用户名: 密码: 验证码:
智能电网低碳效益关键指标选取与评价模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,为应对全球气候变化,实现经济、社会与环境的可持续发展,世界各国相继把发展低碳经济作为国家核心战略。作为我国CO2排放大户,电力行业亟需转变发展模式,促进电力系统低碳化发展。智能电网能够支持各种低碳技术的引入,进而带来碳减排效益。因此,评价我国智能电网带来的低碳效益,对促进我国智能电网建设、落实国家碳减排任务、推动低碳经济发展具有重要意义。本文以智能电网低碳效益为研究对象,对我国智能电网低碳效益形成机理进行了分析论述,对智能电网低碳效益的关键指标进行了选取,并在静态、动态、剔除干扰因素三种情景下,构建了智能电网低碳效益的评价模型,以期为我国智能电网建设与低碳经济发展提供参考。
     首先,基于智能电网低碳效益内涵,对智能电网实现低碳效益的作用机理进行了研究。结合我国国情,分析了我国智能电网的发展模式,明确了智能电网的支撑体系,并对智能电网的技术支撑体系进行了重点分析;基于我国智能电网的特点,界定了我国智能电网低碳效益的定义与内涵;在此基础上,分析了先进低碳技术对智能电网促进电力系统低碳化发展的影响机理和减排能力,确定了智能电网在发电侧、电网侧、用电侧各环节实现低碳效益的具体路径,为智能电网低碳效益关键指标选取与评价模型建立提供了研究基础。
     其次,构建了结构熵-因子分析优化模型,对智能电网低碳效益关键指标进行了选取。基于我国智能电网低碳效益的实现路径,分别从发电侧、电网侧、用电侧初步选取了智能电网低碳效益评价的关键指标;在此基础上,运用熵理论和统计学原理,建立了智能电网低碳效益关键指标选取的结构熵-因子分析优化模型;基于结构熵-因子分析优化模型,利用结构熵减少了初选关键指标的不确定性,运用SPSS软件对初选关键指标进行了因子分析,以因子载荷为判据对初选关键指标进行了优化,并对指标优化结果进行了信度检验和效度检验;最终从静态评价和动态评价两个维度构建了智能电网低碳效益评价的关键指标体系,为智能电网低碳效益评价模型建立提供了框架范畴。
     第三,构建了ANP-Fuzzy静态评价模型,对智能电网低碳效益水平进行了静态评价研究。从智能电网低碳效益静态评价的特点入手,以智能电网低碳效益静态评价的关键指标体系为框架范畴,设计了智能电网低碳效益静态评价的总指标体系、评价等级与评价标准;在此基础上,运用网络层次分析法理论和模糊数学理论,建立了评价智能电网低碳效益水平的ANP-Fuzzy静态评价模型;基于ANP-Fuzzy静态评价模型,设计了反映静态评价指标之间相互关系的ANP网络结构和精确界定定性指标的Fuzzy多层次评价结构,运用Super Decisions软件在ANP网络结构中确定了各指标权重,运用Matlab软件在Fuzzy多层次评价结构中对智能电网低碳效益水平进行了静态评价研究。
     第四,构建了SD动态评价模型,对智能电网低碳效益大小进行了动态评价研究。从智能电网低碳效益动态评价的特点入手,以智能电网低碳效益动态评价的关键指标体系为框架范畴,设计了智能电网低碳效益动态评价的因果关系环路;在此基础上,运用系统动力学理论,建立了智能电网低碳效益的SD动态评价模型;基于SD动态评价模型,结合我国电网实际和发展预期设定了模型参数,刻画了我国智能电网促进低碳发展的SD动态反馈系统,运用Vensim PLE软件在SD动态反馈系统中仿真模拟了不同情景下我国智能电网实现低碳效益的动态量化过程,对智能电网低碳效益大小进行了动态评价研究。
     第五,构建了三阶段-超效率DEA评价模型,对智能电网低碳效益的投入产出效率进行了剔除环境影响因素的评价研究。从剔除环境影响因素的智能电网低碳效益评价的特点入手,在SD动态评价模型中选取了关键存量作为投入指标、选取了“CO2减排总量”作为产出指标,考虑经济增长、消费、投资等重要外在环境影响因素,建立了剔除环境影响因素的智能电网低碳效益评价指标体系;在此基础上,运用数据包络分析理论和随机理论,建立了基于三阶段-超效率DEA的剔除环境影响因素的智能电网低碳效益评价模型;基于三阶段-超效率DEA评价模型,运用Frontier4.1软件剔除了外在环境影响因素对智能电网低碳效益的投入产出效率评价的“噪声”影响,运用DEAP2.1软件对不同时点或不同区域的智能电网低碳效益投入产出效率进行了评价研究,最终运用EMS1.3软件对得分相同的有效投入产出效率进行了进一步区分评价研究。
     研究结果表明,选取的智能电网低碳效益关键指标科学、合理,具有较高的信度和效度,符合我国实际和智能电网发展趋势,可以为我国智能电网低碳效益评价提供有效的指导框架;建立的智能电网低碳效益评价模型全面、有效,能够从效益水平、效益大小、效益投入产出效率不同角度反映我国智能电网的低碳效益。此外,这些评价模型均可以借助相关软件实现,操作性强,具有较高的实用价值。
For responding to the change of global climate and achieving the sustainable development of economy, society and environment, developing low-carbon economy has been taken as a national core strategy in many countries in recent years. As the main source of CO2emission in China, the power industry is required to change its development mode to promote the power system to realize the development of low-carbon as soon as possible. Smart Grid can support the introduction of various low-carbon technologies, and thus bring benefit of reducing carbon emission. Therefore, evaluating low-carbon benefit of Smart Grid is