. O. Wipf, Breakdown of the iron passive layer by use of the scanning electrochemical microscope [J], Journal of The Electrochemical Society, 1997,144(8):2657-2665.
    [133]K. Fushimi, K. Azumi, M. Seo, Use of a liquid-phase ion gun for local breakdown of the passive film on iron [J], Journal of the Electrochemical Society, 2000,147(2):552-557.
    [134]C. Gabrielli, S. Joiret, M. Keddam, H. Perrot, N. Portail, P. Rousseau, V. Vivier, Development of a coupled SECM-EQCM technique for the study of pitting corrosion on iron [J], Journal of The Electrochemical Society,2006,153(3):B68-B74.
    [135]C. Gabrielli, S. Joiret, M. Keddam, H. Perrot, N. Portail, P. Rousseau, V. Vivier, A SECM assisted EQCM study of iron pitting [J], Electrochimica Acta,2007,52(27): 7706-7714.
    [136]C. Gabrielli, S. Joiret, M. Keddam, N. Portail, P. Rousseau, V. Vivier, Single pit on iron generated by SECM-An electrochemical impedance spectroscopy investigation [J], Electrochimica Acta,2008,53(25):7539-7548.
    [137]Y. H. Yin, L. Niu, M. Lu, W. K. Guo, S. H. Chen, In situ characterization of localized corrosion of stainless steel by scanning electrochemical microscope [J], Applied Surface Science,2009,255(22):9193-9199.
    [138]Y. Gonzalez-Garcia, G. T. Burstein, S. Gonzalez, R. M. Souto, Imaging metastable pits on austenitic stainless steel in situ at the open-circuit corrosion potential [J], Electrochemistry Communications,2004,6(7):637-642.
    [139]M. Terada, A. F. Padilha, A. M. P. Simoes, H. G. de Melo, I. Costa, Use of SECM to study the electrochemical behavior of DIN 1.4575 superferritic stainless steel aged at 475 degrees [J], Materials and Corrosion-Werkstoffe Und Korrosion, 2009,60(11):889-894.
    [140]T. E. Lister, P. J. Pinhero, The effect of localized electric fields on the detection of dissolved sulfur species from Type 304 stainless steel using scanning electrochemical microscopy [J], Electrochimica Acta,2003,48(17):2371-2378.
    [141]C. H. Paik, H. S. White, R. C. Alkire, Scanning electrochemical microscopy detection of dissolved sulfur species from inclusions in stainless steel [J], Journal of The Electrochemical Society,2000,147(11):4120-4124.
    [142]T. E. Lister, P. J. Pinhero, Scanning electrochemical microscopy study of corrosion dynamics on type 304 stainless steel [J], Electrochemical and Solid State Letters,2002,5(11):B33-B36.
    [143]T. E. Lister, P. J. Pinhero, Microelectrode array microscopy:Investigation of dynamic behavior of localized corrosion at type 304 stainless steel surfaces [J], Analytical Chemistry,2005,77(8):2601-2607.
    [144]L. Freire, X. R. Novoa, G. Pena, V. Vivier, On the corrosion mechanism of AISI 204Cu stainless steel in chlorinated alkaline media [J], Corrosion Science,2008, 50(11):3205-3212.
    [145]K. Eckhard, M. Etienne, A. Schulte, W. Schuhmann, Constant-distance mode AC-SECM for the visualisation of corrosion pits [J], Electrochemistry Communications,2007,9(7):1793-1797.
    [146]K. A. Lill, K. Fushimi, M. Seo, A. W. Hassel, Reactivity imaging of a passive ferritic FeAlCr steel [J], Journal of Applied Electrochemistry,2008,38(10): 1339-1345.
    [147]R. K. Zhu, J. L. Luo, Investigation of stress-enhanced surface reactivity on Alloy 800 using scanning electrochemical microscopy [J], Electrochemistry Communications,2010,12(12):1752-1755.
    [148]M. A. Malik, P. J. Kulesza, Monitoring of conductivity changes in passive layers by scanning electrochemical microscopy in feedback mode:Localization of pitting precursor sites on surfaces of multimetallic phase materials [J], Analytical Chemistry,2007,79(11):3996-4005.
    [149]Marcin A. Malika, P. J. Kulesza, G. Pawlowska, Surface analysis with scanning electrochemical microscopy in the feedback mode:Monitoring of reactivity and pitting precursor sites on the Nd-Fe-B-type magnet [J], Electrochimica Acta,2009, 54(23):5537-5543.
    [150]K. Fushimi, K. A. Lill, H. Habazaki, Heterogeneous hydrogen evolution on corroding Fe-3 at.% Si surface observed by scanning electrochemical microscopy [J], Electrochimica Acta,2007,52(12):4246-4253.
    [151]I. Serebrennikova, H. S. White, Scanning electrochemical microscopy of electroactive defect sites in the native oxide film on aluminum [J], Electrochemical and Solid State Letters,2001,4(1):B4-B6.
    [152]I. Serebrennikova, S. Lee, H. S. White, Visualization and characterization of electroactive defects in the native oxide film on aluminium [J], Faraday Discussions, 2002,121:199-210.
    [153]L. Diaz-Ballote, L. Veleva, M. A. Pech-Canul, M. I. Pech-Canul, D. O. Wipf, Activity of SiC particles in Al-based metal matrix composites revealed by SECM [J], Journal of The Electrochemical Society,2004,151(6):B299-B303.
    [154]M. Buchler, J. Kerimo, F. Guillaume, W. H. Smyrl, Fluorescence and near-field scanning optical microscopy for investigating initiation of localized corrosion of Al 2024 [J], Journal of the Electrochemical Society,2000,147(10):3691-3699.
