用户名: 密码: 验证码:
可渗透反应复合电极法电动修复重金属污染土壤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动力学修复技术因其具有去除污染物的范围广、可处理低渗透性土壤、成本低、效果好等优点,而成为污染土壤修复的重要方法之一。然而,在电动修复过程中阴阳极电解液会发生电解,从而导致阳极附近pH显著降低和阴极附近pH显著升高的现象,成为制约该技术应用的重要瓶颈。本文从改变电极结构和选择可渗透反应材料的角度出发,构建了具有pH值控制效果的可渗透反应复合电极,该复合电极上的可渗透反应材料一方面可中和、吸附电解过程中产生的H+和OH-,实现对阴阳极附近土壤pH值的有效控制,同时能够捕集迁移而来的重金属污染物,极大地提高了重金属的去除率,修复结束后通过移除电极可实现从土壤中去除重金属的目的。本技术具有便捷的工程操作性,对土壤电动修复技术向工程应用转化具有一定推动作用。
     本论文主要研究内容及研究结果包括:
     可渗透反应材料的选取。包括活性炭、合成沸石、天然沸石可渗透反应材料的选取;不同粒径(20、40、100目)天然沸石的比较等。结果表明:在阳极添加碱性合成沸石可以减缓pH值的下降,在阴极添加酸化活性炭/沸石可以减缓pH值的上升;使用沸石的效果优于活性炭的,经磷酸酸化可沸石优于使用醋酸酸化的,随着磷酸酸度的增加,对土壤pH值的缓冲作用也增加;沸石的粒径越小,对土壤pH值的缓冲作用越明显。
     可渗透反应复合电极的制备和效果。对于阴离子型Cr(Ⅵ)重金属污染土壤,制备并研究了以“沸石+石墨”、“Fe0+石墨”、“沸石、Fe0+石墨”为阳极电极,以“酸化沸石+石墨”为阴极电极的修复效果;对于Cd、Ni、Pb、Cu等阳离子型重金属十壤,制备并研究了以“合成沸石+石墨”为阳极电极,以“沸石+石墨”、“Fe0+石墨”、“酸化沸石+Fe0+石墨”为阴极电极的修复效果。结果表明:沸石能够有效中和、吸附水电解产生的OH-和H+,能最大程度减小土壤pH值的波动,避免土壤酸碱性迁移带的形成;Fe0能够同迁移进来的重金属离子发生氧化还原反应,将重金属离子固定/稳定;因此,Fe。及沸石作为可渗透反应材料构成的可渗透反应复合电极效果最佳。
     阴离子型重金属的去除。分别就不同可渗透反应材料、不同电压梯度、不同土壤含水率等试验条件下对重金属污染土壤进行了修复研究。结果表明:在极间距为10cm的小试试验中,Cr(Ⅵ)在电动力学作用下,由阴极向阳极迁移;当阴极使用“酸化沸石+石墨”复合电极,阳极使用“合成沸石+Fe0+石墨”复合电极,电压梯度为2V/cm,电动修复5天后,在反应池各部分去除率均达到95%以上;当电压梯度由1V/cm增加到2V/cm时,去除率增加了17.8个百分点,而由2V/cm增加到3V/cm时,去除率未发生明显变化;土壤初始含水率增加有利于Cr的去除,当含水率为49%时,电动修复5天,去除率达到97.0%以上。
     阳离子型重金属的去除。分别就不同可渗透反应材料、电压梯度、Fe0与沸石配比、修复时间等试验条件下对重金属污染土壤进行了修复研究。结果表明:无论采用何种电极,无论是否在5天时更换阴阳极电极,Cd、Ni、Pb和Cu重金属在电场作用下均由阳极向阴极方向迁移。Cd和Ni的试验结果相近,Pb和Cu的相近;在电压梯度为1.5V/cm条件下,重金属Cd、Ni、Pb和Cu在阴极发生富集,在阳极和中间部分去除率均值Cd为91.1%,Ni为77.9%,Pb为53.1%,Cu为51.8%,是5组试验中去除效果最佳的一组;试验运行时间由5天延长至10天,Cd、Ni、Pb和Cu在阳极的去除率分别由75.6%、77.6%、30.0%、39.8%增至98.5%、99.9%、61.4%、71.2%等。
     实际铬污染土壤的修复。从某染场地采取铬污染土壤,采用正六边形电极矩阵进行修复研究。结果表明:在阴极采用“酸化沸石+石墨”复合电极,在阳极采用“沸石+Fe0+石墨”复合电极可以有效控制土壤pH值的波动,电动修复5、10、15、20、25、30天后,土壤pH值在8.5左右(初始土壤pH值为8.37)。Cr(Ⅵ)在电动去除过程中一方面转化为低毒性的Cr(Ⅲ),另一方面从土壤中彻底移除进入可渗透反应复合电极中
Electrokinetic remediation technology becomes one of the important methods for remediation of contaminated soils, because it can help to remove many pollutants and to treat the low permeability soil, which also has the advantage of low cost and high efficiency. However, electrolytic leading to "polarization phenomenon"——pH was lower near the anode and pH increased near the cathode——limits its widespread application in the treatment of contaminated soils, by the electrokinetic remediation. From the perspective of changing the electrode structure and selection of permeable reactive active material, we developed a permeable reactive composite electrode with depolarization in this thesis. The permeable reactive materials can neutralise/adsorb H+and OH-produced by water electrolysis, to achieve effective control of the soil pH value, while pouring heavy metal pollutants migrating from soil, and greatly improved the removal efficiency of heavy metals. After remediation, electrode was removed to realize the purpose of removing thoroughly heavy metals from soil.This technology can be applied conveniently. It has great significance for promoting electrokinetic remediation technology and its applications.
