用户名: 密码: 验证码:
重金属污染土壤的诱导性植物提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属污染是一个世界范围内普遍关注的环境问题。采用螯合剂强化植物提取污染土壤重金属是近十年来重金属污染土壤修复的研究热点之一。本文通过开展农田重金属污染情况调查,研究螯合剂种类、处理浓度以及与高生物量植物的匹配关系,探索提高螯合剂诱导植物富集土壤重金属效率的方法,研究采取防止螯合诱导修复过程重金属淋滤的措施,并进行了多年的盆钵及野外田间植物提取试验等工作,较为系统地研究了诱导性植物提取修复重金属污染土壤的原理和方法。
     1、通过对南京市5县4郊5个环境单元(矿冶区、交通干线、工厂周边、污灌地、农产品基地)共100个样点的农田土壤及蔬菜样品重金属(Pb、Cu、Zn、Cd)污染情况调查,发现不同功能区土壤重金属含量存在明显差异:矿区周边农田污染最为严重,其次为污灌地和公路沿线农田,部分农产品基地存在轻度Cd污染,工厂周边农田土壤污染相对较小。蔬菜重金属含量与土壤重金属生物有效性含量和总量之间存在极显著相关。重金属污染严重的矿区农田土壤,蔬菜食用部分重金属含量普遍超过国家食品卫生标准。不合理的矿业开采和冶炼是导致南京地区农田土壤和蔬菜重金属污染的主要原因。
     2、通过土培试验,比较分析了螯合剂(EDTA、EDDS)诱导10余个植物品种提取污染土壤重金属的潜力。结果表明,螯合剂处理可以有效促进重金属从植物根系向地上部分的转运,提高植物地上部分富集重金属的能力。研究发现:和单子叶植物(如大麦、小麦、高粱、玉米、香根草等)相比,双子叶植物(如绿豆、荞麦、豌豆、油葵、芥菜等)对螯合剂处理更为敏感,表现为植株毒害症状较早出现,地上部分重金属浓度增加幅度更大。综合考虑植物地上部分重金属浓度、植物生物量、植物生长的季节性因素等,芥菜、豌豆可以作为冷季型植物的首选,而玉米、油葵、绿豆、荞麦等可以作为暖季型植物的首选。香根草由于其独特的生物学特性:深根系、生长迅速、生物量大、蒸发量高、极高的耐逆性能等,在植物稳定方面可以发挥重要作用。
     3、通过多年的盆栽试验,研究了在对第一季植物(油菜)一次性施加四种水平EDTA(0,1.25,7.5,17.5 mmol·kg~(-1))处理后,后续六季植物(玉米、油菜)连续修复Pb污染土壤的潜力。研究结果表明,EDTA在土壤中存在残留效应,可以促进后季植物对土壤Pb的提取,但施用浓度过高,对后季植物有生理毒性,并抑制其生长和减少植物对土壤Pb的提取。低浓度EDTA处理对土壤Pb的降低没有效果,随EDTA处理浓度的加大,土壤Pb含量降低幅度也越大。但是,七季植物地上部分提取总Pb量不足土壤总Pb量下降值的1%。因此,土壤中可溶性Pb的淋滤是导致土壤总Pb量下降的主要原因。
     4、通过盆栽试验,研究了多种调控措施对提高植物提取土壤重金属效率的方法。研究发现,土壤添加物(如N肥、K肥、不同有机肥、生根粉等)以及一些叶面处理(如微肥、Si肥、植物生长调节剂)等措施对诱导玉米幼苗富集土壤重金属的作用均显著不如EDTA的诱导作用。研究发现,一种野生杂草—泽漆,其茎分泌的汁液对土壤难溶性Cu具有比较高的溶解能力,土壤添加泽漆干粉对诱导玉米富集土壤Cu有明显的促进作用。野生泽漆汁液有望成为一种天然的螯合剂。
     5、采用土柱淋滤试验,研究了螯合剂(EDTA、EDDS)诱导植物(油葵、玉米、香根草等)修复过程中的重金属淋滤行为,同时研究了降水因素对重金属淋滤行为的影响以及深根系植物香根草在减少重金属淋滤方面的作用。结果表明,在大量雨水的淋洗下,EDTA辅助的植物修复容易导致上层污染土壤重金属向地下水的淋滤。而易生物降解性螯合剂(EDDS)由于在土壤中的半衰期大约只有10-20天,因此对土壤重金属的迁移行为影响不大。在25天时间内经过480mm降水量的淋洗,在80 cm高的土层下方没有收集到重金属淋滤液,说明EDDS具有比较高的安全性。土柱种植香根草和玉米可以有效延缓螯合剂诱导修复中的重金属淋滤,且香根草的效果要好于玉米。植物延缓重金属向下层土壤迁移的原因主要来自于植物通过蒸腾作用导致土壤含水量的降低,而非通过植物地上部分的截取。研究发现,植物地上部分积累的重金属量大约占土壤可溶性重金属总量的0.1%,说明螯合剂诱导植物提取土壤重金属的效率很低。研究发现,在8周的时间内,(模拟淋滤的)螯合态Pb可以全部被土壤介质吸附。与Pb相比,螯合态Cu被土壤吸附的比例较少。如果提高土壤有机质水平可以在2周内全部吸附螯合态Pb或Cu,因而减少了污染再次迁移的风险。
     6、通过盆栽试验,研究了提高土壤温度对螯合剂(EDTA和EDDS)诱导植物(玉米和绿豆)提取土壤重金属的效应。研究结果表明:通过水浴处理、热溶液浇灌处理、地下铺埋热水管等多种方法提高土壤温度可以有效提高螯合剂诱导植物提取土壤重金属的效率。研究发现,在螯合剂施用2天后进行热处理有最高的提取效率。采用在地下铺埋PVC管,并在PVC管内通入循环流动的热水(50℃)以提高土温,该方法可以提高螯合剂的使用效率约5倍(绿豆)和10-14倍(玉米)。此值是目前文献报道中提高螯合剂使用效率的最高值。通过提高土温可以提高螯合剂使用效率,减少螯合剂的施用量,从而达到降低螯合剂使用成本以及减少可溶性重金属向地下水迁移的潜在危险。该方法为修复重金属污染土壤提供了一种新的工艺技术。
     7、通过水培试验,研究了螯合剂诱导植物吸收重金属的机理。结果表明,根系的机械损伤(剪根和拍根)对玉米地上部分富集Pb的作用影响不大。然而,根系进行预热处理可以显著增加Pb从根系向地上部分的转运,尤其是Pb以Pb-EDTA螯合形态存在时增加量尤为显著。通过根系活力与植物地上部分重金属含量的相关性可以看出,植物对Pb的吸收是一个非主动吸收的过程。通过提高环境湿度,减少植物的蒸腾作用,可以显著降低地上部分重金属的积累,说明重金属向地上部分的运输是一个被动运输的过程。结合土培试验结果,高浓度螯合剂或重金属离子对植物根系的伤害可以导致螯合态重金属通过质外体途径大量进入根系木质部,在蒸腾拉力的作用下,重金属被动运输并富集在植物地上部分。
     8、对江苏南京伏牛山铜矿区一个铜污染农田进行了为期3年的野外田间植物提取试验。在污染农田种植了7季作物(玉米和油菜连作),对部分土壤施加了EDTA处理(总EDTA施用量为2.18 mmol kg~(-1)土)。结果表明:未施加螯合剂处理的土壤0-20cm土层铁锰氧化物结合态、有机物结合态和残渣态铜含量在近3年的时间内没有变化,而可交换态和碳酸盐态结合态铜含量分别下降到三年前的57%和84%,土壤总铜含量下降81-98 mg kg~(-1)。EDTA辅助修复下,0-20 cm土层残渣态铜含量也没有变化,而可交换态、碳酸盐结合态、铁锰氧化物结合态和有机物结合态铜含量分别降低到三年前的48%、39%、67%和81%,土壤总铜含量下降233-312 mg kg~(-1)。施加EDTA处理,7季植物地上部分总积累的铜量是未施加EDTA处理组的1.6倍。但是,7季植物地上部分积累铜量只占土壤铜含量下降值的0.1-0.2%。20-60 cm土层土壤铜含量也有所下降。土壤中减少的铜99%以上淋滤到地下水。尽管不施加EDTA处理,污染土壤的铜也存在向地下水的自然淋滤。
     总之,本文通过野外调查、实验室土培及水培试验以及多年的盆钵和野外田间试验等,为诱导性植物提取技术的理论研究及可行性应用提供了大量翔实的试验证据。
Heavy metal contamination in soils is one of the most serious environmental problemswith great significance to human health. Chelant-enhanced phytoextration of heavy metalshas evoked most attention in the remediation of heavy metal-contaminated soils. This paperstudied the theory and the methods of chelant-enhanced phytoextraction extensively by theinvestigation of heavy metal contamination in farm lands, the selection of chelators andplant species, the optimization methods of chelators' application for increasing theefficiency of phytoextraction, the adoption some measures for decreasing the leaching ofheavy metals in the process of phytoextraction, and undergoing several years' pot and fieldexperiments of phytoextraction heavy metals from contaminated soils.