    [155]J. C. Seegmiller, D. A. Buttry, A SECM study of heterogeneous redox activity at AA2024 surfaces [J], Journal of The Electrochemical Society,2003,150(9): B413-B418.
    [156]M. B. Jensen, A. Guerard, D. E. Tallman, G. P. Bierwagen, Studies of electron transfer at aluminum alloy surfaces by scanning electrochemical microscopy [J], Journal of The Electrochemical Society,2008,155(7):C324-C332.
    [157]A. Davoodi, J. Pan, C. Leygraf, S. Norgren, Integrated AFM and SECM for in situ studies of localized corrosion of Al alloys [J], Electrochimica Acta,2007,52(27): 7697-7705.
    [158]A. Davoodi, J. Pan, C. Leygraf, S. Norgren, Multianalytical and in situ studies of localized corrosion of EN AW-3003 alloy-Influence of intermetallic particles [J], Journal of The Electrochemical Society,2008,155(4):C138-C146.
    [159]A. Simoes, D. Battocchi, D. Tallman, G. Bierwagen, Assessment of the corrosion protection of aluminium substrates by a Mg-rich primer:EIS, SVET and SECM study [J], Progress in Organic Coatings,2008,63(3):260-266.
    [160]K. Fushimi, T. Okawa, K. Azumi, M. Seo, Heterogeneous growth of anodic oxide film on a polycrystalline titanium electrode observed with a scanning electrochemical microscope [J], Journal of The Electrochemical Society,2000,147(2): 524-529.
    [161]N. Casillas, S. J. Charlebois, W. H. Smyrl, H. S. White, Scanning Electrochemical Microscopy of Precursor Sites for Pitting Corrosion on Titanium [J], Journal of The Electrochemical Society,1993,140(9):L142-L145.
    [162]N. Casillas, S. Charlebois, W. H. Smyrl, H. S. White, Pitting Corrosion of Titanium [J], Journal of The Electrochemical Society,1994,141(3):636-642.
    [163]S. B. Basame, H. S. White, Scanning electrochemical microscopy: Measurement of the current density at microscopic redox-active sites on titanium [J], Journal of Physical Chemistry B,1998,102(49):9812-9819.
    [164]R. K. Zhu, C. Nowierski, Z. F. Ding, J. J. Noel, D. W. Shoesmith, Insights into grain structures and their reactivity on grade-2 Ti alloy surfaces by scanning electrochemical microscopy [J], Chemistry of Materials,2007,19(10):2533-2543.
    [165]R. K. Zhu, Z. Q. Qin, J. J. Noel, D. W. Shoesmith, Z. F. Ding, Analyzing the influence of alloying elements and impurities on the localized reactivity of titanium grade-7 by scanning electrochemical microscopy [J], Analytical Chemistry,2008, 80(5):1437-1447.
    [166]A. Schulte, S. Belger, M. Etienne, W. Schuhmann, Imaging localised corrosion of NiTi shape memory alloys by means of alternating current scanning electrochemical microscopy (AC-SECM) [J], Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2004,378(1-2): 523-526.
    [167]C. Gabrielli, E. Ostermann, H. Perrot, V. Vivier, L. Beitone, C. Mace, Concentration mapping around copper microelectrodes studied by scanning electrochemical microscopy [J], Electrochemistry Communications,2005,7(9): 962-968.
    [168]D. Ruhlig, W. Schuhmann, Spatial imaging of Cu2+-ion release by combining alternating current and underpotential stripping mode scanning electrochemical microscopy [J], Electroanalysis,2007,19(2-3):191-199.
    [169]C. Blanc, N. Pebere, B. Tribollet, V. Vivier, Galvanic coupling between copper and aluminium in a thin-layer cell [J], Corrosion Science,2010,52(3):991-995.
    [170]K. Mansikkamaki, U. Haapanen, C. Johans, K. Kontturi, M. Valden, Adsorption of benzotriazole on the surface of copper alloys studied by SECM and XPS [J], Journal of The Electrochemical Society,2006,153(8):B311-B318.
    [171]J. Izquierdo, J. J. Santana, S. Gonzalez, R. M. Souto, Uses of scanning electrochemical microscopy for the characterization of thin inhibitor films on reactive metals The protection of copper surfaces by benzotriazole [J], Electrochimica Acta, 2010,55(28):8791-8800.
    [172]K. Mansikkamaki, P. Ahonen, G. Fabricius, L. Murtomaki, K. Kontturi, Inhibitive effect of benzotriazole on copper surfaces studied by SECM [J], Journal of The Electrochemical Society,2005,152(1):B12-B16.
    [173]S. B. Basame, H. S. White, Scanning electrochemical microscopy of metal/metal oxide electrodes. Analysis of spatially localized electron-transfer reactions during oxide growth [J], Analytical Chemistry,1999,71(15):3166-3170.
    [174]S. B. Basame, H. S. White, Chemically-selective and spatially-localized redox activity at Ta/Ta2O5 electrodes [J], Langmuir,1999,15(3):819-825.
    [175]C. H. Paik, R. C. Alkire, Role of sulfide inclusions on localized corrosion of Ni200 in NaCl solutions [J], Journal of The Electrochemical Society,2001,148(7): B276-B281.
    [176]T. E. Lister, P. J. Pinhero, T. L. Trowbridge, R. E. Mizia, Localized attack of a two-phase metal, scanning electrochemical microscopy studies of NiCrMoGd alloys [J], Journal of Electroanalytical Chemistry,2005,579(2):291-298.