     This thesis'main contents and findings include the following:
     Selection and performance of Permeable Reactive Materials(PMM). The PRM selection of activated carbon, synthetic zeolite, natural zeolite, is included as well as; comparison of the natural zeolite with different particle size (20,40,100mesh). The results showed that:adding the alkaline synthetic zeolite can reduce the decline rate of pH at the anode; adding the cathode acidification activated carbon/zeolite can reduce the increase rate of the pH value, and the zeolite is superior to activated carbon; the results obtained with phosphoric acid acidification of permeable reactive materials are better than that with acetic acid acidification; the smaller the particle size of zeolite, the stronger the pH buffering effect; the buffering effect of soil pH increases as the acidity of phosphoric acid increases.
     Structure and preparation of permeable reactive composite electrodePRCE). For anionic heavy metal pollution, e.g. the chromium(VI), exploring the zeolite+ graphite, Fe0+graphite, zeolite, Fe0+graphite as the anode electrode, respectively, the acidification zeolite+graphite electrode as the cathode electrode; for cationic heavy metal pollution, e.g. cadmium (Ⅱ), nickel (Ⅱ), lead (Ⅱ), copper (Ⅱ), exploring the synthetic zeolite+graphite as the anode electrode, the zeolite+graphite, Fe0+graphite, the acidification zeolite+Fe0+graphite electrode for the cathode electrode, respectively. The results showed that:zeolite can effectively and neutralize/adsorpte OH-and H+produced by water electrolysis, reduce fluctuations of soil pH to the maximum extent, avoid the formation of acid-base migration zone; Fe0can fix/stable heavy metal ion according oxidation reduction reaction. Therefore, the PRCE with Fe0and zeolite is the best composite electrode.
     The removal of anionic heavy metal. Different test conditions, including permeable reactive material, different voltage gradient, soil water content, were analyzed. The results showed that:in the laboratory test(pole spacing is10cm,), Cr(Ⅵ) migrate toward the anode from cathode; after5days, Cr(VI) removal rate reaches more than95%, under the conditions of using acidified zeolite+graphite composite electrode as cathode, using synthetic zeolite+Fe0+graphite composite electrode as anode,2V/cm; when the voltage gradient from1Ⅴ/cm to2V/cm, the removal rate increased to17.8%; from2V/cm to3V/cm, the removal rate was not changed significantly; the increase of water content is helpful for Cr(Ⅵ) removal, when the moisture content is49%, after5days, Cr(Ⅵ) removal rate reached over97%.