     1. Heavy metal contamination in soils and vegetables in five environmental units-mining and smelting area, arterial traffic, factory, sewage irrigation plot and farm producebase-in 5 counties and 4 suburbs of Nanjing city were investigated. The results shown that,the contamination of heavy metals in the above five environmental units diversifiedsignificantly. Soils sampled from mining and smelting areas were the most heavilycontaminated by heavy metals, followed by the soils in sewage irrigation plots and highway.Soils from farm produce bases occurred slight pollution by Cd. Among 5 environmentalunits, soils in peripheral farmlands of factories had the least contamination by heavy metals.The heavy metal concentrations in the shoots of vegetables had a significantly positivecorrelation with the total and bio-available concentrations of heavy metals in soils. Theplant samples from mining and smelting areas had the highest concentrations of heavymetals, which were commonly exceeded the tolerance limitation of heavy metals in foods.Un-normative mining and smelting activity was the major cause of heavy metalcontamination in soils and vegetables in Nanjing area.
     2. Using pot experiment, the potential use of the eleven plant species, including sixdicotyledon species and five monocotyledon species, was investigated for the EDTA-orEDDS-enhanced phytoextraction of heavy metals from contaminated soils. The resultsshowed that, compared the monocotyledon species (barley, wheat, sorghum, corn, vetivergrass, et al.), the dicotyledon species (Mung bean, buckwheat, pea, oil sunflower, mustard, et al.) had a higher sensitivity to the EDTA or EDDS treatments, which could be reflectedby the severer toxicity of seedlings and the higher concentrations of heavy metals in theshoots. Considering the three factors (the shoot level of metals, the biomass of plants, andthe growing seasons of plants), mustard and pea were more suitable used in the coolseasons, and corn, sunflower, mung bean and buckwheat could be selected in the warmseasons. Vetiver grass, owing its' massive root system, fast-growing, high biomass, highevaporation and high tolerance to stress environments, may be suitable used in thephytostabilization of heavy metals in soils.
     3. Pot experiments were conducted to investigate the effects of residual EDTA in了soilson the shoot uptake of lead from Pb-contaminated soils (soils amended 0, 500, 2500, 5000mg Pb kg~(-1) soil) by the successive 6 crops (corn and mustard). EDTA at 4 dosages (0, 1.25,7.5, 17.5 mmol EDTA kg~(-1) soil) was applied to the Pb-contaminated soils at the first cropmustard. Results showed that, the residual EDTA in soils increased the concentration of Pbin the shoots of the following crops. However, at the high dosage of EDTA treatment (7.5,17.5 mmol·kg~(-1)), the residual EDTA in soils was toxic to the subsequent crops. With theincrease of planting seasons, the soluble Pb in soils decreased, and the toxicity of cropsdisappeared gradually. At the low dosage of EDTA treatment (1.25 mmol·kg~(-1)), the Pbconcentration in soils did not changed after the 7 crops planting. Even the Pb concentrationin heavily Pb-contaminated soils decreased significantly after the high dosage of EDTAapplication, the total uptake of Pb by 7 crops accounted less than 1%of the decrease of soilPb, which implied that the decrease of soil Pb mainly caused by the leaching of soluble Pbfrom soils.
     4. Pot experiments were used to investigate the effects of agronomic regulationmethods on the increasing efficiency of phytoextraction heavy metals from soils. Soilamendments (such as N, K and organic fertilizers) and leaf treatments (such as daubingmicro-nutrient, Si fertilizers and plant growth regulators in the leaves) had less effective atincreasing shoot removal of metals compared to the EDTA treatment. Interestingly, anatural chelator substance--the sap from shoots of Euphoria helioscopia could effectivelysoluble Cu from soils, and the dry powder of Euphoria helioscopia amended to the soilscould enhance the shoot removal Cu by corn seedlings from contaminated soils.
     5. Using soil column leaching test, the leaching behavior of heavy metals from soilcolumns was investigated in the process of EDTA or EDDS-assisted phytoextraction. The effects of artificial rainfall percolation applied to the soil surface and the plants (oilsunflower, corn and vetiver grass) grown in the soil columns on the leaching patterns ofheavy metals were also studied. Results showed that, the soluble of heavy metals in thecontaminated soils after EDTA application could be persistent in the soils for a long time (atleast 32 weeks), which could be easily leached down to the deep soils, then leached out soilcolumns after the large rainfall percolation. On the contrary, EDDS application had a littleeffect on the movement of heavy metals in the soils. 2.5 mmol EDDS kg~(-1) soil applicationdid not lead to the leaching of heavy metals from the soil columns (80 cm in height) after480 mm precipitation of rainfall percolation within 25 days. This implies that residualEDDS in the soil will rapidly be degraded (the half-life of EDDS in soils was about 10-20 d)and EDDS can be regarded as a good chelator candidate for the environmentally safephytoextraction heavy metals from soils. Corn and vetiver grass seedlings grown in the soilcolumns could be effectively delay the movement of heavy metals from upper soils to deepsoils, and vetiver grass showed more effective than corn. However, the amount of heavymetals absorbed by plants accounted for about 0.1%of the total soluble metals in the soils.In another test, EDTA-Pb or EDTA-Cu solution could be reabsorbed by soil matrix,especially in the soils with high level of organic matters.
     6. Pot experiments were carried out to investigate the effects of increasing soiltemperature on the shoot uptake of heavy metals by two crops (corn and mung bean) whichgrew in an artificially multimetal-contaminated soil and a naturally Cu-contaminated soil,respectively. After the application of chelator (EDDS or EDTA), soils were treated withhigh temperature (50℃or 80℃) for 3 h, which significantly increased the concentrationsof heavy metal in shoots. The post-heating treatment 2 days after chelator addition wasmore efficient at enhancing heavy metal concentrations than the pre-heating treatment 2days before the application of EDTA or at the same time with chelator application.Increasing soil temperature by using underground PVC tubes circulated with hot water 2days after the chelator application could increase the efficiency of shoot Cu uptake about10- to 14-fold for corn, and 5-fold for mung bean from Cu-contaminated soils incomparison with the normal chelator application. This was the highest efficiency ofoptimization chelators application reported in the literature up to now. The irrigation of 100℃hot water 2 days after the chelator addition, or irrigation of 100℃chelator solutiondirectly, also resulted in significantly higher phytoextraction of heavy metals in two crops than that treated with 25℃chelator only. These results suggested that increasing soiltemperature could increase the phytoextraction efficiency, and thus minimize the amount ofchelator applied in the field, which would decrease the operation cost and the potential riskof soluble heavy metal movement into ground water. This new technique represents a verypromising engineering-oriented approach to the decontamination of metal polluted soils.