significant to promote the construction of China's Smart Grid, the implement the national task of reducing carbon emission and the development of low-carbon economy. This paper takes the low-carbon benefit of Smart Grid as its research object. In this paper, the formation mechanism of low-carbon benefit of Smart Grid is discussed, the key indicators of low-carbon benefit of Smart Grid are selected and the evaluation models of low-carbon benefit of Smart Grid are built under three scenarios of static, dynamic and eliminate interference factors in order to provide references for the construction of Smart Grid and the development of low-carbon economy in China.
     Firstly, the formation mechanism of Smart Grid achieving low-carbon benefit is analyzed based on the connotation of Smart Grid's low-carbon benefit. According to the status of China, the development mode and support system of China's Smart Grid are analyzed, especially, the technology support system is discussed a key point. The definition and connotation of low-carbon benefit of Smart Grid are defined based on the characteristics of China's Smart Grid. On this basis, the influence mechanism and emission reduction capability of advanced low-carbon technologies which provide support for Smart Grid promoting the development of low-carbon power system is analyzed. The concrete paths of Smart Grid realizing low-carbon benefit on generation side, grid side and demand side are cleared, which can provide research foundation for key indicators selecting of low-carbon benefit and its evaluation models.
     Secondly, the key indicators of low-carbon benefit of Smart Grid are selected based on Structure Entropy and Factor Analysis optimization model. The key indicators are selected preliminarily from generation side, grid side and demand side based on the path of low-carbon benefit of Smart Grid. On this basis, the Structure Entropy and Factor Analysis optimization model of key indicators of Smart Grid's low-carbon benefit is built by applying entropy theory and statistics principle. Based on Entropy and Factor Analysis optimization model, reduce the uncertainty of preliminary selection of key indicators by Structure Entropy, use SPSS software to analyze the factor of preliminary selection of key indicators and optimize the preliminary selection of key indicators by factor loading. Then make reliability test and validity test for the optimal indicators. At last, the key evaluation indicator system of low-carbon benefit of Smart Grid is established from two dimensions of the static evaluation and dynamic evaluation, which can provide a framework for the establishment of evaluation models of Smart Grid's low-carbon benefit.
