用户名: 密码: 验证码:
柳树对铅污染的生理、生长响应及吸收特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以苏柳172(Salix jiangsuenses CL'J172')和垂柳(Salix babylonica Linn.)为试验材料,通过水培和盆栽两种栽培方式,研究了重金属铅(Pb)对其生理生化指标的影响、吸收动力学特性、对重金属胁迫的响应情况以及对土壤酶活性的影响。具体结果如下:
     1.铅处理显著抑制2种柳树的根系伸长,垂柳根系表面积、根体积、根平均直径出现先增后降,苏柳172根系表面积、根体积、根平均直径均受到铅的显著抑制。2种柳树的根系活力均下降;超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性和脯氨酸(Pro)含量均为先增加后下降;可溶性蛋白含量、叶绿素含量在一定程度内均降低,只是变化的幅度和进程不同。
     2.在溶液Pb浓度为0.25~100μmol·L-1时,两种柳树对Pb的吸收动力学都呈非饱和曲线,积累量随浓度的增大及时间的延长而增加。垂柳根的吸收力α(Vmax/km)值明显高于苏柳172根的α值,垂柳对Pb的吸收积累能力强于苏柳172。柳树根尖区的Pb含量远远大于成熟区,根尖区是吸收Pb最活跃的区域。施加乙酸和苹果酸一定摩尔浓度配比下可以促进Pb的吸收,施加高浓度苹果酸未促进铅向地上部的运输和根系的吸收。
     3.盆栽柳树在一个生长期内对Pb的吸收积累量可超过对照植株含Pb量,根系对Pb的吸收积累量随土壤中Pb含量的增加而增加,垂柳在Pb 1600处理下达到峰值,根系对Pb的吸收量为42.63mg·g-1,茎和叶也表现出类似规律。苏柳172也表现出类似的规律。两种柳树根系吸收的Pb绝大部分积累在根部。两种柳树根富集重金属元素的能力显著强于茎和叶。随着铅处理浓度的增加,两种柳树生物量、根系长度、根系表面积、根体积、根直径均持续下降。
     4.重金属Pb对脲酶活性有一定的抑制作用,而且浓度越高,抑制作用越明显。重金属Pb降低磷酸酶的活性,但随着处理浓度的增大,酶活性呈现波动变化趋势。土壤脱氢酶活性随着土壤重金属Pb含量的增加而提高。
The study focused on ability of uptake kinetic characteristics of lead, the effect on biomass, physiology and biochemical, soil enzymes activity under lead stress. The experimental material was Salix babylonica Linn and Salix jiangsuensis CL'J172', experimental method was hydroponic and soil culture. The main results are described as follows:
     1. Root length significantly decreased under lead stress. Root surface area, root volume、and average diameter of root in Salix babylonica increased under moderate lead stress, root surface area, root volume、and average diameter of root in Salix jiangsuensis CL'J172'decreased significantly exposed to lead. SOD activity, proline content and POD activity increased under moderate lead stress, but declined under extreme lead stress. Leaf soluble protein and chlorophyll content decreased under lead stress, though the trends differed for different species.
     2. The net concentration-dependent uptake influx of Pb in both willows were characterized by Michaelis-Menten type nonsaturating kinetic curves. The amount of lead uptake by roots of both willow species increased with lead concentration and exposed time. Root cap lead content was significantly higher than that in the mature root which suggests that the root cap was more active in the uptake of Pb.The addition of acetic and malic acids enhanced the uptake of Pb in salix roots.
     3. The accumulation of lead in examined salix exceeded that of contrast in a growing period. The accumulation of lead in roots increased with the increase lead concentration in the soil. At 1600mg·kg-1 Pb, roots reached maximum,being 42.63 mg·g-1. And stems and leaves reflected similar laws. The absorption of lead mainly accumulated in roots, but hardly transferred to stems and leaves. The accumulative ability of roots was larger than that of stems and leaves. The results show that biomass, root length, root surface area, root volume、and root vigor significantly decreased with the increase of Pb concentrations.