     7. Solution culture experiments were carried out to investigate the mechanism ofuptake of heavy metals in plants induced by chelators. In hydroponics, roots of corn werepretreated with cutting, flapping or heating stress, and then exposed to the 250μmol L~(-)1 Pbsolutions with or without 250μmol L~(-1) EDTA addition. The results showed that themechanical damage of roots by cutting or flapping had no effect on increasing shoot Pblevel, however, the pre-heating treatment significantly facilitated the Pb transportation fromroots to shoots. Compared to the Pb treated alone, addition of EDTA to the Pb solutionsalleviated the phytotoxicity of seedlings and decreased Pb concentrations in roots, but itincreased Pb levels in shoots. According to the relationships between the root cell viabilityand the shoot level of heavy metals, the uptake of heavy metals by plants was a passiveprocess, which was confirmed by the change of humidity in environment. With the decreaseof evaporation, the shoot uptake of heavy metals decreased accordingly. Considering theresults of pot experiments, the destruction of the physiological barrier(s) in roots caused bythe high dosage of uncoordinated EDTA, or free-Pb~(2+), or other stresses (such as heatingtreatment) could led to the heavy metals diffused into the root xylem via apoplastic pathway.The metals (mostly in the forms of combined with chelator) in the xylem could be quicklytransported upwards by a driving force, i.e., transpirational pull.
     8. A field experiment, lasting 3 years, was conducted at a farm land located at the eastof Nanjing city, China. Seven consecutive crops (corn and rape) were planted in thenaturally Cu-contaminated soils in order to assess the efficiency of phytoextraction Cu fromsoils with or without EDTA application (total applied EDTA in three years was 2.18 mmolkg~(-1) soil). Results showed that, in the control soils at 0-20 cm layer without EDTA treated,the content of Cu in Fe-Mn oxide, organic and residual fractions in soils did not change;however, Cu content in the exchangeable and carbonate fractions decreased 43%and 16%,respectively; and total Cu in soils decreased 81-98 mg kg~(-1) after seven crops planting.With EDTA treated, the level of residual Cu in soils at 0-20 cm layer did not change; but theexchangeable, carbonate, organic and Fe-Mn oxide fractions of Cu decreased 52%, 61%, 33%and 19%, respectively; and the level of total Cu in soils decreased 233-312 mg kg~(-1)jafter seven crops planting. Total uptake Cu in the shoots of seven crops with EDTA assistedwas 1.6-fold that of the controls. However, the amount of total removal of Cu by shoots of7 crops accounted about 0.1-0.2%of the amount of decreased Cu in soils. That is to say,over 99%of the decreased Cu in soils leached into groundwater. Even without EDTAapplication, Cu in contaminated soils would leach into groundwater naturally. The estimatetime to clean-up may actually be somewhat less than 10 years if Cu migrates down in thesoil profile with EDTA addition. The EDTA-assisted removal of Cu from Cu-contaminatedsoils may be feasible if combined with the special equipment for collecting the leached Cusolutions.
     In summary, the results of this paper will benefit to the further study of the theory andthe practice of chelant-enhanced phytoextraction in heavy metal-contaminated soils.
引文
1 该章节部分内容发表于:长江流域资源与环境,2006.15:356-360
    3 本节内容发表于Applied Geochemistry,2004,19(10):1553-1565
    1. Alkorta I, Hernandez-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C. Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Reviews in Environmental Science and Bio/Technology., 2004, 3:71-90.
    2. Allen HE, Chen PH. Remediation of metal contaminated soil by EDTA incorporation electrochemical recovery of metal. EDTA Environmental Progress., 1993,12:284-291.
    3. Anderson C, Moreno F, Meech J. A field demonstration of gold phytoextraction technology. Minerals Engineering, 2005, 18:385-392.
    4. Anderson CWN, Brooks RR, Chiarucci A, LaCoste CJ, Leblanc M, Robinson BH, Simack R, Stewart RB. Phytomining for nickel, thalium and gold. J. Geochem. Explor., 1999, 67:407-415.
    5. Assuncao AGL, Martins PDC, Folter SD, Vooijs R, Schat H, Aarts MGM. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ., 2001,24:217-226.
    6. Axelsen KB, Palmgren MG. Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol., 2001, 126:696-706.
    7. Baghour M, Moreno DA, Villora G, Hernandez J, Castilla N, Romero L. Phytoextraction of Cd and Pb and physiological effects in potato plants (Solanum tuberosum vat. Spunta): Importance of root temperature. J. Agric. Food Chem., 2001,49:5356-5363.
    8. Baker AJM, McGrath SP, Sidoli CMD, Reeves RD. The possibility of in-situ heavy-metal decontamination of polluted soils using crops of metal-accumulating plants. Res. Conserv. Recycl., 1994,11:41-49.
    9. Baker AJM, Brooks RR. Studies on copper and cobalt tolerance in three closey related taxa with in the genus Silence L. (Caryophyllaceae) from Zaire. Plant Soil, 1983,73:377-385.
    10. Baker AJM, McGrath SP, Reeves RD, Smith JAC. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N and Bafiuelos G. (Eds.) Phytoremediation of contaminated soil and water. CRC Press LLC, USA, 2000, pp.85-107.
    11. Baker AJM, McGrath SP, Sidoli CMD, Reeves RD. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Coinserv. Recycl., 1994,11:41-49.
    12. Barocsi A, Csintalan Z, Kocsanyi L, Dushenkov S, Kuperberg JM, Kucharski R, and Richter PI. Optimizing Phytoremediation of Heavy Metal-Contaminated Soil by Exploiting Plants'Stress Adaptation. Int. J. Phytoremediation, 2003,5:13-23.
    13. Bell P F, McLaughlin M J, Cozens G, et al. Plant uptake of ~(14)C-EDTA, ~(14)C-Citrate, and ~(14)C-Histidine from chelator-buffered and conventional hydroponic solutions. Plant and Soil, 2003, 253:311-319.
    14. Bell PF, Chaney RL, Angle JS. Free metal activity and total metal concentrations as indexes of micronutrient availability to barley. Plant Soil, 1991,130:51-62.
    15. Berne RM, Levy M N. Physiology. Mosby, Inc. St. Louis, MO USA, 1998, pp.1131.
    16. Blaylock MJ, Huang JW. Phytoextraction of metals. In: Raskin I and Ensley BD. Phytoremediation of toxic metals: Using plants to clean up the environment. New York: John Wiley & Sons Inc., 2000, pp. 53-70.
    17. Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman G, Kapulnik Y, Ensley BD, Raskin I. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol., 1997,31: 860-865.
    18. Blaylock MJ. Field demonstration of phytoremediation of lead contaminated soils. In: Terry N. and Banuelos G.(F.,ds.) Phytoremediation of contaminated soil and water. Lewis Publ., Boca Raton, FL. 2000, pp.1-12.