     Thirdly, the static evaluation on the level of low-carbon benefit of Smart Grid is researched based on ANP-Fuzzy static evaluation model. Considering the characteristics of static evaluation of Smart Grid's low-carbon benefit, design the overall indicator system, evaluation grades and evaluation standards of static evaluation based on the key indicator system of static evaluation of Smart Grid's low-carbon benefit. On this basis, the ANP-Fuzzy static evaluation model of low-carbon benefit of Smart Grid is built by applying analytic network process theory and fuzzy mathematics theory. Based on ANP-Fuzzy static evaluation model, design ANP network structure, which can reflect the relationships among the static evaluation indicators and Fuzzy hierarchy evaluation structure, use Super Decisions software to determine the weights of indicators in the ANP network structure and use Matlab software to static evaluate the level of low-carbon benefit of Smart Grid in the Fuzzy hierarchy evaluation structure.
     Fourthly, the dynamic evaluation on the amount of low-carbon benefit of Smart Grid is researched based on SD dynamic evaluation model. Considering the characteristics of dynamic evaluation of Smart Grid's low-carbon benefit, design the causality loop of dynamic evaluation based on the key indicator system of dynamic evaluation of Smart Grid's low-carbon benefit. On this basis, the SD dynamic evaluation model of low-carbon benefit of Smart Grid is built by applying system dynamics theory. Based on SD dynamic evaluation model, set the parameters in SD model with regard to the actual and expected situations of China's power grid, describe the dynamic feedback system of Smart Grid promoting the low-carbon development in China, use Vensim PLE software to simulate the dynamic process of Smart Grid realizing low-carbon benefit under different scenarios in the dynamic feedback system and then evaluate the amount of low-carbon benefit of Smart Grid.
     Finally, the evaluation on the input-output efficiency of low-carbon benefit of Smart Grid with eliminating environmental impact factors is researched based on Three-stage DEA and Super-efficiency DEA evaluation model. Considering the characteristics of evaluation of Smart Grid's low-carbon benefit with eliminating environmental impact factors, select the key stock variables in SD dynamic evaluation model as the input indicators, select the reduction of CO2emission in SD dynamic evaluation model as the output indicator and then establish the evaluation indicator system of low-carbon benefit of Smart Grid with eliminating environmental impact factors with regard to the important external environmental impact factors, such as economic growth, consumption and investment. On this basis, the evaluation model of low-carbon benefit of Smart Grid with eliminating environmental impact factors is built based on Three-stage DEA and Super-efficiency DEA by applying data envelopment analysis theory and stochastic theory. Based on Three-stage DEA and Super-efficiency DEA evaluation model, use Frontier4.1software to eliminate the noise effect of external environmental impact factors in the input-output efficiency evaluation of Smart Grid's low-carbon benefit, use DEAP2.1software to evaluate the input-output efficiency of low-carbon benefit of Smart Grid at different times or in different regions and finally use EMS1.3software to distinguish the effective input-output efficiencies further, which have the same evaluation score.
     The results of the researches show that the selected key indicators of low-carbon benefit of Smart Grid are scientific and rational with high reliability and validity, and in accordance with China's actual conditions and Smart grid development trend, these indicators can provide effective guidance framework for the evaluation of Smart Grid's low-carbon benefit in China. The constructed evaluation models of low-carbon benefit of Smart Grid are comprehensive and effective. These models can reflect Smart Grid's low-carbon benefit in different views such as level, amount and input-output efficiency. Moreover, all of those evaluation models can be achieved with related software. Easy operation makes these models have a high application value.