    [177]X. L. Liu, T. Zhang, Y. W. Shao, G. Z. Meng, F. H. Wang, Effect of alternating voltage treatment on the corrosion resistance of pure magnesium [J], Corrosion Science,2009,51(8):1772-1779.
    [178]M. D. Pereda, C. Alonso, L. Burgos-Asperilla, J. A. del Valle, O. A. Ruano, P. Perez, M. A. F. L. de Mele, Corrosion inhibition of powder metallurgy Mg by fluoride treatments [J], Acta Biomaterialia,2010,6(5):1772-1782.
    [179]R. M. Souto, Y. Gonzalez-Garcia, S. Gonzalez, Evaluation of the corrosion performance of coil-coated steel sheet as studied by scanning electrochemical microscopy [J], Corrosion Science,2008,50(6):1637-1643.
    [180]Y. Gonzalez-Garcia, J. M. C. Mol, T. Muselle, I. De Graeve, G. Van Assche, G. Scheltjens, B. Van Mele, H. Terryn, SECM study of defect repair in self-healing polymer coatings on metals [J], Electrochemistry Communications,2011,13(2): 169-173.
    [181]曹发和,夏妍,刘文娟,常林荣,张鉴清,SECM基本原理及其在金属腐蚀中的应用[J],电化学,2013,19(5):393-401.
    [182]孙培德,杨东全,陈奕柏,多物理场耦合模型及数值模拟导论[M],中国科学技术出版社,北京,2007.
    [183]COMSOL Multiphysics User's Guide, Version 3.3 [J].
    [184]C. Wei, A. J. Bard, M. V. Mirkin, Scanning Electrochemical Microscopy.31. Application of SECM to the Study of Charge Transfer Processes at the LiquidLiquid Interface [J], The Journal of Physical Chemistry,1995,99:16033-16042.
    [185]R. Cornut, C. Lefrou, New analytical approximation of feedback approach curves with a microdisk SECM tip and irreversible kinetic reaction at the substrate [J], Journal of Electroanalytical Chemistry,2008,621(2):178-184.
    [186]C. Nowierski, J. J. Noel, D. W. Shoesmith, Z. Ding, Correlating surface microstructures with reactivity on commercially pure zirconium using scanning electrochemical microscopy and scanning electron microscopy [J], Electrochemistry Communications,2009,11(6):1234-1236.
    [187]Q. Zhou, Y. Wang, D. E. Tallman, M. B. Jensen, Simulation of SECM Approach Curves for Heterogeneous Metal Surfaces [J], Journal of The Electrochemical Society,2012,159(7):H644-H649.
    [188]I. J. Cutress, E. J. F. Dickinson, R. G. Compton, Analysis of commercial general engineering finite element software in electrochemical simulations [J], Journal of Electroanalytical Chemistry,2010,638(1):76-83.
    [1]X. Liao, F. Cao, L. Zheng, W. Liu, A. Chen, J. Zhang, C. Cao, Corrosion behaviour of copper under chloride-containing thin electrolyte layer [J], Corrosion Science,2011,53(10):3289-3298.
    [2]L. Greenspan, Humidity fixed points of binary saturated aqueous solutions [J], Journal of Research of National Bureau of Standards-A. Physics and Chemistry,1977, 81A(1):89-96.
    [1]Y. H. Qian, D. Niu, J. J. Xu, M. S. Li, The influence of chromium content on the electrochemical behavior of weathering steels [J], Corrosion Science,2013,71(0): 72-77.
    [2]H. E. Townsend, Effects of Alloying Elements on the Corrosion of Steel in Industrial Atmospheres [J], Corrosion,2001,57(6):497-501.
    [3]T. Nishimura, H. Katayama, K. Noda, T. Kodama, Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments [J], Corrosion Science, 2000,42(9):1611-1621.
    [4]T. Misawa, K. Hashimoto, S. Shimodaira, The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature [J], Corrosion Science,1974,14(2):131-149.
    [5]T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, H. Uchida, Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J], Corrosion Science,2006,48(9):2799-2812.
    [6]F. Mansfeld, S. Tsai, Laboratory studies of atmospheric corrosion—Ⅰ. Weight loss and electrochemical measurements [J], Corrosion Science,1980,20(7):853-872.
    [7]M. Stratmann, H. Streckel, On the atmospheric corrosion of metals which are covered with thin electrolyte layers—Ⅰ. Verification of the experimental technique [J], Corrosion Science,1990,30(6-7):681-696.
    [8]M. Stratmann, H. Streckel, On the atmospheric corrosion of metals which are covered with thin electrolyte layers—Ⅱ. Experimental results [J], Corrosion Science, 1990,30(6-7):697-714.
    [9]M. Stratmann, H. Streckel, K. T. Kim, S. Crockett, On the atmospheric corrosion of metals which are covered with thin electrolyte layers-iii. the measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers [J], Corrosion Science,1990,30(6-7):715-734.
    [10]A. Nishikata, Y. Ichihara, T. Tsuru, An application of electrochemical impedance spectroscopy to atmospheric corrosion study [J], Corrosion Science,1995,37(6): 897-911.
    [11]A. Nishikata, Influence of Electrolyte Layer Thickness and pH on the Initial Stage of the Atmospheric Corrosion of Iron [J], Journal of The Electrochemical Society,1997,144(4):1244.
    [12]S. J. Oh, D. C. Cook, H. E. Townsend, Atmospheric corrosion of different steels in marine, rural and industrial environments [J], Corrosion Science,1999,41(9): 1687-1702.