    19. Borer L, Eggmann T, Meylan-Bettex M, Polier J, Kammer P, Marin E, Feller U, Mmartinoia E. Transcript levels of AtMRPS after Cadmium treatment: induction of AtMRP3. Plant Cell Environ., 2003,26: 371-381.
    20. Bradley R, Bun AJ, Read DJ. The biology of mycorrhiza in the Ricacacea. Ⅷ. The role of mycorrhizal infection in heavy metal resistance. New Phytol., 1982,91:197-209.
    21. Brown SL, Charley RL, Angle JS, Baker AJM. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soils. Environ. Sci. Technol., 1995,29:1581-1585.
    22. Bucheli-Witschel M, Egli T. Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol. Rev., 2001, 25:69-106.
    23. Charley RL. Plant uptake of inorganic waste constituents. In: Parr JF, Marsh PB and Kla JM. (Eds) Land Treatment of Hazardous Wastes. Noyes. Data Corp., Park Ridge, NJ, 1983, pp.50-76.
    24. Chaney RL, Brown JC, Tiffin LO. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant. Physl., 1972,50:208-213.
    25. Chaney RL. Metal speciation and interaction among elements affect trace element transfer in agricultural and environmental food-chains. In: Kramer JR, Allen HE. eds. Metal Speciation, Theory, Analysis, and Application. Chelsa, MI: Lewis Publishers, 1988, 219-260.
    26. Chen BD, Zhu YG, Smith FA. Effects ofarbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere., 2006, 62:1464-1473.
    27. Chen H, Cutright T. EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus.Chemosphere, 2001,45:21-28.
    28. Chen HM, Zheng CR, Tu C, Shen ZG. Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere, 2000,41:229-234.
    29. Chen YH, Li XD, Shen ZG. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere, 2004a, 57:187-196.
    30. Chen YH, Shen ZG, Li XD. The use of Vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl. Geoch., 2004b, 19:1553-1565.
    31. Chen YX, Lin Q, Luo YM, He YF, Zhen S J, Yu YL, Tian GM, Wong MH. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere. 2003,50:807-811.
    32. Cheng JM, Wong MH. Effects of earthworms on Zn fractionation in soils. Biology and Fertility of Soils, 2002, 36:72-78.
    33. Clemens S, Palmgren MG, Kramer U. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci., 2002,7:309-315.
    34. Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 2001, 212:475-486.
    35. Cooper EM, Sims JT, Cunningham SD, Huang JW, Berti WR. Chelate-assisted phytoextraction of lead from contaminated soils. J. Environ. Qual., 1999, 28:1709-1719.
    36. Crowdy SH, Tanton TW. Water pathways in higher plants. I. Free space in wheat leaves. J Expt. Bot., 1970, 21:102-111
    37. Crowley DE, Wang YC, Reid CPP, Szaniszlo PJ. Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil, 1991, 130:179-198.
    38. Dahmani-Muller H, Van O, Balabane M. Metal extraction by Arabidopsis halleri grown on an unpolluted soil amended with various metal-bearing solids: a pot experiment. Environ. Pollut., 2001, 114:77-84.
    39. Dalton PA, Smith RJ, Truong PNV. Vetiver grass hedges for erosion control on a cropped flood plain: Hedge hydraulics. Agr. Water Manage., 1996, 31:91-104.
    40. Dethier M, Sakubu S, Ciza A, Cordier Y, Menut C, Lamaty G. Aromatic plants of tropical Central Africa. ⅩⅩⅧ. Influence of cultural treatment and harvest time on vetiver oil quality in Burundi. J. Essential Oil Research, 1997, 9:447-451.
    41. Dushenkov S, Vasudev D, Gleba D. Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine. Environ. Sci. Technol., 1999, 33:469-475.
    42. Ebbs SD, Brady DJ, Kochian LV. Role of uranium speciation in the uptake and translocation of uranium by plants. J. Exp. Bot., 1998, 324:1183-1190.
    43. Ebbs SD, Kochian LV. Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassicajuncea). Environ. Sci. Technol., 1998, 32:802-806.
    44. Eide DJ. The molecular biology of metal ion transport in Saccharomyces cerevisiae. Ann. Rev. of Nutr., 1998, 18:441-469.
    45. Elless MP, Blaylock MJ. Amendment optimization to enhance lead extractability from contaminated soils for phytoremediation. Int. J. Phytol., 2000, 2:75-89.
    46. Ensley BD, Blaylock MJ, Dushenkov S, Kumar NPBA, Kapulnik Y. Inducing hyperaecumulation of metals in plant shoots. U.S. Patent 5 917 117. Date issued: 29 June, 1999.
    47. Epstein AL, Gussman CD, Blaylock MJ, Yermiyahu U, Huang JW, Kapulnik Y, Orser CS. EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant Soil, 1999, 208:87-94.
    48. Fan TWM, Lane AN, Pedler J, Crowley DE, Higashi RM. Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography-mass spectroscopy. Anal. Biochem., 1997, 251:57-68.
    49. Fan TWM, Shenker M, Higashi RM, Crowley DE, Lane AN. Rhizosphere mobilization of heavy metals via plant root exudation. Abstr. Am. Chem. Soc., 1999, 217 BIOT 043.
    50. Fest EPMJ, Temminghoff EJM,Griffioen J,Van Riemsdijk WH. Proton buffering and metal leaching in sandy soils. Environ. Sci. Technol, 2005, 9:7901-7908.
    51. Fischer OA, Matlova L, Bartl J. Earthworms (Oligochaeta, Lumbricidae) and mycobacteria. Veterinary Microbiology, 2003, 91:325-338.
    52. Fuhrrnann M, Lasat M, Ebbs S, Cornish J, Kochian L. Uptake and Release of Cesium~(137) by Five Plant Species as Influenced by Soil Amendments in Field Experiments. J. Environ. Qual., 2003, 32:2272-2279.
    53. Giasson P, Jaouich A, Gagne S, Moutoglis P. Phytoremediation of zinc and cadmium: A study of arbuscular mycorrhizal hyphae, Remediation Journal., 2005, 15:113-122.
    54. Gisbert C, Ros R, Haro AD, Walker DJ, Bemal MP, Serrano R, Navarro-Avino J. A plant genetically modified that accumulates Pb especially promising for phytoremediation. Biochemical and Biophysical Research Communications, 2003, 303:440-445.
    55. Glass DJ. Economic potential of phytoremediation. In: Raskin I & Ensley BD (Eds) Phytoremediation of Toxic Metals. John Wiley & Sons, New York, USA, 2000, pp. 15-31.
    56. Glick BR. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnoiogy Advances, 2003, 21:383-393.
    57. Grcman H, Velikonja-Bolta S, Vodnik D, Kos B, Lestan D. EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil, 2001, 235:105-114.
    58. Grcman H, Vodnik D, Velikonja-Bolta S, Lestan D. Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J. Env. Qual., 2003, 32:500-506.
    59. Grieve CM, Suarez DL, Shannon MC. Effect of saline irrigation water composition on selenium accumulation by wheat. J Plant Nutr., 1999, 22:1443-1450.
    60. Guerinot ML. The ZIP family of metal transporters. Biochim. Biophys. Acta., 2000, 1465:190-198.
    61. Halim M, Conte P, Piccolo A. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere, 2003, 52:265-275.
    62. Hall JL, Williama LE. Transition metal transporters in plants. J. Exp. Bot., 2003, 54:2601-2613.
    63. Hammer D, Keller C. Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extract-ants. J. Environ. Qual., 2002, 31:1561-1569.
    64. Harrison MD, Jones CE, Solioz M, Dameron CT. Intracellular copper routing: the role of copper chaperones. Trends Biochem. Sci., 2000, 25:29-32.