引文
[1]岳书敬.基于低碳经济视角的资本配置效率研究——来自中国工业的分析与检验[J].数量经济技术经济研究,2011,(4):110-123
    [2]袁男优.低碳经济的概念内涵[J].城市环境与城市生态,2010,23(1):43-46
    [3]钱洁,张勤.低碳经济转型与我国低碳政策规划的系统分析[J].中国软科学,2011(4):21-28
    [4]张明.基于指数分解的我国能源相关C02排放及交通能耗分析与预测[D].大连:大连理工大学,2009
    [5]Department of Trade and Industry. Europe's Climate Change Opportunity [M]. London:Department of Trade and Industry,2003:2-3
    [6]曹海霞,张复明.低碳经济国内外研究进展[J].生产力研究,2010,(3):1-6
    [7]赵志凌,黄贤金,赵荣钦,等.低碳经济发展战略研究进展[J].生态学报,2010,30(16):4493-4502
    [8]王彬.发达国家低碳经济转型的实践及其对中国的启示[D].吉林:吉林大学,2010
    [9]李文洁.中国低碳经济的发展研究——基于能源开发与经济增长的视角[J].经济学家,2012,(1):21-29
    [10]郑杰峰.欧盟二氧化碳减排政策研究及其对我国的启示[D].山东:中国石油大学,2011
    [11]王金南,蔡博峰,严刚,等.排放强度承诺下的C02排放总量控制研究[J].中国环境科学,2010,30(11):1568-1572
    [12]李元,王继停.“低碳经济”的思维模式——哥本哈根会议掀起全球绿色浪潮[J].武汉理工大学学报(社会科学版),2010,23(2):167-172
    [13]David Doniger, Jake Schmidt, Alvin Lin.全球合作应对气候变化——哥本哈根会议及之后前景展望[J].世界环境,2009,(6):12-14
    [14]王群伟,周鹏,周德群.我国二氧化碳排放绩效的动态变化、区域差异及影响因素[J].中国工业经济,2010,(1):45-54
    [15]金三林.我国二氧化碳排放的特点、趋势及政策取向[J].经济研究参考,2010,(36):4-9
    [16]彭斯震,张九天.中国2020年碳减排目标下若干关键经济指标研究[J].中国人口资源与环境,2012,22(5):27-31
    [17]国家发展与改革委员会.我国国民经济和社会发展十二五规划纲要[R].北京:国家发展与改革委员会,2011
    [18]徐敏杰,胡兆光,谭显东,等.中国中长期能源和电力需求及碳排放情景分析[J].中国电力,2012,45(4):101-107
    [19]《中国电力年鉴》编辑委员会.中国电力统计年鉴(2011)[M].北京:中国电力出版社,2011:719-722
    [20]杨健,曹培,郭创新.智能电网低碳效益展望[J].电力科学与技术学报,2010,25(3):54-60.
    [21]国家电力规划研究中心.我国中长期发电能力及电力需求发展预测[N].中国能源报,2013-02-20(B5).