    [13]W. Han, G. Yu, Z. Wang, J. Wang, Characterisation of initial atmospheric corrosion carbon steels by field exposure and laboratory simulation [J], Corrosion Science,2007,49(7):2920-2935.
    [14]G. A. El-Mahdy, A. Nishikata, T. Tsuru, AC impedance study on corrosion of 55%A1-Zn alloy-coated steel under thin electrolyte layers [J], Corrosion Science, 2000,42(9):1509-1521.
    [15]G. S. Frankel, M. Stratmann, M. Rohwerder, A. Michalik, B. Maier, J. Dora, M. Wicinski, Potential control under thin aqueous layers using a Kelvin Probe [J], Corrosion Science,2007,49(4):2021-2036.
    [16]A. P. Yadav, H. Katayama, K. Noda, H. Masuda, A. Nishikata, T. Tsuru, Effect of Fe-Zn alloy layer on the corrosion resistance of galvanized steel in chloride containing environments [J], Corrosion Science,2007,49(9):3716-3731.
    [17]A. Nishikata, Y. Yamashita, H. Katayama, T. Tsuru, a. Usami, K. Tanabe, H. Mabuchi, An electrochemical impedance study on atmospheric corrosion of steels in a cyclic wet-dry condition [J], Corrosion Science,1995,37(12):2059-2069.
    [18]K. W. Chung, K. B. Kim, A study of the effect of concentration build-up of electrolyte on the atmospheric corrosion of carbon steel during drying [J], Corrosion Science,2000,42(3):517-531.
    [19]C. Li, Y. Ma, Y. Li, F. Wang, EIS monitoring study of atmospheric corrosion under variable relative humidity [J], Corrosion Science,2010,52(11):3677-3686.
    [20]S. H. Zhang, S. B. Lyon, The electrochemistry of iron, zinc and copper in thin layer electrolytes [J], Corrosion Science,1993,35(1-4):713-718.
    [21]R. P. V. Cruz, A. Nishikata, T. Tsuru, AC impedance monitoring of pitting corrosion of stainless steel under a wet-dry cyclic condition in chloride-containing environment [J], Corrosion Science,1996,38(8):1397-1406.
    [22]R. P. V. Cruz, A. Nishikata, T. Tsuru, Pitting corrosion mechanism of stainless steels under wet-dry exposure in chloride-containing environments [J], Corrosion Science,1998,40(1):125-139.
    [23]Y. Tsutsumi, A. Nishikata, T. Tsuru, Initial Stage of Pitting Corrosion of Type 304 Stainless Steel under Thin Electrolyte Layers Containing Chloride Ions [J], Journal of The Electrochemical Society,2005,152(9):B358-B363.
    [24]M. M. El-Naggar, Bis-triazole as a new corrosion inhibitor for copper in sulfate solution. A model for synergistic inhibition action [J], Journal of Materials Science, 2000,35(24):6189-6195.
    [25]L. Hao, S. Zhang, J. Dong, W. Ke, Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere [J], Corrosion Science, 2012,59(0):270-276.
    [26]M. Stratmann, K. Bohnenkamp, H. J. Engell, An electrochemical study of phase-transitions in rust layers [J], Corrosion Science,1983,23(9):969-985.
    [27]W. J. Lorenz, F. Mansfeld, Determination of corrosion rates by electrochemical DC and AC methods [J], Corrosion Science,1981,21(9-10):647-672.
    [28]W.J. Liu, F.H. Cao, A.N. Chen, L.R. Chang, J.Q. Zhang, C.N. Cao, Effect of Chloride Ion Concentration on Electrochemical Behavior and Corrosion Product of AM60 Magnesium Alloy in Aqueous Solutions [J], Corros.,2012,68: 0450011-04500114.
    [29]F. Mansfeld, Z. Sun, C. H. Hsu, Electrochemical noise analysis (ENA) for active and passive systems in chloride media [J], Electrochimica Acta,2001,46(24-25): 3651-3664.
    [30]F. Mansfeld, L. T. Han, C. C. Lee, C. Chen, G. Zhang, H. Xiao, Analysis of electrochemical impedance and noise data for polymer coated metals [J], Corrosion Science,1997,39(2):255-279.
    [31]J. F. Chen, W. F. Bogaerts, The physical meaning of noise resistance [J], Corrosion Science,1995,37(11):1839-1842.
    [32]A. Aballe, M. Bethencourt, F. J. Botana, M. Marcos, J. M. Sanchez-Amaya, Use of wavelets to study electrochemical noise transients [J], Electrochimica Acta,2001, 46(15):2353-2361.
    [33]F. H. Cao, Z. Zhang, J. X. Su, Y. Y. Shi, J. Q. Zhang, Electrochemical noise analysis of LY12-T3 in EXCO solution by discrete wavelet transform technique [J], Electrochimica Acta,2006,51(7):1359-1364.
    [34]Y. Shi, Z. Zhang, J. Su, F. Cao, J. Zhang, Electrochemical noise study on 2024-T3 Aluminum alloy corrosion in simulated acid rain under cyclic wet-dry condition [J], Electrochimica Acta,2006,51(23):4977-4986.
    [1]T. Misawa, K. Asami, K. Hashimoto, S. Shimodaira, The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J], Corrosion Science,1974,14(4):279-289.
    [2]T. Misawa, K. Hashimoto, S. Shimodaira, The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature [J], Corrosion Science,1974,14(2):131-149.
    [3]J. T. Keiser, C. W. Brown, R. H. Heidersbach, Characterization of the passive film formed on weathering steels [J], Corrosion Science,1983,23(3):251-259.