     4. Urease activities was depressed under lead stress. The higher the concentra-tion of Pb, the greater the effect. Phosphatase activities were depressed by Pb, though the trends differ for different Pb concentrations. Dehydrogenase activities increased with an increase of Pb concentrations.
引文
[1]周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态.1999,10(3):21-27.
    [2]岛崎和夫,孙米敏译.日本农田土壤污染现状与对策[J].国外农业环境保护,1990, (2):33-34.
    [3]陈志良,仇荣亮.重金属污染土壤的修复技术[J].环境保护,2002,29(6):21-23.
    [4]金春姬,李鸿江,贾永刚,等.电动力学法修复土壤环境重金属污染的研究进展[J].环境污与防治,2004,26(5):341-344.
    [5]重金属污染土壤治理研究现状[J].农业环境与发展,1998,22-24.
    [6]戴树桂,岳贵春.环境化学[M].北京,高等教育出版社,1997.
    [7]秦天才,吴玉树.镉、铅及其相互作用对小白菜根系生理生态效应的研究[J].生态学报,1998,18(3):320~325.
    [8]潘如圭.火炼厂粉尘中重金属在环境中迁移及其对策[J].生物学杂志,1990,9(4):29-34.
    [9]滕应.铅锌银尾矿污染区土壤酶活性研究[J].中国环境科学,2002,22(6):551-555.
    [10]苏志富,徐景华,金阳.绍兴地区电池厂周围环境中铅的含量及其评价[J].绍兴文理学院学报.2002,22(3):66-69.
    [11]徐晓辉.无铅汽油车排出颗粒物组分分析[J].中国卫生工程学,2003,2(1):1-3.
    [12]中国环境监测总站.1990.《中国土壤元素背景值》.北京:中国环境科学出版社.
    [13]杨崇洁.几种金素元素进入土壤后的迁移转化规律及吸附机理的研究[J].科学.1989,10(3):2-8.
    [14]顾公望,张宏伟.微量元素与恶性肿瘤[M].上海科学技术出版社,1993:199-205.
    [15]中华人民共和国卫生部(1990)中华人民共和国国家标准(食品中铅允许量标准).
    [16]张义贤.重金属对大麦(Hordeum vulgare)毒性的研究[J].环境科学学报,1997,17(2):199-205.
    [17]林伟,张燕,周娜娜等.铅污染对黄瓜幼苗脯氨酸及叶绿素含量的影响[J].安徽农学报,2006,12(11):86-87.
    [18]马新明,李春明,袁祖丽等.铅污染对烤烟光合特性、产量及其品质的影响[J].植物生态学报,2006,30(3):472-478.
    [19]王云,宋艳霞,孙海燕等.铅胁迫对甜高梁种子活力的影响[J].内蒙古民族大学学报:自然科学版,2006,21(5):521-524.
    [20]赵宝.铅对小白菜种子萌发的影响[J].现代农业科技,2007:4-6.
    [21]韩豫,曹莹,王绍斌等.铅胁迫对花生生理生化特性的影响[J].花生学报,2007,36(1):24-27.
    [22]彭鸣,王焕福.铅诱导的玉米(zeamays L)幼苗细胞超微[J].中国环境科学,1991,11(6):426-431.
    [23]张小磊,何宽,符燕等Cd、Pb、Ni、AS单一污染对油麦菜叶绿素含量和抗氧化系统的影响.西北农业学报,2006,15(5):206-219.
    [24]雷冬梅,段昌群,何锋等.不同蚕豆品种对铅污染的光合生理响应特性.应用生态学报,2006,17(6):1095-1098.
    [25]彭鸣,王焕福,镉、铅在玉米幼苗中的积累和迁移——X射线显微分析[J].环境科学学报,1989,9(1):63-69.
    [26]蒋明义,郭绍川,张学明.氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用[J].植物生理学报,1997,23(4):347-352.
    [27]徐卫红,熊治庭,李文一等.4品种黑麦草对重金属Zn的耐性及Zn积累研究[J].西南农业大学学报(自然科学版),2005,27(6):785-79.
    [28]孙小霞.高羊茅对铅递进胁迫的生理响应[J].河南科技大学学报(自然科学版),2006,27(6):75-78.