    [22]侯建朝,谭忠富.电力生产CO2排放变化影响因素分解[J].中国电力,2011,44(11):39-42
    [23]Yu S K, Zhou L S, Li C. China wrestles with power shortages [J]. POWER,2013, 157(5):76-79
    [24]国家电网公司.国家电网公司绿色发展白皮书[EB/OL]. (2010-04-19). [2012-03-20]. http://www.sgcc.com.cn/images/bps/_lsfzb ps_/2010/04/19/8F66C21DE3AE5269AB433C29EA2F0734.pdf
    [25]康重庆,周天睿,陈启鑫.南方电网低碳发展战略思考[J].南方电网技术,2010,4(6):1-6
    [26]曾鸣,张徐东,田廓,等.低碳电力市场设计与政策分析[J].电力系统自动化,2011,35(24):7-11
    [27]Arnold G W. Challenges and opportunities in Smart Grid:a Position Article [J]. Proceeding of the IEEE,2011,99(6):922-927
    [28]汤奕,Manisa Pipattanasomporn,邵盛楠,等.中国与美国和欧盟智能电网之比较研究[J].电网技术,2009,33(15):7-15
    [29]Farhangi H. The path of the smart grid [J]. IEEE Power & Energy Magazine,2010, 8(1):18-28
    [30]U.S.111th Congress. The American recovery and reinvestment act of 2009 [EB/OL]. (2009-01). [2012-03-22]. http://www.gpo.gov/fdsys/pkg/BILLS-111hr 1 enr/pdf/BILLS-111hrlenr.pdf
    [31]U.S.111th Congress. The American clean energy and security act of 2009 [EB/OL]. (2009-06-26). [2012-03-22]. http://www.c2es.org/docUploads/Waxma n-Markey-short-summary-revised-June26.pdf
    [32]U.S. Secretary of State for Trade and Industry. Energy White Paper:our energy future-creating a low carbon economy[EB/OL]. (2003-02). [2012-03-22]. http://we barchive.nationalarchives.gov.uk/+/http://www.berr.gov.uk/files/filel 0719.pdf
    [33]U.S. Department of Energy. National electric delivery technologies roadmap: transforming the grid to revolutionize electric power in North America [EB/OL]. (2004-01). [2012-03-22]. http://energy.gov/sites/prod/files/oeprod/Doc umentsandMedia/ER_2-9-4.pdf
    [34]U.S.110th Congress. Energy independence and security act of 2007 [EB/OL]. (2007-12). [2012-03-22]. http://www.gpo.gov/fdsys/pkg/BILLS-110hr 6enr/pdf/BILLS-110hr6enr.pdf
    [35]Hammons T J. Integrating renewable energy sources into European grids [J]. International Journal of Electrical Power and Energy Systems,2009,7(3):75-77
    [36]U.S. National Energy Technology Laboratory. Framework and roadmap for Smart Grid interoperability standards[EB/OL]. (2010-01). [2012-03-22]. http://www.nist. gov/public_affairs/releases/upload/smartgrid_interoperability_final.pdf
    [37]卢强.数字电力系统(DPS)[J].电力系统自动化,2000,24(5):1-4
    [38]何光宇,孙英云.智能电网基础[M].北京:中国电力出版社,2010:17-38
    [39]陈树勇,宋书芳,李兰欣,等.智能电网技术综述[J].电网技术,2009,33(8):1-7
    [40]温家宝.2010年政府工作报告[R].北京:第十一届全国人民代表大会第三次会议,2010
    [41]刘振亚.建设坚强智能电网支撑又好又快发展[J].电网与清洁能源,2009,25(9):1-3
    [42]胡学浩.智能电网:未来电网的发展态势[J].电网技术,2009,33(13):1-5
    [43]YU S K, ZHOU L S, LI C. Research on market influence of wind power external economy and its compensation mechanism[C].2nd International Conference of Electrical and Electronics Engineering, Macau, China,2011:195-203