    [4]H. Kihira, S. Ito, T. Murata, The behavior of phosphorous during passivation of weathering steel by protective patina formation [J], Corrosion Science,1990,31(0): 383-388.
    [5]D. C. Cook, S. J. Oh, R. Balasubramanian, M. Yamashita, The role of goethite in the formation of the protective corrosion layer on steels [J], Hyperfine Interactions, 1999,122(1-2):59-70.
    [6]M. Stratmann, K. Hoffmann, In situ Mopbauer spectroscopic study of reactions within rust layers [J], Corrosion Science,1989,29(11-12):1329-1352.
    [7]T. Nishimura, Rust formation and corrosion performance of Si-and Al-bearing ultrafine grained weathering steel [J], Corrosion Science,2008,50(5):1306-1312.
    [8]M. Stratmann, K. Bohnenkamp, H. J. Engell, An electrochemical study of phase-transitions in rust layers [J], Corrosion Science,1983,23(9):969-985.
    [9]U. R. Evans, C. A. J. Taylor, Mechanism of atmospheric rusting [J], Corrosion Science,1972,12(3):227-246.
    [10]H. Okada, Y. Hosoi, H. Naito, Electrochemical Reduction of Thick Rust Layers Formed on Steel Surfaces [J], Corrosion,1970,26(10):429-430.
    [11]M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, T. Misawa, The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J], Corrosion Science,1994,36(2):283-299.
    [12]I. Suzuki, Y. Hisamatsu, N. Masuko, Nature of Atmospheric Rust on Iron [J], Journal of The Electrochemical Society,1980,127(10):2210-2215.
    [13]T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, H. Uchida, Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J], Corrosion Science,2006,48(9):2799-2812.
    [14]S. J. Oh, D. C. Cook, H. E. Townsend, Atmospheric corrosion of different steels in marine, rural and industrial environments [J], Corrosion Science,1999,41(9): 1687-1702.
    [15]K. Kandori, S. Uchida, S. Kataoka, T. Ishikawa, Effects of silicate and phosphate ions on the formation of ferric oxide hydroxide particles [J], Journal of Materials Science,1992,27(3):719-728.
    [16]T. Okada, Y. Ishii, T. Mizoguchi, I. Tamura, Y. Kobayashi, Y. Takagi, S. Suzuki, H. Kihira, M. Itou, A. Usami, K. Tanabe, K. Masuda, Mossbauer Studies on Particle Volume Distribution of α-FeOOH in Rust Formed on Weathering Steel [J], Japanese Journal of Applied Physics,2000,39(6R):3382.
    [17]T. Kamimura, S. Nasu, K. Kuzushita, T. Tazaki, S. Morimoto, Mossbauer spectroscopic study of rust formed on a weathering steel and a mild steel exposed for a long term in an industrial environment [J], Materials Transactions,2002,43(4): 694-703.
    [18]T. Kamimura, S. Nasu, T. Segi, T. Tazaki, H. Miyuki, S. Morimoto, T. Kudo, Influence of cations and anions on the formation of β-FeOOH [J], Corrosion Science, 2005,47(10):2531-2542.
    [19]T. Kamimura, M. Stratmann, The influence of chromium on the atmospheric corrosion of steel [J], Corrosion Science,2001,43(3):429-447.
    [20]M. Stratmann, K. Bohnenkamp, T. Ramchandran, The influence of copper upon the atmospheric corrosion of iron [J], Corrosion Science,1987,27(9):905-926.
    [21]T. Kamimura, S. Nasu, Mossbauer spectroscopic study of rust formed on a weathering steel exposed for 15 years in an industrial environment [J], Materials Transactions,2000,41(9):1208-1215.
    [22]T. Kamimura, S. Nasu, T. Segi, T. Tazaki, S. Morimoto, H. Miyuki, Corrosion behavior of steel under wet and dry cycles containing Cr3+ion [J], Corrosion Science, 2003,45(8):1863-1879.
    [23]T. Nishimura, H. Katayama, K. Noda, T. Kodama, Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments [J], Corrosion Science, 2000,42(9):1611-1621.
    [24]M. Itagaki, R. Nozue, K. Watanabe, H. Katayama, K. Noda, Electrochemical impedance of thin rust film of low-alloy steels [J], Corrosion Science,2004,46(5): 1301-1310.
    [1]M. V. Mirkin, B. R. Horrocks, Electroanalytical measurements using the scanning electrochemical microscope [J], Analytica Chimica Acta,2000,406(2):119-146.
    [2]G. Wittstock, M. Burchardt, S. E. Pust, Y. Shen, C. Zhao, Scanning Electrochemical Microscopy for Direct Imaging of Reaction Rates [J], Angewandte Chemie International Edition,2007,46(10):1584-1617.
    [3]N. Casillas, S. J. Charlebois, W. H. Smyrl, H. S. White, Scanning Electrochemical Microscopy of Precursor Sites for Pitting Corrosion on Titanium [J], Journal of The Electrochemical Society,1993,140(9):L142-L145.
    [4]S. B. Basame, H. S. White, Scanning electrochemical microscopy of native titanium oxide films. Mapping the potential dependence of spatially-localized electrochemical reactions [J], The Journal of Physical Chemistry,1995,99(44): 16430-16435.
    [5]S. B. Basame, H. S. White, Scanning electrochemical microscopy:Measurement of the current density at microscopic redox-active sites on titanium [J], Journal of Physical Chemistry B,1998,102(49):9812-9819.