     The removal of cationic heavy metal. Different test conditions, including permeable reactive material, voltage gradient, test run time, etc. were analyzed. The results showed that:no matter what the electrodes, whether the electrode replace or not, Cd(Ⅱ), Ni(Ⅱ), Pb(Ⅱ) and Cu(Ⅱ) migrate toward the cathode from anode under the action of the electric field. Test results of Cd(Ⅱ) and Ni (Ⅱ)are similar, Pb(Ⅱ) and Cu(Ⅱ) are similar; under the conditions of1.5V/cm Cd, Ni, Pb and Cu occurrence enrichment in the anode, and the mean removal rate in the cathode and the middle part is that:Cd is91.1%, Ni is77.9%, Pb is53.1%, Cu is51.8%; test run time is prolonged from5days to10days, the removal rate of Cd, Ni, Pb and Cu in the anode of from75.6%,77.6%,30%,39.8%to98.5%,99.9%,61.4%,71.2%etc.
     The remediation of real Cr-contaminated soils. The real Cr-contaminated soils come from contaminated site, remediated under the hexagon electrode matrix.The results showed that:under the conditions of hexagonal matrix, using acidification zeolite+graphite composite electrode at the cathode and zeolite+iron+graphite composite electrode at the anode can effectively control soil pH values. After5,10,15,20,25,30days, the soil pH around8.5(initial soil pH of8.37). Hexavalent chromium converse to trivalent chromium with low toxicity, or completely remove from the soil into the permeable reactive composite electrode in the test.
引文
[1]郭笃发.环境中铅和镉的来源及其对人和动物的危害[J].环境科学进展,1994,2(3):71-76.
    [2]孙红文,张瑞华.电动力和铁PRB技术联合修复铬(Ⅵ)污染土壤[J].环境科学,2007,28(5):1136-1136.
    [3]刘国胜,童潜明,何长顺等.土壤镉污染调查研究[J].四川环境,2004,23(5):8-10,13.
    [4]赵丽红,李素霞,柯滨等铅污染现状及其修复机理研究进展[J].武汉生物工程学院学报,2006,2(1):43-46.
    [5]张远,史良图,李晓峰.关于我国铅污染危害及防治的综述[J].长春医学,2010,8(2):65-67.
    [6]我国重金属污染概况[OL]. http://www.hjxf.net/zt/heavymetal.html
    [7]周生贤.国务院关于环境保护工作情况的报告[ER/OL].(2011-10-26)http://www.npc.gov.cn/npc/xinwen/jdgz/bgjy/2011-10/26/content_1677075.htm.
    [8]彭星辉,谢晓阳.稻田镉(Cd)污染的土壤修复技术研究进展[J].湖南农业科学,2007(2):67-69.
    [9]万凯,王富华,张冲等.东莞农田土壤重金属污染调查分析[J].广东农业科学,2010(6):198-199,202.
    [10]李政红,张胜,马琳娜等.污灌区土壤重金属污染分布及其影响因素研究[J].干旱区资源与环境,2010,24(11):166-169.
    [11]蔡苇,何正浩,刘红瑛.黄石市郊主要蔬菜地土壤重金属污染状况分析[J].黄石理工学院学报,2006,22(3):69-72,78.
    [12]王艳,王金达,张学林等.沈阳市城乡结合部土壤铅的空间分异特征分析[J].中国科学院研究生院学报,2004,21(1):45-49.
    [13]林啸,刘敏,侯立军等.上海城市土壤和地表灰尘重金属污染现状及评价[J].上海环境科学,2007,27(5):613-618.
    [14]王初,陈振楼,王京等.崇明岛公路两侧蔬菜地土壤和蔬菜重金属污染研究[J].生态与农村环境学报,2007,23(2):89-93.
    [15]沈根祥,谢争,钱晓雍等.上海市蔬菜农田土壤重金属污染物累积调查分析[J].农业环境科学学报,2006,25(增刊):37-40.
    [16]夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997,18(3):72-76.
    [17]马旭红,吴云海,杨凤.土壤重金属污染的探讨[J].环境科学与管理,2006,31(5):52-54.
    [18]王慧,张锡辉,罗启仕.电动力学技术在受污染地下水和土壤修复中新进展[J].水科学进展,2001,12(2):249-254.