    [44]U.S. Department of Energy. Smart grid characteristics, values and metrics [EB/OL]. (2008-06-19). [2012-03-23]. http://energy.gov/sites/prod/files/oeprod/ DocumentsandMedia/Arshad_Mansoor.pdf
    [45]U.S. Department of Energy.2010 Smart Grid system report[EB/OL]. (2012-02). [20 12-03-23]. http://energy.gov/sites/prod/files/2010%20Smart%20Grid%20System% 20Report.pdf
    [46]Lordan R. Power delivery system and electricity markets of the future:technical update[M]. California:U.S. Electric Power Research Institute,2003:7-26
    [47]U.S. Department of Energy. "GRID 2030" a national vision for electricity's second 100 years[EB/OL]. (2003-07). [2012-03-26]. http://energy.gov/sites/prod/files/oe prod/DocumentsandMedia/Electric_Vision_Document.pdf
    [48]U.S. Department of Energy. Large power transformers and the U.S. electric grid [EB/OL]. (2012-06). [2012-08-26]. http://energy.gov/sites/prod/files/Large%20P ower%20Transformer%20Study%20-%20June%202012_0.pdf
    [49]U.S. National Energy Technology Laboratory. A vision for the modern grid [EB/OL]. (2007-03). [2012-03-26]. http://www.bpa.gov/energy/n/smart_grid/do cs/Vision_for_theModernGrid_Final.pdf
    [50]U.S. National Energy Technology Laboratory. A vision for the smart grid [EB/OL]. (2009-06). [2012-03-26]. http://www.netl.doe.gov/smartgrid/reference shelf/whitepapers/Whitepaper_The%20Modern%20Grid%20Vision_APPROVED_2009_06_18.pdf
    [51]Simoes M G, Roche R, Kyriakides E, et al. A Comparison of Smart Grid Technologies and Progresses in Europe and the U.S[J]. Industry Applications,2012, 48(4):1154-1162
    [52]European Commission. European technology platform smart grids:vision and strategy for Europe's electricity networks of the future[M]. Luxembourg:Office for Official Publications of the European Communities,2010:16-52
    [53]DG RTD of European Commission. Introduction to the 2008 RTD energy calls [EB/OL]. (2007-12-19). [2012-03-26]. http://ec.europa.eu/research/conferences/ 2007/energy_infoday/pdf/present_introductionenergycalls2008_bruno_schmitz_en.p df
    [54]Anonymous. Europe collaborate on smart grid standards[J]. MRS BULLETIN, 2011,36(11):861
    [55]Jopp, Klaus. Germany leads in Smart Grids[J].2011,131(6-7):170-173
    [56]Ardito L, Procaccianti G, Menga G. Smart Grid technologies in Europe:an overview[J]. Energies,2013,6(1):251
    [57]Ben-Yehezkel Y, Gazit R, Haidine A. Performance evaluation of medium access control mechanisms in high-speed narrowband PLC for smart grid applications [C].2012 IEEE International Symposium on Power Line Communications and Its Applications, Beijing, China,2012:94-101
    [58]Barbiroli M, Bottura R, Carciofi C, et al. Analysis and evaluation of Metropolitan Mesh Machine networks performance in Smart Grid and Smart Metering scenarios [C]. IEEE Antennas and Propagation Society, AP-S International Symposium, "Chicago,United States,2012:42-46