    [6]S. B. Basame, H. S. White, Chemically-selective and spatially-localized redox activity at Ta/Ta2O5 electrodes [J], Langmuir,1999,15(3):819-825.
    [7]I. Serebrennikova, H. S. White, Scanning electrochemical microscopy of electroactive defect sites in the native oxide film on aluminum [J], Electrochemical and Solid State Letters,2001,4(1):B4-B6.
    [8]I. Serebrennikova, S. Lee, H. S. White, Visualization and characterization of electroactive defects in the native oxide film on aluminium [J], Faraday Discussions, 2002,121:199-210.
    [9]M. B. Jensen, A. Guerard, D. E. Tallman, G. P. Bierwagen, Studies of electron transfer at aluminum alloy surfaces by scanning electrochemical microscopy [J], Journal of The Electrochemical Society,2008,155(7):C324-C332.
    [10]T. E. Lister, P. J. Pinhero, Scanning electrochemical microscopy study of corrosion dynamics on type 304 stainless steel [J], Electrochemical and Solid State Letters,2002,5(11):B33-B36.
    [11]T. E. Lister, P. J. Pinhero, The effect of localized electric fields on the detection of dissolved sulfur species from Type 304 stainless steel using scanning electrochemical microscopy [J], Electrochimica Acta,2003,48(17):2371-2378.
    [12]Y. Gonzalez-Garcia, G. T. Burstein, S. Gonzalez, R. M. Souto, Imaging metastable pits on austenitic stainless steel in situ at the open-circuit corrosion potential [J], Electrochemistry Communications,2004,6(7):637-642.
    [13]Y. H. Yin, L. Niu, M. Lu, W. K. Guo, S. H. Chen, In situ characterization of localized corrosion of stainless steel by scanning electrochemical microscope [J], Applied Surface Science,2009,255(22):9193-9199.
    [14]R.M. Souto, Y. Gonzalez-Garcia, S. Gonzalez, In situ monitoring of electroactive species by using the scanning electrochemical microscope. Application to the investigation of degradation processes at defective coated metals [J], Corrosion Science,2005,47(12):3312-3323.
    [15]E. Volker, C. G. Inchauspe, E. J. Calvo, Scanning electrochemical microscopy measurement of ferrous ion fluxes during localized corrosion of steel [J], Electrochemistry Communications,2006,8(1):179-183.
    [16]夏妍,曹发和,常林荣,刘文娟,张鉴清,锈层下碳钢和耐候钢的微区和宏观腐蚀电化学行为[J],高等学校化学学报,2013,34(5):1246-1253.
    [17]N. Baltes, L. Thouin, C. Amatore, J. Heinze, Imaging Concentration Profiles of Redox-Active Species with Nanometric Amperometric Probes:Effect of Natural Convection on Transport at Microdisk Electrodes [J], Angew. Chem. Int. Ed.,2004, 43(11):1431-1435.
    [18]L. Hao, S. Zhang, J. Dong, W. Ke, Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments [J], Corrosion Science,2011,53(12): 4187-4192.
    [19]Y. Ma, Y. Li, F. Wang, Corrosion of low carbon steel in atmospheric environments of different chloride content [J], Corrosion Science,2009,51(5): 997-1006.
    [20]H. Okada, Y. Hosoi, H. Naito, Electrochemical Reduction of Thick Rust Layers Formed on Steel Surfaces [J], Corrosion,1970,26(10):429-430.
    [21]I. Suzuki, Y. Hisamatsu, N. Masuko, Nature of Atmospheric Rust on Iron [J], Journal of The Electrochemical Society,1980,127(10):2210-2215.
    [22]M. Stratmann, K. Bohnenkamp, T. Ramchandran, The influence of copper upon the atmospheric corrosion of iron [J], Corrosion Science,1987,27(9):905-926.
    [23]T. Misawa, K. Asami, K. Hashimoto, S. Shimodaira, The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J], Corrosion Science,1974,14(4):279-289.
    [24]W. Han, G. Yu, Z. Wang, J. Wang, Characterisation of initial atmospheric corrosion carbon steels by field exposure and laboratory simulation [J], Corrosion Science,2007,49(7):2920-2935.
    [25]J. Kassim, T. Baird, J. R. Fryer, Electron microscope studies of iron corrosion products in water at room temperature [J], Corrosion Science,1982,22(2):147-158.
    [26]L. Hao, S. Zhang, J. Dong, W. Ke, Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere [J], Corrosion Science,2012,59(0):270-276.
    [27]M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, T. Misawa, The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J], Corrosion Science,1994,36(2):283-299.
    [28]D. C. Smith, B. McEnaney, The influence of dissolved oxygen concentration on the corrosion of grey cast iron in water at 50℃ [J], Corrosion Science,1979,19(6): 379-394.
    [29]Y. Y. Chen, H. J. Tzeng, L. I. Wei, L. H. Wang, J. C. Oung, H. C. Shih, Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions [J], Corrosion Science,2005,47(4):1001-1021.
    [30]U. R. Evans, C. A. J. Taylor, Mechanism of atmospheric rusting [J], Corrosion Science,1972,12(3):227-246.
    [1]M. B. Valcarce, M. Vazquez, Carbon steel passivity examined in alkaline solutions: The effect of chloride and nitrite ions [J], Electrochimica Acta,2008,53(15): 5007-5015.
    [2]M. Moreno, W. Morris, M. G. Alvarez, G. S. Duffo, Corrosion of reinforcing steel in simulated concrete pore solutions:Effect of carbonation and chloride content [J], Corrosion Science,2004,46(11):2681-2699.