    65. Hatter RD. Effect of soil pH on adsorption of lead, copper, zinc and nickel. Soil Sci. Soe. Am. J. 1983, 47:47-51.
    66. Hernadez-Alliea J, Barrutia O, Becerril JM, Garbisu C. EDTA reduces the physiological damage of lead on cardoon plants grown hydroponieaUy. J. Phys. Ⅳ France, 2003, 107:613-616.
    67. Hirschi K. Vacuolar H~+/Ca~(2+) transport: who's direction the traffic? Trends in Plant Sci., 2001, 6:100-104.
    68. Hodson ME, Valsami-Jones E, Cotter-Howells JD, Dubbin WE, Kemp AJ, Thornton I, Warren A. Effect of bone meal (calcium phosphate) amendments on metal release from contaminated soils-a leaching column study. Environ. Pollut., 2001, 112:233-243.
    69. Hong J, Pintauro PN. Desorption-eomplexation-dissolution characteristics of absorbed cadmium from kaolin by chelators. Water Air Soil Pollut., 1996, 86:35-50.
    70. Hong PKA, Li C, Banerji SK, Regmi T. Extraction, recovery and biostability of EDTA for remediation of heavy metal-contaminated soil. J. Soil Contam., 1999, 8:81-103
    71. Huang JW, Blaylock MJ, Kapulmik Y, Ensley BD. Phytoremediation of uranium-contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants. Environ. Sci. Technol., 1998, 32:2004-2008.
    72. Huang JW, Chen JJ, William RB, Scott DC. Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol., 1997, 31:800-805.
    73. Huang JW, Cunningham SD. Lead phytoextraction: species variation in lead uptake and translocation. New Phytologist., 1996, 134:75-84.
    74. Ingrouille MJ, Smirnoff N. Thlaspi caerulescenes J.and C.Presl.(T.alpestre L.) in Britain. New Phytol, 1986, pp. 102, 219-223.
    75. Ireland MP. The effect of the earthworm Dendrobaena rubida on solubility of lead, zinc and calcium in heavy metal contaminated soil in Wales. Journal of Soil Science, 1975, 26:313-318.
    76. Jarvis MD, Leung DWM. Chelated lead transport in Chamaecytisus proliferus (L.f.) link ssp. proliferus var. palmensis (H. Christ): an ultrastructural study. Plant Science, 2001, 161:433-441.
    77. Jaworska JS, Schowanek D, Feijtel TCJ. Environmental risk assessment for trisodium [S,S]-ethylene diamine disuccinate, a biodegradable chelator used in detergent applieations.Chemosphere, 1999, 38: 3597-3625.
    78. Jung SJ, Jang KH, Sihn EH, Park SK, Park CH. Characteristics of sulfur oxidation by a newly isolated Burkholderia spp. J. Microbiol. Biotechn., 2005, 15:716-721.
    79. Kabata-Pendias A, Pendias H. Trace metals in soils and plants. Boca Raton, FL: CRC Press, 1992, pp. 295.
    80. Kaplan DI, Knox AS. Enhanced Contaminant Desorption Induced by Phosphate Mineral Additions to Sediment. Environ. Sci. Technol., 2004, 38:3153-3160.
    81. Kayser A, Schulin R, Felix H. Field trails for the phytoremediation of soils polluted with heavy metals. (In German).1999, pp.170-182. In Umweltbundesamt (ed.) Proc. Int. Workshop am Fratmhofer Institut fur Umweltchemic und Okotoxikologic, Schmallenberg, Germany. 1-2 Dec. 1997. Erich Schmidt Verlag, Berlin.
    82. Kayser A, Schulin R, Felix H. Mobilization of Zn and Cd in in three Swiss soils by use of element sulphur.1999, pp.788-789. In W.W.Wenzel et al. (ed.) Proc. 5th Int. Conf. on the Geochemistry of Trace Elements (ICOBTE), Vienna. 11-15 July 1999. Int. Soc. For Trace Element Res., Vienna.
    83. Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, Schulin R. Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ. Sci. Technol., 2000a,34,1778-1783.
    84. Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M. Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant Soil, 2003, 249:67-81.
    85. Kos B, Lestan D. Chelator induced phytoextraction and in situ soil washing of Cu. Environ Pollut., 2004, 132:333-339.
    86. Kos B, Lestan D. Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environ. Sci. Technol., 2003, 37:624-629.
    87. Kos B, Lestan D. Influence of a biodegradable ([S,S]-EDDS) and nondegradable (EDTA) chelate and hydrogel modified soil water sorption capacity on Pb phytoextraction and leaching. Plant Soil, 2002, 251:403-411.
    88. Kos B, Lestan D. Influence of a biodegradable ([S,S]-EDDS) and nondegradable (EDTA) chelate and hydrogen modified soil water sorption capacity on Pb phytoextraction and leaching. Plant Soil, 2003, 253:403-411.
    89. Kulli B, Balmer M, Krebs R, Lothenbach B, Geiger G, Schulin R. The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass. J. Envir. Qual., 1999, 28:1699-1705.
    90. Kumar NPBA, Dushenkov V, Motto H, Raskin I. Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Technol., 1995, 29: 1232-1238.
    91. Lasat MM. Phytoextraction of toxic metals: A review of biological mechanisms. J. Envir. Qual., 2002, 31:109-120.
    92. Lavelle P, Lattaud C, Trigo D, Barois I. Mutualism and biodiversity in soils. Plant Soil, 1995, 170:23-33.
    93. Li HF, Wang QR, Cui YS, Dong YT, Peter C. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil-a preliminary study. Sci. Total. E., 2005, 339:179-187.
    94. Li XD, Coles B J, Ramsey MH, Thoronton I. Chemical partition of the new national institute of standards and technology standard reference materials (SRM-2709-2711) by sequential extraction using inductively-coupled Plasma-Atomic Emission-Spectrometry. Analyst., 1995, 120:1415-1419.
    95. Lim JM, Salido AL, Butcher DJ. Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchem. J. 2004, 76:3-9.
    96. Lombi E, Zhao FJ, Dunham SJ, McGrath SP. Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J. Environ. Qual., 2001, 30:1919-1926.
    97. Luo CL, Shen ZG, Li XD. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 2005, 59:1-11.
    98. Luo CL, Shen ZG, Li XD. The role of root damage in the chelate-enhanced accumulation of Lead by Indian Mustard Plants. Int. J. Phytoremediation, 2006, (In press).
    99. Ma JF, Nomoto K. Effective regulation of iron acquisition in graminaceous plants. The role of muginetic acids as phytosiderophores. Physiol Plant, 1996, 97:609-617.
    100. Ma Y, Dickinson NM, Wong MH. Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biology and Biochemistry, 2006, (In Press).
    101. Ma Y, Dickinson NM, Wong MH. Interactions between earthworms, trees, soil nutrition and metal mobility in amended Pb/Zn mine tailings from Guangdong, China. Soil Biology and Biochemistry, 2003, 35:1369-1378.
    102. Ma Y, Dickinson NM, Wong MH. Toxicity of Pb/Zn mine tailings to the earthworm Pheretima and the effects of burrowing on metal availability. Biology and Fertility of Soils, 2002, 36:79-86.
    103. Madrid F, Liphadzi MS, Kirkham MB. Heavy metal displacement in chelate-irrigated soil during phytoremediation. J. Hydrology, 2003, 272:107-119.
    104. Marsehner H, Romheld V, Kissel M. Different strategies in higher plants in mobilization and uptake of iron. J. Plant Nutr., 1986, 9:695-713.