    [29]涂从,郑春荣等.土壤-植物系统中重金属与养分元素交互作用.中国环境科学.1997,17(6):526-529.
    [30]许嘉琳,杨居荣编著.陆地生态系统中的重金属.中国环境科学出版社.1995.
    [31]李延.龙眼(Dimocarpus longana Lour)缺镁胁迫生理及调控技术研究:福州:福建农业大学博士学位论文,1999.
    [32]许桂莲,王焕校,吴玉树等Zn、Cd及其复合对小麦幼苗吸收Ca、Fe、Mn的影响[J].应用生态学报,2001,12(2):275-27.
    [33]潘瑞炽、董愚得.植物生理学.高等教育出版社(第三版),1995,319-320.
    [34]金琎,袁金萍.铅对小麦保护酶系统的影响[J].江苏农业科学,2007(2):225-232.
    [35]周长芳,吴国荣,陆长梅等.铅污染对钝顶螺旋藻生长及某些生理性状的影响[J].湖泊科学,1999,11(2):135-140.
    [36]李荣春Cd, Pb及其复合污染对烟叶生理生化指标的影响[J].云南农业大学学报,1997,12(1):45-49.
    [37]段昌群,王焕校,曲仲湘.重金属对蚕豆根尖的核酸含量及核酸酶活性影响的研究[J].环境科学,1992,13(5):31-35.
    [38]吴燕玉,余国营,王新,等Cd Pb Cu Zn As复合污染对水稻的影响[J].农业环境保护,1998,17(2):49-54.
    [39]龚平,张铁珩,李培军.重金属对土壤微生物的生态效应[J].应用生态学报,1997,8(2):2]8-224.
    [40]沈桂琴,廖瑞章.重金属、非重金属、矿物油对土壤酶活性的影响[J].农业环境保护,1987,6(3):24-27.
    [41]吴家燕,夏增禄,巴音,等.土壤重金属污染的酶学诊断——紫色土中的镉、铜、铅、砷对水稻根系过氧化物酶的影响[J].环境科学学报,199010(1):73-76.
    [42]吴家燕,夏增禄,巴音,等.紫色土壤中镉铜铅砷污染对作物根系酶活性的影响[J].农业环境保护,1991,10(6):244-247.
    [43]杨仁斌,曾清如,周细红.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应[J].农业环境保护,2000,19(3):152-155.
    [44]李瑛,张桂银.有机酸对根际土壤中铅形态及生物毒性的影响[J].生态环镜,2004,21:164-166.
    [45]林琦,陈英旭,陈怀满,等.有机酸对Pb、Cd的土壤化学行为合植株效应的影响[J].应用生态学报,2001,12(4):619-622.
    [46]李玉红,宗良纲,黄耀,等.不同有机酸对水稻吸收铅的影响[J].南京农业大学学报,2002,25(3):45-48.
    [47]杨居荣,鲍子平,张素芹.镉、铅在植物细胞内的分布及其可溶性[J].中国环境科学,1993,13(4):263-268.
    [48]刘军,李先恩,王涛等.药用植物中铅的形态和分布研究[J].农业环境保护,2002,21(2):143-145.
    [49]陈怀满.上壤中Cd、Pb、Zn含量对水稻产量和植株中矿物浓度的影响[J].上壤学报,1985,22(1):85-92.
    [50]袁敏,铁柏清,唐美珍.土壤重金属污染的植物修复及其组合技术的应用[J].中南林学院学报,2005,25(1):81-85.
    [51]夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学.1997,18(3):72-75.
    [52]骆永明.金属污染土壤的植物修复[J].土壤,1999,31(5):261-265.
    [53]王庆仁,崔岩山等.植物修复一重金属污染土壤整治有效途径[J].生态学报,2001,21(2):326-331.
    [54]郑春荣,孙兆海,周东美等.土壤Pb、Cd污染的植物效应Ⅱ——Cd污染对水稻生长和Cd含量的影响[J].农业环境科学学报,2004,23(5):872-876.