    [3]W. Chen, R. G. Du, C. Q. Ye, Y. F. Zhu, C. J. Lin, Study on the corrosion behavior of reinforcing steel in simulated concrete pore solutions using in situ Raman spectroscopy assisted by electrochemical techniques [J], Electrochimica Acta,2010, 55(20):5677-5682.
    [4]G. Qiao, J. Ou, Corrosion monitoring of reinforcing steel in cement mortar by EIS and ENA [J], Electrochimica Acta,2007,52(28):8008-8019.
    [5]G. G. Long, J. Kruger, D. R. Black, M. Kuriyama, Structure of passive films on iron using a new surface-EXAFS technique [J], Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1983,150(1-2):603-610.
    [6]V. A. Alves, C. M. A. Brett, Characterisation of passive films formed on mild steels in bicarbonate solution by EIS [J], Electrochimica Acta,2002,47(13-14): 2081-2091.
    [7]Z. H. Dong, W. Shi, G. A. Zhang, X. P. Guo, The role of inhibitors on the repassivation of pitting corrosion of carbon steel in synthetic carbonated concrete pore solution [J], Electrochimica Acta,2011,56(17):5890-5897.
    [8]J. Eldridge, R. W. Hoffman, A Mossbauer Spectroscopy Study of the Potential Dependence of Passivated Iron Films [J], Journal of The Electrochemical Society, 1989,136(4):955-961.
    [9]W. E. O'Grady, Mossbauer Study of the Passive Oxide Film on Iron [J], Journal of The Electrochemical Society,1980,127(3):555-563.
    [10]M. P. Ryan, R. C. Newman, G. E. Thompson, An STM Study of the Passive Film Formed on Iron in Borate Buffer Solution [J], Journal of The Electrochemical Society, 1995,142(10):L177-L179.
    [11]K. Kuroda, B. D. Cahan, G. Nazri, E. Yeager, T. E. Mitchell, Electron Diffraction Study of the Passive Film on Iron [J], Journal of The Electrochemical Society,1982, 129(10):2163-2169.
    [12]M. Buchler, P. Schmuki, H. Bohni, Formation and Dissolution of the Passive Film on Iron Studied by a Light Reflectance Technique [J], Journal of The Electrochemical Society,1997,144(7):2307-2312.
    [13]S. P. Harrington, F. Wang, T. M. Devine, The structure and electronic properties of passive and prepassive films of iron in borate buffer [J], Electrochimica Acta,2010, 55(13):4092-4102.
    [14]K. Azumi, T. Ohtsuka, N. Sato, Mott-Schottky Plot of the Passive Film Formed on Iron in Neutral Borate and Phosphate Solutions [J], Journal of The Electrochemical Society,1987,134(6):1352-1357.
    [15]D. G. Li, Y. R. Feng, Z. Q. Bai, J. W. Zhu, M. S. Zheng, Influence of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution [J], Electrochimica Acta, 2007,52(28):7877-7884.
    [16]L. Hamadou, A. Kadri, N. Benbrahim, Characterisation of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy [J], Applied Surface Science,2005,252(5):1510-1519.
    [17]W. Xu, K. Daub, X. Zhang, J. J. Noel, D. W. Shoesmith, J. C. Wren, Oxide formation and conversion on carbon steel in mildly basic solutions [J], Electrochimica Acta,2009,54(24):5727-5738.
    [18]Y. Xia, F. Cao, W. Liu, L. Chang, J. Zhang, The Formation of Passive Films of Carbon Steel in Borate Buffer and Their Degradation Behavior in NaCl Solution by SECM [J], International Journal of Electrochemical Science,2013,8:3057-3073.
    [19]Y. F. Cheng, J. L. Luo, A comparison of the pitting susceptibility and semiconducting properties of the passive films on carbon steel in chromate and bicarbonate solutions [J], Applied Surface Science,2000,167(1-2):113-121.
    [20]C. Y. Chao, L. F. Lin, D. D. Macdonald, A Point Defect Model for Anodic Passive Films:Ⅰ. Film Growth Kinetics [J], Journal of The Electrochemical Society, 1981,128(6):1187-1194.
    [21]D. D. Macdonald, The Point Defect Model for the Passive State [J], Journal of The Electrochemical Society,1992,139(12):3434-3449.
    [22]H. X. Guo, B. T. Lu, J. L. Luo, Study on passivation and erosion-enhanced corrosion resistance by Mott-Schottky analysis [J], Electrochimica Acta,2006,52(3): 1108-1116.
    [23]S. Ahn, H. Kwon, D. D. Macdonald, Role of Chloride Ion in Passivity Breakdown on Iron and Nickel [J], Journal of The Electrochemical Society,2005, 152(11):B482-B490.
    [24]Z. Lu, D. D. Macdonald, Transient growth and thinning of the barrier oxide layer on iron measured by real-time spectroscopic ellipsometry [J], Electrochimica Acta, 2008,53(26):7696-7702.
    [25]X. Zhang, J. C. Wren, I. Betova, M. Bojinov, Estimation of kinetic parameters of the passive state of carbon steel in mildly alkaline solutions from electrochemical impedance spectroscopic and X-ray photoelectron spectroscopic data [J], Electrochimica Acta,2011,56(17):5910-5918.
    [26]P. Schmuki, From Bacon to barriers:a review on the passivity of metals and alloys [J], Journal of Solid State Electrochemistry,2002,6(3):145-164.
    [27]G. S. Frankel, Pitting Corrosion of Metals:A Review of the Critical Factors [J], Journal of The Electrochemical Society,1998,145(6):2186-2198.