    [19]郑燊燊,申哲民,陈学军等.电动修复Cd污染土壤的DBLM模型[J].农业环境科学学报,2007,6(2):443-448.
    [20]Hansen H K, Ottosen L M, Kliem B K, et al. Electrodialytic Remediation of Soils Polluted with Cu, Cr, Hg, Pb and Zn. J.Chem.Tech.Biotechnol,1997,70,67-73.
    [21]黄健,邱胜鹏,魏榕等.动电技术在铬污染土壤修复中的应用及研究现状[J].工业安全与环保,2006,32(8):7-9.
    [22]Young A T, Hsu C N, Menno R M. Physicochemical soil-contaminant interactions during electrokinetic extraction. J. Hazard. Mater.,1997,55:221-237.
    [23]Vane L M, Zing G M. Effect of aqueous phase properties on clay particle zeta potential and electroosmotic permeability:implications for electrokinetic soil remediation processes. J. Hazard. Mater.,1997,55:1-22.
    [24]Page M. M., Page C L. Electro-remediation of contaminated soils. J. Environ. Eng.,2002, 128 (3):208-219.
    [25]Alshawabkeh A N, Bricka M. Basics and applications of electrokinetic remediation. Tn:Wise D L, Trantolo D J, Cichon E J, et al., eds. Remediation Engineering of Contaminated Soils. New York:Marcel Dekker Inc,2000.95-111.
    [26]Alshawabkeh A N, Yeung A T, Brika M R. Practical Aspects of In-Situ Electrokinetic Extraction.. JEniron. Eng.,1999,125(1):27-35.
    [27]Azzam R, Oey W. The utilization of electrokinetics in geotechnical and environmental engineering. Transport in Porous Media,2001,42:293-341.
    [28]Alshawabkeh A N, Yeung A T, Brika M R. Practical Aspects of In-Situ Electrokinetic Extraction.. J Eniron. Eng.,1999,125(1):27-35.
    [29]Acar Y B, Alshawabkeh A N. Electrokinetic remediation.1.Pilot-scale tests with Pd-spiked kaolinite. J. Geotech. Eng.,1996,122(3):173-185.
    [30]Virkutyte J, Sillanpaa M, Latostenmaa P. Electrokinetic soil remediation-critical overview. The Science of the Total Environment,2002,289 (1-3):97-121.
    [31]金春姬,李鸿江,贾永刚等.电动力学法修复土壤环境重金属污染的研究进展[J].环境污染与防治,2004,26(5):341-344,365.
    [32]Tim Grundl and Paul Michalski. Electroosmotically driven water flow in sediments. Water Research.1996,30(4):811-818.
    [33]Puppala S K, Alshawabkeh A N, Acar Y B, et al. Enhanced electrokinetic remediation of high sorption capacity soil. J. Hazard. Mater.,1997,55:203-220.
    [34]Wan T, and Mitchell J K. Electro-osmotic consolidation of soil. Geotech. Eng.,1976,102GT5, 473-491.
    [35]Ho S V, Chirstopher J, Athmer P, et al. Scale up aspects of the LasagnaTM process for in situ soil decontamination. J. Hazard. Mater.,1997,55:39-60.
    [36]Ho S V, Sheridan P W, Hughes B M, et al. The Lasagna technology for in situ soil remediation.1. Small field test. Environmental Science Technology,1999,33(7):1086-1091.
    [37]Pazos M, Sanroman M A, Cameselle C. Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique. Chemosphere,2006, 62(5):817-822.
    [38]罗启仕,张锡辉,王慧等.非均匀电动力学修复技术对土壤性质的影响[J].环境污染治理技术与设备,2004,5(4):40-45.
    [39]范向宇,王慧,罗启仕.电动生物修复中电极矩阵的优化设计[J].中国环境科学,2006,26(1):34-38.
    [40]马建伟,王慧,罗启仕.电动力学-新型竹炭联合作用下土壤镉的迁移吸附及其机理[J].环境科学,2007.8,28(8):1829-1834.
    [41]Ho S V, Chirstopher J, Athmer P, et al. Scale up aspects of the LasagnaTM process for in situ soil decontamination. J. Hazard. Mater.,1997,55:39-60.