    [55]陈怀满,郑春荣等.不同来源重金属污染的土壤对水稻的影响[J].农村生态环境,2001,17(2)35-40.
    [56]杨勇.超累积植物与高生物量植物提取镉效率的比较[J].生态学报,2009,29(5):2732-2737.
    [57]陈同斌,黄泽春.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报,2002,47(3):207-210.
    [58]何冰,杨肖娥,倪吾钟,等.一种新的铅富集植物——富集生态型东南景天.植物学报,2002,44(11):1365-1370.
    [59]薛生国,叶晟,周菲,等.锰超富集植物垂序商陆(Phytolaccaamericana L.)的认定.生态学报,2008,28(12):6344—6347.
    [60]杨肖娥,龙新宪,倪吾忠,傅承新.东南景天(Sedum alfredii H)——一种新的锌超积累植物.科学通报,2002,47(13):1003—1006.
    [61]黄会一.木本植物对大气重金属污染物铅镉吸收累积作用的初步研究[J].林业科学,1982,18(1):93-97.
    [62]刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis)—一种新的镉超富集植物.科学通报,2003,48(19):2046-2049.
    [63]刘厚田,张维平,于业平等.土壤Cd污染对水稻(orvza sativa L.)叶片光谱反射特性的影响.生态学报,1986,6(2):89-100.
    [64]汪有良,王宝松.柳树在环境污染生物修复中的应用[J].江苏林业科技,2006,2(14):44-47.
    [65]庞欣,王东红,彭安.铅胁迫对小麦幼苗抗氧化酶活性的影响[J].环境化学,2001,22(5):108-111.
    [66]周毅,李应学,戴碧琼等.土壤中的铅对作物的影响[J].农业环境保护,1986,5(2):9-12.
    [67]刘登义.铜尾矿对小麦生长发育和生理功能的影响[J]应用生态学报,2001,12(1):126-128.
    [68]周青,黄晓华,施国新,等.镉对5种常绿树木若干生理生化特性的影响[J].环境科学研究,2001,14(3):9-11.
    [69]张福锁.植物营养生态生理学和遗传学[M].北京,中国科学技术出版社,1993:53-71.
    [70]王东红,庞欣,冯雍等.铅胁迫下La (N03)3对油菜抗氧化酶的影响[J].环境化学,2002,21 (4):324-328.
    [71]谷巍,施国新,韩承辉,等.汞、镉污染对轮叶狐尾藻的毒害[J].中国环境科学,2001,21(4):371-375.
    [72]杨世勇,王方,谢建春.重金属对植物的毒害及植物的耐性机制[J].安徽师范大学学报(自然科学版),2004,27(1):71-74.
    [73]代全林.重金属对植物毒害机理的研究进展[J].亚热带农业研究,2006,2(2):49-53.
    [74]华东师范大学生物系植物生理教研组.植物生理学实验指导[M].北京:人民教育出版社,1980:66-70
    [75]李合生,孙牟,赵世杰等.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [76]李得孝,郭月霞,员海燕等.玉米叶绿素含量测定方法研究[J].中国农学通报,2005,21(6):153-155.
    [77]王锦文,边才苗,陈珍.铅、镉胁迫对水稻种子萌发、幼苗生长及生理指标的影响[J].江苏农业科学,2009,4:77-78.
    [78]张政,王转花,林汝法.Cu、Pb和Cd对荞麦种子中抗氧化酶活性的影响[J].中国生物化学与分子生报,1999,15(5):848-848.
    [79]丁海东,万延慧,齐乃敏.重金属(Cd2+、Zn2+)胁迫对番茄幼苗抗氧化酶系统的影响[J].上海农业学报,2004,20(4):79-82.
    [80]杨居荣,贺建群,张国祥等.不同耐性作物中几种酶活性对Cd胁迫的反应[J].中国环境科学,1996,6(2):113-117.
    [81]胡金朝,施国新,王学等.Cd对槐叶苹的生理影响及外源La、Ca的缓解效应比较[J].广西植物,2005,25(2):156-160.
    [82]刘鹏,YANG Y S,徐根娣等.南方4种草本植物对铝胁迫生理响应的研究[J].植物生态学报,2005,25(4):644-651.