    [28]P. Marcus, V. Maurice, H. H. Strehblow, Localized corrosion (pitting):A model of passivity breakdown including the role of the oxide layer nanostructure [J], Corrosion Science,2008,50(9):2698-2704.
    [29]F. M. Delnick, N. Hackerman, Passive Iron:A Semiconductor Model for the Oxide Film [J], Journal of The Electrochemical Society,1979,126(5):732-741.
    [30]A. M. P. Simoes, M. G. S. Ferreira, B. Rondot, M. da Cunha Belo, Study of Passive Films Formed on AISI 304 Stainless Steel by Impedance Measurements and Photoelectrochemistry [J], Journal of The Electrochemical Society,1990,137(1): 82-87.
    [31]J. A. Harrison, D, E. Williams, How does the electrochemical behaviour of stainless steel reflect that of its constituent elements? [J], Electrochimica Acta,1986, 31(8):1063-1072.
    [32]A. M. Sukhotin, M. S. Grilikhes, E. V. Lisovaya, The influence of passivation on the kinetics of the dissolution of iron—Ⅰ. Outer layer of the passivating film as a heavy doped thin semiconductor and mott-schottky equation [J], Electrochimica Acta, 1989,34(2):109-112.
    [33]J. F. Dewald, The charge distribution at the zinc oxide-electrolyte interface [J], Journal of Physics and Chemistry of Solids,1960,14(0):155-161.
    [34]W. P. Gomes, D. Vanmaekelbergh, Impedance spectroscopy at semiconductor electrodes:Review and recent developments [J], Electrochimica Acta,1996,41(7-8): 967-973.
    [35]Y. F. Cheng, J. L. Luo, Electronic structure and pitting susceptibility of passive film on carbon steel [J], Electrochimica Acta,1999,44(17):2947-2957.
    [36]I. Betova, M. Bojinov, V. Karastoyanov, P. Kinnunen, T. Saario, Estimation of kinetic and transport parameters by quantitative evaluation of EIS and XPS data [J], Electrochimica Acta,2010,55(21):6163-6173.
    [37]L. J. Oblonsky, A. J. Davenport, M. P. Ryan, H. S. Isaacs, R. C. Newman, In Situ X-Ray Absorption Near Edge Structure Study of the Potential Dependence of the Formation of the Passive Film on Iron in Borate Buffer [J], Journal of The Electrochemical Society,1997,144(7):2398-2404.
    [38]C. R. Brundle, T. J. Chuang, K. Wandelt, Core and valence level photoemission studies of iron oxide surfaces and the oxidation of iron [J], Surface Science,1977, 68(0):459-468.
    [39]M. H. Dean, U. Stimming, The electronic properties of disordered passive films [J], Corrosion Science,1989,29(2-3):199-211.
    [40]A. Di Paola, F. Di Quarto, C. Sunseri, A photoelectrochemical characterization of passive films on stainless steels [J], Corrosion Science,1986,26(11):935-948.
    [41]Y. F. Cheng, C. Yang, J. L. Luo, Determination of the diffusivity of point defects in passive films on carbon steel [J], Thin Solid Films,2002,416(1-2):169-173.
    [42]M. J. Carmezim, A. M. Simoes, M. F. Montemor, M. D. Cunha Belo, Capacitance behaviour of passive films on ferritic and austenitic stainless steel [J], Corrosion Science,2005,47(3):581-591.
    [43]R. Cornut, C. Lefrou, New analytical approximation of feedback approach curves with a microdisk SECM tip and irreversible kinetic reaction at the substrate [J], Journal of Electroanalytical Chemistry,2008,621(2):178-184.
    [1]孙培德,杨东全,陈奕柏,多物理场耦合模型及数值模拟导论[M],中国科学技术出版社,北京,2007。
    [2]COMSOL Multiphysics User's Guide, Version 3.3 [J].
    [3]A. J. Bard, F. R. F. Fan, J. Kwak, O. Lev, Scanning Electrochemical Microscopy. Introduction and Principles [J], Analytical Chemistry,1989,61(2):132-138.
    [4]D. O. Wipf, A. J. Bard, Scanning Electrochemical Microscopy:X. High Resolution Imaging of Active Sites on an Electrode Surface [J], Journal of The Electrochemical Society,1991,138(5):L4-L6.
    [5]M. V. M. A. J. Bard, P. R. Unwin, D. O. Wipf, Scanning Electrochemical Microscopy.12. Theory and Experiment of the Feedback Mode with Finite Heterogeneous Electron-Transfer Kinetics and Arbitrary Substrate Size [J], The Journal of Physical Chemistry,1992,96(4):1861-1868.
    [6]C. Wei, A. J. Bard, M. V. Mirkin, Scanning Electrochemical Microscopy.31. Application of SECM to the Study of Charge Transfer Processes at the LiquidLiquid Interface [J], The Journal of Physical Chemistry,1995,99:16033-16042.
    [7]R. Cornut, C. Lefrou, A unified new analytical approximation for negative feedback currents with a microdisk SECM tip [J], Journal of Electroanalytical Chemistry,2007,608(1):59-66.
    [8]R. Cornut, C. Lefrou, New analytical approximation of feedback approach curves with a microdisk SECM tip and irreversible kinetic reaction at the substrate [J], Journal of Electroanalytical Chemistry,2008,621(2):178-184.
    [9]H. Xiong, J. Guo, S. Amemiya, Probing Heterogeneous Electron Transfer at an Unbiased Conductor by Scanning Electrochemical Microscopy in the Feedback Mode [J], Analytical Chemistry,2007,79(7):2735-2744.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700