    [42]Ho S V, Sheridan P W, Hughes B M, et al. The Lasagna technology for in situ soil remediation.1. Small field test. Environmental Science Technology,1999,33(7):1086-1091.
    [43]Chang Jin-Hsing et al. Electrokinetics Integrated with chemical reagents to remediate copper contaminated soil from a real site. In book of abstracts. EREM, Lisbon, Portugal,2009.23.
    [44]Lee H H, Yang J W. A new method to control electrolytes pH by circulation system in electrokinetic soil remediation. J. Hazard. Mater.,2000, B77:227-240.
    [45]高洁.利用电动技术去除城市污泥中重金属的研究[D]:硕士学位论文.上海:华东理工大学,2011.
    [46]Acar Y B, Alshawabkeh A N, Gale R J. Fundamentals of extracting species from soils by electrokinetics. Waste Management,1993a,13:141-151.
    [47]Acar Y B, Alshawabkeh AN. Principles of electrokinetic remediation. Environmental Science Technology,1993b,27(13):2638-2647.
    [48]Acar Y B, Alshawabkeh A N. Electrokinetic remediation:1. Pilot-scale tests with Lead spiked kaolinite. J. Geotechnical Engineering,1996,122 (3):173-185.
    [49]Schultz S D. Electroosmosis technology for soil remediation:laboratory results, field trial, and economic modeling. J. Hazard. Mater.,1997,55:81-91.
    [50]Puppala S K, Alshawabkeh A N, Acar Y B, et al. Enhanced electrokinetic remediation of high sorption capacity soil. J. Hazard. Mater.,1997,55(1-3):203-220.
    [51]Ottosen L M, Hasen H K, Laursen S, et al. Electrodialytic remediation of soil polluted with copper from wood preservation industry. Environmental Science and Technology,1997,31 (6):1711-1715.
    [52]Ottosen L M, Hansen H K, Hansen C B. Water splitting at ion-exchange membranes and potential differences in soil during electrodialytic soil remediation. Applied Electrochemistry, 2000,30(11):1199-1207.
    [53]Ottosen.L.M., Lepkova Katarina, Kubal Martin. Comparison of electrodialytic removal of Cu from spiked kaolinite spiked soil and industrially polluted soil. J. Hazard. Mater.2006 (B137):113-120.
    [54]Hansen H K, Ottosen L M, Kliem B K, et al. Electrodialytic Remediation of Soils Polluted with Cu, Cr, Hg, Pb and Zn. J.Chem.T ech.Biotechnol,1997,70:67-73.
    [55]Kim D H, Ryu B G, Park S W, et al. Electrokinetic remediation of Zn and Ni-contaminated soil. J. Hazard. Mater.,2009,165:501-505.
    [56]Van Cauwenberghe L. Electrokinetics:Technology Overview Report. Groundwater Remediation Technologies Analysis Center,1997:1-17.
    [57]Probstein R. F., Hick R. E..Rernoval of contaminants from soil by electric fields. Science, 1993,260:498-503.
    [58]陈学军,申哲民,句炳新等.模拟镉污染土壤的电动力学修复研究[J].环境化学,2005.11,24(6):666-668.
    [59]Li Z M, Yu J W, Neretnieks I. A new approach to electrokinetic remediation of soils polluted by heavy metals. J. of Contaminant Hydrology,1996,22:241-253.
    [60]Li Zhong-Ming, Yu Ji-Wei, Neretnieks Ivars. Removal of Pb(Ⅱ),Cd(Ⅱ)and Cr(Ⅲ)from sand by electromigration [J]. J. Hazard. Mater.,1997(55):295-304.
    [61]Li Z M, Yu J W, Neretnieks I. Electroremediation:removal of heavy metals from soil by using cation selective membrane. Environmental Science and Technology,1998,32:394-397.
    [62]Liao Wing-Ping et al. Electrokinetic remediation of cadmium-contaminated soil using six electrolytic solutions. In book of abstracts. EREM, Lisbon, Portugal,2009.26.
    [63]胡宏韬.铜污染土壤电动修复研究[J].环境工程学报,2009,3(11):2091-2094.
    [64]胡宏韬,程金平.土壤锌污染修复实验研究[J].环境科学与技术,2009,32(10):53-56,102.