    [83]刘云国,汤春芳,曾光明等.镉诱导萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的变化[J].广西植物,2005,25(2):164-168.
    [84]涂忠虞,黄敏仁.林业部科技司.阔叶树遗传改良[M].北京:科学技术文献出版社,1991.
    [85]王宝松,涂忠虞,潘明建等.柳树矿柱材优良无性系选育[J].江苏林业科技,1998,25(3):l-5.
    [86]陈英旭,林琦,陆芳.萝卜根系对环境中重金属铅、镉富集的修复作用[J].浙江大学学报,2000,26(1):61-66.
    [87]李春俭译,H.Marschner著.高等植物的矿质营养[M].中国农业大学出版社,2001:13-22
    [88]王焕华.有机酸对植物吸收Pb的影响及百草枯和Cu在土壤中吸附行为的交互作用研究[D].中国科学院,2007.
    [89]杨肖娥,龙新宪,倪吾钟.超积累植物吸收重金属的生理和分子机制.植物营养与肥料学报,2002,8(1):8-15.
    [90]李永丽,李欣,李硕,等.东方香蒲对铅的富集特征及其EDTA效应分析[J].生态环境,2005,14(4):555-558.
    [91]王林,蔬菜对镉铅的吸收累积特征与生理响应研究[D].山东农业大学,2005.
    [92]郑文教,王文卿等.九龙江口桐花树林对重金属的吸收与累积.应用与环境生物学报.1996,2(3):207-213.
    [93]章金鸿,李玫,等.深圳福田红树林对重金属Cu, Pb, Zn, Cd的吸收、累积与循环.云南环境科学,2000,19(增刊):53-56.
    [94]李峰民,熊治延,郑振华,7种高等植物对铅的耐性及其生物蓄积研究[J],农业环境保护,1999,18(6):246-250.
    [95]夏汗平,孔国辉,4种草本植物对油页岩矿渣土中铅镉的吸收特性比较试验研究[J],农村生态环境,2000,16(4):28-32.
    [96]关松荫.土壤酶及其研究法[M].北京:农业出版社,1983.
    [97]洪春来,贾彦博,王润屹,等.铅污染对土壤微生物及酶活性的影响[J].中国农学通报,2008,24(12):304-307.
    [98]Harrison R m,Laxen D R (Lead Pollution-Cause and control).Chapman and Hall Ltd,London,1981.
    [99]Boggess,W.R.,et al.1979.Lead in the Environment.Univ.of Illinois.
    [100]Silbergeld E K,Schwartz J,Mahaffey K.Mobilization of lead from bone in post menopansal women[J].Environment Res.1988,47:79-94.
    [101]World Health Organization (1972) Teehnical Report Series No.505.Geneva:WHO.
    [102]United Nations Environment Programme (1990) Global Environment Monitoring System. London:oxford,18.
    [103]Begonia G B.Growth response of Indian mustard and its phytoextraction of lead from a contaminated soil[J]. Bull.Environ.Contam. Toxicol.1998,61:38-43.
    [104]Nyitrai P,B6ka K,Gaspar L,et al.Characterization of the stimulating effect of low-close stressors in maize and bean seedlings[J].Journal of Plant Physiol.2003,160:1175-1183.
    [105]Burzynski M,Klobus G.Changes of photosynthetic parameters in cucumber leaves under Cu,Cd,and Pb stress. Photo-synthetica,2004,42 (4):505-510
    [106]Doran J W,Parken T B.Quantitative indicators of soil quality:a minimum data set.Methods for Assessing soil Quality [M].SSSA Special Publication,1996 (49):25-37.
    [107]Dick R P, Soil enzyme activities as indicators of soil.Defining soil Quality for a Sustainable Environment[M].SSSA Speeial Publication,1994 (35):107-124.
    [108]Bardgett R D, Saggar S.Effects of heavy metal contamination on the short-term decomposition of labeled carbon glucose in pasture soil [J].Soil Biol. Biochem.1994,26:727-733.