    105. Martin TA, Ruby MV. Review of In Situ Remediation Technologies for Lead, Zinc and Cadmium in Soil. Remedaition, 2004, 35-53.
    106. Martino E, Turnau K, Girlanda M, Bonfante P, Perotto S. Ericoid mycorrhizal fungi from heavy metal polluted soils: Their identification and growth in the presence of heavy metals. Mycological Research, 2000, 104:338-344.
    107. Maxted AP, Young SD, Black CR, West HM, McGrath SP. Chemically enhanced phytoextraction of heavy metals by maize (Zea mays) from contaminated soil. Proc. 6th Int. Conf. Biogeochemistry of Trace Metals (ICOBTE). 2001.
    108. McBride MB. Environmental Chemistry of Soils. Oxford University Press, New York, 1994.
    109. MeGrath SP, Zhao FJ, Lombi E. Phytoremediation of metals, metalloids, and radionuclides. Adv. Agronomy, 2002, 75:1-56.
    110. McGrath SP, Zhao FJ. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Bioteeh., 2003, 14:277-282.
    111. McIntyre TC. Phytoremediation of heavy metals from soils. Adv. Biochem. Eng., Biotechnol., 2003, 78:97-123.
    112. Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ. Eegineered phytoremediation of mercury pollution in soil and water using baterial genes. In: Terry N, Banuelos G. editors. Phytoremediation of contaminated soil and water. Boca. Raton: Lewis, 2000, pp.201-221.
    113. Meers E, Hopgood M, Lesage E, Vervaeke P, Tack FMG, Verloo MG. Enhanced Phytoextraction: In Search of EDTA Alternatives. Int. J. Phytoremediation, 2004, 6:95-109.
    114. Meers E, Rut-tens A, Hopgood MJ, Samson D, Tack FMG. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemospere, 2005, 58:1011-1022.
    115. Meers E, Vervaeke P, Tack FMG, Lust N, Verloo M, Lesage E. Field Trial Experiment: Phytoremediation With Salix sp. on a Dredged Sediment Disposal Site in Flanders, Belgium. Remediation, summer, 2003, pp.87-97.
    116. Moreno DA, Villora G, Hernandez J, Castilla N, Romero L. Accumulation of Zn, Cd, Cu, and Pb in Chinese Cabbage As Influenced by Climatic Conditions under Protected Cultivation. J. Agile. Food Chem., 2002, 50:1964-1969.
    117. Mulligan CN, Yong RN, Gibbs BF. Remediation technologies for metal-contaminated soil and groundwater: an evaluation. Eng. Geol., 2001, 60:193-207.
    118. Neubauer U, Furrer G, Kayser A, Schulin R. Siderophores, NTA, and Citrate: Potential Soil Amendments to Enhance Heavy Metal Mobility in Phytoremediation. Int. J. Phytoremediation, 2000, 2:353-368.
    119. Nicks L, Chambers MF. A pioneering study of the potential of phytomining for nickel. In Plants that Hyperaccumulate Heavy Metals. Ed. RR Brooks. CAB International, Wallingford, Oxon, UK. 1998, pp.313-325.
    120. Nies H, Silver S. Ion effux systems involved in bacterial metal resistances. J. Ind. Microbiol., 1995, 14:186-199.
    121. Norvell WA. Reactions of metal chelates in soils and nutrient solutions. In: Mortvedt JJ, Cox FR, Shuman LM and Welch RM (Eds), Micronutilents in Agriculture (2nd Edn), Soil Science Society of America, Wisconsin, Madison, 1991, pp. 187-227.
    122. Nowack B, Schulin R, Robinson BH. Critical Assessment of Chelant Enhanced Metal Phytoextraction. Environ. Sci. Technol., 2006, 40:5225-5232.
    123. Noyd RK, Pfleger FL, Norland MR. Field response to added organic matter, arbuscular mycorrhizal fungi, and fertilizer in reclamation of taconite iron ore tailing. Plant Soil, 1996, 179:89-97.
    124. Papassiopi N, Tambouris S, Kontopoulos A. Removal of heavy metals from calcareous contaminated soils by EDTA leaching. Water Air Soil Pollut., 1999, 109:1-15.
    125. Peng KJ, Li XD, Luo CL, Shen ZG. Vegetation Composition and Heavy Metal Uptake by Wild Plants at Three Contaminated Sites in Xiangxi Area, China. J. Environ. Sei. Health Part A., 2006, 41:65-75.
    126. Pierzynski GM, Schwab AP. Bioavailability of zinc, cadmium, and lead in a metal-contaminated alluvial soil. J. Environ. Qual., 1993.22:247-254.
    127. Pilon-Smits EAH, De Souza MP, Lytle CM, Shang C, Lugo T, Terry N. Selenium volatilization and assimilation by hybrid poplar (Populus tremula×alba). J. Exp. Bot., 1998, 49:1889-1892.
    128. Pinthong J, Impithuksa S, Ramlee A. The capability of vetiver hedgerows in decontamination of agrochemical residues: a case study on the production of cabbage at Nong Hoi Development Center. In: Proceedings of the First International Conference on Vetiver. Chiang Rai, Thailand, 1998, pp.91-98.
    129. Polle A, Schutzendubel A. Heavy metal signalling in plants: linking cellular and organismic responses. Topics in Current Genetics., 2003, 4:187-215.
    130. Prabhukumar G, Matsumoto M, Mulchandani A, Chen W. Cadmium Removal from Contaminated Soil by Tunable Biopolymers. Environ. Sci. Technol., 2004, 38:3148-3152.
    131. Pusehenreiter M, Stoger G, Lombi E, Horak O, Wenzel WW. Phytoextration of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: Rhizosphere manipulation using EDTA and ammonium sulfate. Plant Nutr. Soil Sci., 2001,164:71-75.
    132. Ranathunge K, Steudle E, Lafitte R. A new precipitation technique provides evidence for the permeability of Casparian bands to ions in young roots of com (Zea mays L.) and rice (Oryza sativa L.). PI. Cell. Env., 2005, 28:1450-1462.
    133. Raskin I, Nanda Kumar PBA, Dushenkoy S, Salt DE. Bioconcentration of heavy metals by plants. Curt. Opin. Biotech., 1994, 5:285-290.
    134. Rea PA., Li ZS, Lu YP, Drozdowicz YM. From vacular GS-X pumps to multispecifie ABC transporters. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49:727-760.
    135. Reeves RD, Baker AJM. Metal-accumulating plants. In: Phytoremediation of toxic metals: Using plants to clean up the environment. Edited by Raskin I. and Ensley B.D., John Wiley & Sons, Inc., New York, 2000, pp.93-229.
    136. Rieken B, Hofner W. Effects of arbuscular mycorrhizal fungi (AMF) on heavy metal tolerance of alfalfa (Medicago sativa L.) and oat (Avena sativa L.) on a sewage-sludge treated soil. Z. Pflanz. Bodenk., 1996, 159:189-194.
    137. Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH. The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J. Geochem. E., 1997, 60: 115-126.
    138. Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg P EH. The potential of Thlaspi eaerulescens for phytoremediation of contaminated soils. Plant Soil, 1998, 203:47-56.
    139. Romheld V, Marschner H. Mobilization of iron in the rhizosphere of di□erent plant species. Adv. Plant Nutr., 1986,2:155-204.
    140. Romkens P, Bouwman L, Japenga J, Draaisma C. Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environ. Pollut., 2002, 116:109-121.
    141. Salido AL, Hasty KL, Lim JM, Butcher DJ. Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int. J. Phytoremediation, 2003, 5:89-103.
    142. Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I, Raskin I. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Bioteehnol., 1995, 13:468-475.