    [59]Aust S, Prasad R.V, Niemegeers I.G.M.M. Performance evaluation of Sub 1 GHz wireless sensor networks for the smart grid[C].2012 37th Annual IEEE Conference on Local Computer Networks, Florida, United States,2012:292-295
    [60]Saputro N, Akkaya K. Performance evaluation of smart grid data aggregation via homomorphic encryption[C]. IEEE Wireless Communications and Networking Conference, Paris, France,2012:2945-2950
    [61]U.S. Department of Energy. Modernizing electricity delivery and provides improved service to customers[EB/OL]. (2012-11). [2012-12-28]. http://energy.gov/sites/pr od/files/Case%20Study%20-%20DTE%20Energy%20-%20Modernizing%20Electri city%20Delivery%20and%20Provides%20Improved%20Service%20to%20Custom ers%20-%20November%202012.pdf
    [62]李兴源,魏巍,王渝红,等.顾威坚强智能电网发展技术的研究[J].电力系统保护与控制,2009,37(17):1-7
    [63]王益民.坚强智能电网技术标准体系研究框架[J].电力系统自动化,2010,34(22):1-6
    [64]田廓,鄢帆,薛松,等.建设中国特色坚强智能电网技术经济关键问题框架研究[J].华东电力,2010,38(1):2-5
    [65]林宇锋,钟金,吴复立.智能电网技术体系探讨[J].电网技术,2009,33(12):8-14
    [66]孔祥玉,赵帅,贾宏杰,等.智能电网中电力设备及其技术发展分析[J].电力系统自动化学报,2012,24(2):21-26
    [67]张文亮,汤广福,查鲲鹏,等.先进电力电子技术在智能电网中的应用[J].中国电机工程学报,2010,30(4):1-7
    [68]黄嵩,张沛超,李灿.基于本体映射与规则推理的智能电网信息集成技术[J].电力系统保护与控制,2012,40(24):150-155
    [69]张智刚,夏清.智能电网调度发电计划体系架构及关键技术[J].电网技术,2009,33(20):1-8
    [70]王承民,孙伟卿,衣涛,等.智能电网中储能技术应用规划及其效益评估方法综述[J].中国电机工程学报,2013,33(7):33-41
    [71]刘喜梅,田惠英,秦超.基于复杂科学管理思维与MAS技术的智能电网信息管理系统研究[J].电网技术,2012,36(8):204-208
    [72]U.S. Department of Energy. Meeting of the federal smart grid task force [EB/OL]. (2009-03-26). [2012-03-28]. http://energy.gov/sites/prod/files/oeprod/ DocumentsandMedia/March262009MtgAgenda.pdf
    [73]University of San Diego. San Diego smart grid study-final report [EB/OL]. (2006-10-17). [2012-03-28]. http://www.gridwise.org/pdf/061017_SD SmartGridStudyFINAL.pdf
    [74]U.S. Department of Energy. Smart grid system report [EB/OL]. (2009-07). [2012-03-28]. http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/SGSR_Ann ex_A-B_090707_lowres.pdf
    [75]Livieratos S, Vogiatzaki V E, Cottis P G. A generic framework for the evaluation of the benefits expected from the Smart Grid[J]. Energies,2013,6(2):988-1008
    [76]Marek A, Pavel P, Oldrich S. Costs and Benefits of Smart Grids and Accumulation in Czech Distribution System[J]. Energy Policy,2011,12(10):67-75
    [77]曾鸣,王涛,李娜,等.智能电网经济效益形成机理及效益测算模型研究[J].华东电力,2012,40(11):1863-1867
    [78]刘秋华,陈洁.我国坚强智能电网的经济效益评价[J].科技与经济,2012,25(5):11-15
    [79]王宇拓,韩强,徐越.智能电网项目的效益识别与临界收益研究[J].东北电力大学学报,2012,32(1):90-92
    [80]成美丽.基于成本效益的智能电网高级资产管理模型研究[D].天津:天津大学,2010
    [81]白建华.坚强智能电网发展方式及其效益研究[J].能源技术经济,2010,22(10):1-6
    [82]刘跃新,熊浩清,罗汉武.智能电网成本效益分析及测算模型研究[J].华东电力,2010,38(6):821-823
    [83]曾鸣,鄢帆,田廓,等.基于三角模糊数的智能电网投资效益分析[J].华东电力,2010,38(5):638-641
    [84]U.S Department of Energy.2010 DOE strategic sustainability performance plan[EB/OL]. (2010-09). [2012-03-28]. http://energy.gov/sites/prod/files/edg/me dia/DOE_Sustainability_Plan_2010.PDF