    [65]胡宏韬,程金平.土壤铜镉污染的电动力学修复实验[J].生态环境学报,2009,18(2):511-514.
    [66]孟凡生,王业耀.铬(Ⅵ)污染土壤电动修复影响因素研究[J].农业环境科学学报,2006,25(4):983-987.
    [67]王业耀,孟凡生.铬(Ⅵ)污染高岭土电动修复实验研究[J].生态环境,2005,14(6):855-859.
    [68]陈锋,王业耀,孟凡生等.阴极pH控制对电动修复Cr(Ⅵ)污染高岭土影响研究[J].环境科学与技术,2007.6,30(6):35-41.
    [69]孟凡生,陈锋,王业耀.污染土壤电动修复正交试验研究[J].环境卫生工程,2007.2,15(1):48-50.
    [70]孟凡生,王业耀,陈锋.施加电压对铬污染土壤电动修复的影响[J].环境工程学报,2007.3,1(3):111-115.
    [71]孟凡生,王业耀.污染高岭土电动修复适宜电压研究[J].农业环境科学学报,2007,26(2):449452.
    [72]孟凡生,王业耀.电动修复铬污染土壤的实验研究[J].环境科学与技术,2005.7,28(4):27-29.
    [73]李莉,王业耀,孟凡生.介质配比对PRB修复效率的影响[J].环境工程,2008.4,26(2):91-93.
    [74]孟凡生,王业耀,汪春香等.铬污染地下水的PRB修复试验[J].工业用水与废水,2005.4,36(2):22-25.
    [75]孟凡生,王业耀.渗透反应格栅修复铬污染地下水的试验研究[J].地下水,2007.7,29(4):96-99.
    [76]仓龙,周东美,邓昌芬.柠檬酸和EDTA对Cr(Ⅵ)在黄棕壤和红壤上吸附行为的影响[J].农业环境科学学报,2004,23(4):710-713.
    [77]周东美,仓龙,邓昌芬.络合剂和酸度控制对土壤铬电动过程的影响[J].中国环境科学,2005,25(1):10-14.
    [78]周东美,仓龙,邓昌芬.过氧化氢对铬在黄棕壤中电动过程的影响[J].土壤学报,2005.1,42(1):59-63.
    [79]侯玲娟,胡宏韬.铅污染地下水电动修复研究[J].水处理技术,2009,35(9):56-59,63
    [80]Chen X J, Shen Z M, Yuan T, et al. Enhancing electrokinetic remediation of cadmium-contaminated soils with stepwise moving anode method. J. Environ. Sci. Heal. A., 2006,41(11):2517-2530.
    [81]Shen Zhemin, Chen Xuejun, Jia Jinping, Qu Liya, Wang Wenhua. Comparison of Electrokinetic Soil Remediation methods using one Fixed anode and Approaching Anodes. Environmental pollution. November 2007,150(2):193-199.
    [82]郑燊燊,申哲民,陈学军等.逼近阳极法电动力学修复重金属污染土壤[J].农业环境科学学报,2007,26(1):240-245.
    [83]席永慧,梁穑嫁,周光华.重金属污染土壤的电动力学修复试验研究[J].同济大学学报(自然科学版),2010.11,38(11):1626-1630.
    [84]罗启仕,王慧,张锡辉等.非均匀电动力学修复技术对土壤性质的影响[J].环境污染治理技术与设备,2004.4,5(4):40-45.
    [85]罗启仕,王慧,张锡辉等.非均匀电动力学修复技术对土壤性质的影响[J].环境污染治理技术与设备,2004.4,5(4):40-45.
    [86]付融冰,刘芳,马晋等.可渗透反应复合电极法对铬(Ⅵ)污染土壤的电动修复[J].环境科学,2012,32(1):283-288.
    [87]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000,228-235.
    [88]于世繁,张国峰,齐丽艳.铬污染土壤中六价铬的测定[J].干旱环境监测,1996.12,10(4):207-208,241.
    [89]中华人民共和国国家标准GB/T 15555.4-1995.
    [90]中华人民共和国国家环境保护标准HJ491-2009.
    [91]王京文,徐文,周航等.土壤样品中重金属消解方法的探讨[J].浙江农业科学,2007(2):223-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700