    143. Salt DE, Smith RD, Raskin I. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49:643-668.
    144. Sarret G, Vangronsveld J, Manteau A, Musso M, D'Haen J, Menthormex JJ, Hazemann JL. Accumulation forms of Zn and Pb in Phaseolus vulgaris in the presence and absence of EDTA. Environ. Sci. Technol., 2001, 35:2854-2859.
    145. Schmidt U. Enhancing phytoextraction: The effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J. Environ. Qual., 2003, 32:1939-1954.
    146. Seregin Ⅳ, Ivanov VB. Physiological Aspets of Cadmium and Lead Toxic Effects on Higher Plants. Russian J. of Plant Physiology, 2001, 48:523-544.
    147. Shan XQ, Wang HO, Zhang SZ, Zhou HF, Zheng Y, Yu H, Wen B. Accumulation and uptake of light rare earth elements in a hyperaccurnulator Dicropteris dichotoma. Plant Sci., 2003, 165: 1343-1353.
    148. Shen ZG, Li XD, Chen HM, Wang CC, Chua H. Phytoextraction of Pb from a contaminated soil using high biomass species of plants. J. Environ. Qual., 2002, 31:1893-1900.
    149. singh ov, Labana S, Pandey G, Budhiraja R, Jain RK. Phytoremediation: an overview of metallic ion decontamination from soil. Appl. Microbiol. Biotechnol., 2003, 61:405-412.
    150. Solioz M, Vulpe C. CPx-type ATPases: a class of P-type ATPase that pump heavy metals. Trends Bioch. Sci., 1996, 21:237-241.
    151. Soriano MA, Fereres E. Use of crops for in situ phytoremediation of polluted soils following a toxic flood from a mine spill. Plant Soil, 2003, 256:253-264.
    152. Sun B, Zhao FJ, Lombi E, McGrath SP. Leaching of heavy metals from contaminated soils using EDTA. Environ. Pollut., 2001, 113:111-120.
    153. Takahashi R, Yamayoshi K, Fujimoto N, Suzuki M. Production of (S,S)-Ethylenediamine-N,N'-disuccinic acid from Ethylenediamine and Fumaric Acid by Bacteria. Biosci. Biotechnol. Biochem., 1999, 63:1269-1273.
    154. Tandy S, Bossart K, Mueller R. Extraction of Heavy Metals from Soils Using Biodegradable Chelating Agents. Environ. Sci. Technol., 2004, 38:937-944.
    155. Tanton TW, Crowdy SH. Water pathways in higher plants. Ⅱ. Water pathways in roots. J. Exp. Bot., 1972, 23:600-618.
    156. Terry N, Sambukumar SV, Leduc DL. Biotechnologicai Approaches for Enhancing Phytoremediation of Heavy Metals and Metalloids. Acta Biotechnol., 2003, 23:281-288.
    157. Thayalakumaran T, Robinson BH, Vogeler 1, Scotter DR, Clothier BE, Percival HJ. Plant uptake and leaching of copper during EDTA-enhanced phytoremediation of repacked and undisturbed soil. Plant Soil, 2003, 254:415-423.
    158. Theodoulou FL. Plant ABC transporters. Biochim. Biophys. Acta., 2000, 1465:79-103.
    159. Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Sciences, USA. 2000, 97:4991-4996.
    160. Tiedje JM, Mason BB. Biodegradation of nitrilotriacetate (NTA) in soils. Soil Sei. Soe. Am. Proc., 1974, 38:278-283.
    161. Truong P. Vetiver grass technology for environmental protection. The 2nd Int. Vetiver Conf.: Vetiver and the Environment. Cha Am, Thailand, Jan. 2000.
    162. Truong PN, Baker DE. The role of vetiver grass in the rehabilitation of toxic and contaminated lands in Australia. International Vetiver Workshop, Fuzhou, China, 1997, pp.21-26.
    163. Truong PN, Baker DE. Vetiver grass for rehabilitation of acid sulphate soil. Vetiver Newsletter., 1996, 16:47-50.
    164. Tscherning K, Leihner DE, Hilger TH, Mullersamann KM, Elsharkawy MA. Grass barriers in cassava hillside cultivation-rooting patterns and root-growth dynamics. Field Crops Research, 1995, 43:131-140.
    165. Ustyak S, Petrikova V. Heavy metal pollution of soils and crops in Northern Bohemia. Appl Geochem., 1996, 11:77-80.
    166. Van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnen AN, Schat H, Verkleij JAC, Hooykaas PJJ. Overexpression of a novel Arabidopsis gene related to putative zinc transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol., 1999, 119:1047-1055.
    167. Vassil AD, Kapulmik Y, Raskin I, Salt DE. The role of EDTA in lead transport and accumulation by Indian mustard. Plant. Physl., 1998, 117:447-453.
    168. Wang QYD, Cui Y, Liu X. Instances of soil and crop heavy metal contamination in China. Soil and Sediment Contamination, 2001. 10:497-510.
    169. Wen B, Hu X Y, Liu Y. The role of earthworms (Eiseniafetida) in influencing bioavailability of heavy metals in soils. Biology and Fertility of Soils, 2004, 40:181-187.
    170. Wenger K, Gupta SK, Furrer G, Schulin R. The role of nitrilotriacetate in copper uptake by tobacco. J. Environ. Quai., 2003, 32:1669-1676.
    171. Wenger K, Kayser A, Gupta SK, Furrer G, Schulin R. Comparison-of NTA and Elemental Sulfur as Potential Soil Amendments in Phytoremediation. Soil and Sediment Contamination, 2002, 11:655-672.
    172. Wenzel WW, Unterbrunner R, Sommer P, Sacco P. Chelate-assisted phytoextraction using eanola (Brassica napus L.) in outdoors pot and field-lysimeter experiments. Plant Soil, 2002, 249:83-96.
    173. Williams LE, Pittman JK, Hall JL. Emerging mechanisms for heavy metal transport in plants. Biochim. Biophys. Acta., 2000, 1465:104-126.
    174, Wolters V. Invertebrate control of soil organic matter stability. Biology and Fertility of Soils., 2000, 31:1-19.
    175. Wu LH, Li H, Luo YM, Christie P. Nutrients can enhance phytoremediation of copper-polluted soil by Indian mustard. Envir. Geochemistry and Health, 2004, 26:331-335.
    176. Wu LH, Luo YM, Xing XR, Christie P. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agr. Ecosyst. Environ., 2004, 102:307-318.
    177. Wu SC, Cheng KC, Luo YM, Wang MH. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environment Pollution, 2006, 140:124-135.
    178. Xiang CB, Wemer BL, Christensen EM, Oliver DJ. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol., 2001, 126: 564-574.
    179. Xiong ZT, Feng T. Enhanced Accumulation of Lead in Brassica pekinensis by Soil-Applied Chloride Salts. Bull. Environ. Contain. Toxicol., 2001, 67:67-74.
    180. Yu XZ, Cheng JM, Wong MH. Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biology and Biochemistry, 2005, 37:195-201.
    181. Zhang H, Ma D, Xie Q, Chen X. An approach to studying heavy metal pollution caused by modern city development in Nanjing, China. Environmental Geology, 1999,38:223-228.
    182. Zhang J. Benefit and application future of sandy soils on windy Pingtan Island. In: Vetiver Research and Development. Agriculture Sci. and Tech. Press, China, 1998, pp. 179-191.
    183. Zhao F, McGrath SP, Crosland AR. Comparison of 3 wet digestion methods for the determination of plant sulfur by inductively-coupled plasma-atomic emission-spectroscopy (ICP-AES). Communications in soil science and plant analysis, 1994, 25:407-418.