    [109]Kandeler E. Soil microbial processes and Testacea as indicators of heavy metal pollution [J]Zeitshrift fur Pflanzenemahrung and Bodenkunde,1992,155:319-322.
    [110]Schuller E. Enzyme activities and microbial biomass in old landfill soils with long-term metal pollution[J].Verhandlungen Gesellschaft fur Okologie,1989,18:339-348.
    [111]Yeates G W, Speir T W. Impact of pasture contamination by copper, copper, chromium,arsenic timber preservative on soil biological activity [J].Biol.Fertil. Siol.1994,18:200-208.
    [112]Antosiewicz D, Wierzbicka M.Localization of lead in Allium cepa L. cells by electronmicroscopy[J].Journal of Microscopy,1999,195:139-146
    [113]Rauser W E.Phytochelatins and related peptides structure,biosynthesis and function[J].Plant Physiology,1995,109:1141-1149
    [114]Zhang F Q,Wang Y S,Lou Z P,et al,Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings [J].Chemosphere,2007,67:44-50.
    [115]Ruley A T, Sharma N C, Sahi S V.Antioxidant defense in a lead accumulating plant,Sesbania drummondii[J].Plant Physiology and Biochemistry,2004,42 (11):899-906
    [116]Singh V.K-Zn relationship in wheat[J].Journal of Indian Society Soil Science,1993,41:789-790.
    [117]Begibua G B,Davis C D,Begonia M F,et al.Growth responses of Indian mustard (Brassica juncea (L.) Czern.) and its phytoextraction of lead from a contaminated soil [J].Bulletin of Environmental Contamination and Toxicology,1998,61 (1):38-43.
    [118]Bassuk N L.Reducing lead uptake in lettuce[J].Hortscience,1986,21:993-995.
    [119]Nishi B,Singh R P,Sinna S K.Effect of calcium chloride on heavy metal induced alteration in growth and nitrate assimilation of Sesamum indicum seedlings[J].Phytochemistry,1996,41 (1):105-109.
    [120]Chen T B, Wei C Y. Arsenic hyperaccunmLation in some plant species in south China[M].Proceedings of Soil Rem 2000,2000:194-195.
    [121]YE Hai-Bo,YANG Xiao-E,HE Bing,etc.Growth Response and Metal Accumula- tion of Sedum alfredii to Cd/Zn Complex Polluted Ion Levels[J].Acta Botanica Sinica,2003,45 (9):1030-1036.
    [122]Zalesny Jr.R S,Bauer EO,Hall RB,et al.Clonal variation in survival and growth of hybrid poplar and willow in an IN SITU trial on soils heavily contaminated with petroleum hydrocarbons[J].International Journal of Phytoremediation,2005,7 (3) 177-197.
    [123]Berndes G,Fredrikson F,Brjesson P.Cadmium accumulation and Salix-based phytoextraction on arable land in Sweden [J]. Agriculture, Ecosystems & Environ- ment,2004,103 (1):207-223.
    [124]Wieshammer QUnterbrunner R,Garcia TB.Phytoextraction of Cd and Zn from agricultural soils by Salix spp.and intercropping of Salix caprea and Arabidopsis halleri[J].Plant and Soil,2007,298 (1-2):255-264.
    [125]Elowson S.Willow as a vegetation filter for cleaning of polluted drainage water from agricultural land[J].Biomass and Bioenergy,1999,16:281-290.
    [126]Dimitriou I,Aronsson P.Nitrogen leaching from short-rotation willow coppice after ntensive irrigation with waste-water[J].Biomass and Bioenergy,2004,26 (5):433-441.
    [127]Dimitriou I,Aronsson P and Weih M.Stress tolerance of five willow clones after irrigation with different amounts of landfill leachate[J].Bioresource Technology,2006,97 (1):150-157.
    [128]Mant C,Peterkin J,May E,et al.A feasibility study of a Salix viminalis gravel hydroponic system to renovate primary settled wastewater[J].Bioresource Technology,2003,90:19-25.
    [129]Perttu K L,Kowalik P J.Salix vegetation filters for purification of waters and soils[J].Biomass and Bioenergy,1997,12 (1):9-19.