    184. Zhou ZY, Fan YP, Wang MJ. Heavy metal contamination in vegetables and their control in China. Food Rev. Int., 2000, 16:239-255.
    185. Zhu BCR, Henderson G, Chen F, Fei HX, Laine RA. Evaluation of vetiver oil and seven insect-active essential oils against the Formosan subterranean termite. J. Chemical Ecology, 2001, 27:1617-1625.
    186. Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gammaglutamylcysteine synthetase. Plant Physiol., 1999, 121:1169-1178.
    187.GB 13106-1991中华人民共和国国家标准 食品中锌限量标准.
    188.GB 15199-1994 中华人民共和国国家标准 食品中铜限量标准.
    189.GB 15618-1995 中华人民共和国国家标准 土壤环境质量标准.
    190.GB 2762-2005 中华人民共和国国家标准 食品中污染物限量.
    191.蔡述明,杜耘,曾艳红.长江中下游水土环境的主要问题及其对策.长江流域资源与环境,2002,11(6):564-568.
    192.陈怀满,郑春荣,周东美,王慎强.关于我国土壤环境保护研究中一些值得关注的问题.农业环境科学学报,2004,2(6):1244-1245.
    193.陈同斌,韦朝阳,黄泽春,黄启飞,鲁全国,范稚莲.砷富集植物蜈蚣草及其对砷的富集特性.科学通报,2002,47(3):207-210.
    194.陈亚华,李向东,刘红云,沈振国.EDTA辅助下油菜修复铅污染土壤的潜力.南京农业大学学报,2002,25(4):15-18.
    195.陈亚华,沈振国,宗良纲.EDTA对2种芥菜型油菜幼苗富集Pb的效应.环境科学研究,2005,18(1):67-70.
    196.陈玉成,董姗燕,熊治廷.表面活性剂与EDTA对雪菜吸收镉的影响.植物营养与肥料学报,2004,10(6):651-656.
    197.程洪.香根草在我国的应用及研究综述.水土保持通报,1998,18:77-81.
    198.崔玉亭.化肥与生态环境保护.化工工业出版社.2000,pp.8.
    199.丁爱芳,潘根兴.南京城郊零散菜地土壤与蔬菜重金属含量及健康风险分析.生态环境,2003,12(4):409-411.
    200.董立莎,陈芳.泽漆的鉴别研究.中草药,2002,33(8):757-759.
    201.高岩,骆永明.蚯蚓对土壤污染的指示作用及其强化修复的潜力.土壤学报,2005,42(1):140-148.
    202.郝秀珍,周东美.金属尾矿砂的改良和植被重建研究进展.土壤,2005,37(1):13-19.
    203.胡佩,刘德辉,胡锋.蚓粪中的植物激素及其对绿豆插条不定根发生的促进作用.生态学报,2002,22(8):1211-1214.
    204.黄铭洪,骆永明.矿区土地修复与生态恢复.土壤学报,2003,40(2):161-169.
    205.江春玉,盛下放,夏娟娟. 2005,24(1):6-8.
    206.金春姬,李鸿江,贾永刚,罗先香,郭秀军.电动力学法修复土壤环境重金属污染的研究进展.环境污染与防治,2004,26(5):341-344,365.
    207.可欣,李培军,巩宗强,尹炜,苏丹.重金属污染土壤修复技术中有关淋洗剂的研究进展.生态学杂志,2004,23:145-149.
    208.李娟,龙健.矿区土地修复与生态农业可持续发展对策.农业现代化研究,2004,25(2):90-93.
    209.廖继佩,林先贵,曹志洪.红壤中丛枝菌根真菌对污泥态铜生物有效性的影响.土壤学报,2003,40(6):929-936.
    210.廖晓勇,陈同斌,谢华,肖细元.磷肥对砷污染土壤的植物修复效率的影响:田间实例研究.环境科学学报,2004,24(3):455-462.
    211.刘爱民,黄为一.铜尾矿复垦后土壤微生物活性及其群落功能多样性研究.生态环境,2005,14(6):876-879.
    212.刘威,束文圣.宝山堇菜(Viola baoshanensis)——一种新的镉超富集植物.科学通报,2003,48(19):2046—2049.
    213.鲁如坤主编.土壤农业化学分析方法.中国农业科技出版社.北京,1999,147-211.
    214.骆永明,滕应,过园.土壤修复—新兴的土壤科学分支学科.土壤,2005,37(3):230-235.
    215.骆永明.强化植物修复的螯合诱导技术及其环境风险.土壤,2000,32:57-61.
    216.聂俊华,刘秀梅,王庆仁.营养元素N、P、K对Pb超富集植物吸收能力的影响农业工程学报.2004,20(5):262-265.
    217.彭红云,杨肖娥.香薷植物修复铜污染土壤的研究进展.水土保持学报,2005,19(5):195-199.
    218.沈振国,陈怀满.土壤重金属污染生物修复的研究进展.农村生态环境,2000,16(2):39-44.
    219.束文胜,张志权,蓝崇钰.中国矿业废弃地的复垦对策研究.生态科学,2000,19(2):24-28.
    220.束文圣,叶志鸿,张志权,黄铭洪,蓝崇钰.华南铅锌尾矿生态恢复的理论与实践.生态学报,2003,23(8):1629-1639.
    221.铁柏清,袁敏,唐美珍.美洲商陆——一种新的Mn积累植物,农业环境科学学报,2005。24(2):340-343.
    222.王发园,林先贵,周健民.丛枝菌根与土壤修复.土壤,2004,36(3):251-257.
    223.韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报,2001,21(7):1996-1203.
    224.翁高艺,汪自强,吴龙华,骆永明.可降解络合剂及微生物调控对海州香薷修复污染土壤的效应.土壤,2005,37(2):152-157.
    225.吴龙华,骆永明.铜污染土壤修复的有机调控研究Ⅲ.EDTA和低分子量有机酸的效应.土壤学报,2002,39(5):679-685.
    226.吴新民,李恋卿,潘根兴,居玉芬,姜海洋.南京市不同功能城区土壤中重金属Cu、Zn、Pb和Cd的污染特征.环境科学,2003,24(3):105-111.
    227.夏汉平,敖惠修,何道泉等.香根草在土壤改良和水土保持中的作用.徐礼煜,主编:香根草研究与展望.中国农业科技出版社.北京,1998,pp.101-105.
    228.徐礼煜主编.香根草研究与展望.中国农业科技出版社.北京,1998.
    229.薛生国,陈英旭.中国首次发现的锰超量积累植物——商陆.生态学报,2003,23(5):935—937.
    230.杨肖娥,龙新宪,倪吾钟,傅承新.东南景天(Sedum alfredii H.)——种新的锌超积累植物.科学通报,2002,47(7):1003-1006.
    231.张宝贵.蚯蚓与微生物的相互作用.生态学报,1997,17(5):556-560.
    232.张民,龚子同.我国菜园土壤中某些重金属元素的含量和分布.土壤学报,1996,33(1):85-93.
    233.张孝飞,林玉锁,俞飞,李波.城市典型工业区土壤重金属污染状况研究.长江流域资源与环境,2005,14(4):512-515.
    234.赵其国.土地资源大地母亲—必须高度重视我国土地资源的保护、建设与可持续利用问题.土壤,2004,36(4):337-339.
    235.中国科学院土壤背景协作组.北京、南京地区土壤中若干元素的自然背景值.土壤学报,1979,16(4):319-328.
    236.中国土壤学会编.土壤农业化学分析方法.北京:中国农业科技出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700