    [130]Ebbs S D, Lasat M M, Brady D J.et al. Phytoextraction of cadmium and zinc from a contaminated site[J]. Journal of Environmental Quality,1997,26:1424-1430.
    [131]Greger M,Landberg T.Use of willow in phytoremediation[J]. International Journal of Phytoremediation,1999,1 (2):115-123.
    [132]Yang X E, Long X X, Ye H B.et al. Cadmium tolerance and hyperaccumulation in a new Zn hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil 2004,259,181-189.
    [133]Cosio C.Vollenweider P,Keller C.Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.) I.Macrolocalization and phyto- toxic effects of cadmium[J].Environmental and Experimental Botany,2006,58 (1-3):64-74.
    [134]Dickinson N M, Pulford I D.Cadmium phytoextraction using short-rotation coppice Salix:the evidence trail[J].Environment International,2005,31:609-613.
    [135]Vervaeke P. Luyssaert S.Mertens J,etal. Phytoremediation prospects of willow stands on contaminated sediment:a field trial[J].Environmental Pollution,2003,126 (2):275-282
    [136]Ali M B,Vajpayee P,Tripathi R D,etal.Phytoremediation of lead、niekel and copper by salix Acmophylla Boiss:role of antioxidant enzymes and antioxidant substanees[J]. Bull Environ Contam Toxieol,2003.70:462-469.
    [137]Tracy Punshon,Nicholas Dickinson.Heavy metal resistance and accumulation characteristic in willows[J].International Journal of Phytoremediation,1999,1 (4):361-385.
    [138]Maria Greger,Tommy Landberg. Use of willow in phytormediation[J].Interna- tional Journal of Phytoremediation,1999,1 (2):115-123.
    [139]Stobart A K.Griffiths W T.et al.The effect of Cd2+ on the biosysnthesis of Chlorophyll in leaves of barley[J].Physiol plant.1985.63:293-298.
    [140]Watson C,Pulford I D,Riddell-Black D. Development of a hydroponic screening technique to asses heavymetal resistance in willow (Salix) [J].International Journal of Phytoremediation,2003,5 (4):333-349.
    [141]Lasat M M,Baker AJ M,Kochian LV.Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi[J].Plant Physiology 1996,112:1715-1722.
    [142]Cohen C K,Fox T C,Garvin D F K,et al.The role of iron-deficiency stress responses in stimulating heavy-Metal transport in plants[J].Plant Physiology 2004,116:1063-1072.
    [143]LoMbi E,Zhao F J,McGrath S P,et al.Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype[J].New Phytologist 2001,149:53-60.
    [144]Hart J J,Welch R M,Norvell WA,et al.Kochian LV.Characterization of cadmium binding,uptake,and translocation in intact seedlings of bread and durum wheat cultivars.[J].Plant Physiology,1998,116,1413-1420.
    [145]Zhao F J,Hamon R E,Lombi E,et al.Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens.[J].Journal of Experimental Bontany,2002,53,535-543
    [146]Stanhope K G,Young S D,HutehinsonJJ, etal.Use of isotopic dilution techniques to assess the mobilization of nonlabile Cd by chelating agents in phytoremediation [J].Environmental Seienee&Technology,2000,34:4123-4127.
    [147]Matos A T,Fontes M P F,JordaoC P.Mobility and retention of Cd,Zn,Cu and Pb in a Brazilian Oxisol Profiles[J].In:XV world congress of soil science Acapulco.Transactions,1994,36:193-194.
    [148]Bringezu K,Lichtenberger O.Heavy metal tolerance of silene vulgaris[J].Joural of Plant thysiology,1999 (154):536-546.
    [149]He M C,Wang Z J,Tang H X.The chemical,toxicological and ecological studies in assessing the heavy metal pollution in Le An River,China.Water Research,1998,32 (2):510-518.
    [150]Speir T W,Kettles H A,Parshotam A,et al.A simple kinetic approach to derive the ecological dose value,ED50,for the assessment of Cr (Ⅵ) toxicity to soil biological properties.Soil Biology and Biochemistry,1995,27:801-810.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700