    [85]Marmiroli M, Tsukamoto Y. Mitsubishi electric smart grid for a future low carbon society[C].2012 IEEE PES Innovative Smart Grid Technologies, Washington, United States,2012:12-17
    [86]Geert P J, Verbong, Sjouke B, et al. Smart grids or smart users? Involving users in developing a low carbon electricity economy[J]. Energy Policy,2013,52(1): 117-125
    [87]Garrab A, Bouallegue A, Ben Abdallah F. A new AMR approach for energy saving in Smart Grids using Smart Meter and partial Power Line Communication[C].2012 1st International Conference on Renewable Energies and Vehicular Technology, Nabeul, Tunisia,2012:263-269
    [88]Malik A S, Bouzguenda M. Smart grid capacity and energy saving potential-a case study of Oman[C].2011 IEEE PES Conference on Innovative Smart Grid Technologies-Middle East, ISGT Middle East 2011, Jeddah, Saudi Arabia,2011: 56-61
    [89]唐西胜,闫斌,黄忠,等.电网对促进低碳经济发展的作用[J].电力技术经济,2009,21(6):18-22
    [90]康重庆,周天睿,陈启鑫.电力企业在低碳经济中面临的挑战与应对策略[J].能源技术经济,2010,22(6):1-8
    [91]杨健,曹培.郭创新智能电网低碳效益展望[J].电力科学与技术学报,2010,25(3):54-60
    [92]康重庆,陈启鑫,夏清.低碳电力技术的研究展望[J].电网技术,2009,33(2):1-7
    [93]康重庆,周天睿,陈启鑫,等.电网低碳效益评估模型及其应用[J].电网技术,2009,33(17):1-7
    [94]陈启鑫,康重庆,夏清,等.电力行业低碳化的关键要素分析及其对电源规划的影响[J].电力系统自动化,2009,33(15):18-23
    [95]陈树勇,宋书芳,李兰欣,等.智能电网技术综述[J].电网技术,2009,33(8):1-7
    [96]康重庆,周天睿,陈启鑫,等.广东电网低碳发展的技术途径初探[J].广东电力,2011,24(10):1-5
    [97]关敬东.智能电网与低碳经济的认识与思考[J].供电企业管理,2010,(4):79-81
    [98]曾鸣,马军杰,许文秀,等.智能电网背景下我国电网侧低碳化发展路径研究[J].华东电力,2011,39(1):32-35
    [99]丁然,康重庆,周天睿,等.低碳电网的技术途径分析与展望[J].电网技术,2011,35(10):1-8
    [100]张晓萱,马莉,刘长义,等.我国坚强智能电网促进低碳发展的作用研究[J].能源技术经济,2011,23(8):19-23
    [101]曾鸣,吕春泉,田廓,等.智能电网对低碳电力系统的支撑作用[J].电力系统自动化,2011,35(23):6-10
    [102]陈安伟,乐全明,曹洪.我国智能电网的低碳效益分析[J].统计与决策,2012,(8):71-74
    [103]Siemens. Siemens smart grid solutions[EB/OL]. [2009-03-29]. https://www.energy. siemens.com/cms/us/US_Products/Portfolio/Pages/SmartGrid.aspx
    [104]A Fernandez-Montes, L Gonzalez-Abrilb, Juan A. Ortegaa, et al. Smart scheduling for saving energy in grid computing[J]. Expert Systems with Application,2012, 39(10):9443-9450
    [105]IBM. Smart Grid maturity model:creating a clear path to the smart grid [EB/OL]. (2009-06). [2012-03-29]. ftp://ftp.software.ibm.com/software/in/indus try/Smart_Grid_Maturity_Model.pdf
    [106]贾文昭,康重庆,刘长义,等.智能电网促进低碳发展的能力与效益测评模型[J].电力系统自动化,2011,35(1):7-12
    [107]康重庆,周天睿,陈启鑫,等.电网低碳效益评估模型及其应用[J].电网技术,2009,33(17):1-7
    [108]陈启鑫,康重庆,夏清,等.低碳电力调度方式及其决策模型[J].电力系统自动化,2010,34(12):18-23
    [109]李晓彤,陈英杰,曾鸣,等.区间数—灰靶决策模型在低碳电网规划评价中的应用[J].电力系统自动化,2012,30(12):184-186
    [110]谢传胜,董达鹏,段凯彦,等.基于层次分析法-距离协调度的低碳电源电网规划协调度评价[J].电网技术,2012,36(11):1-6
    [111]Zhou T R, Kang C Q, Chen X Y, et al. Evaluating low-carbon effects of demand response from smart distribution grid[C]. IEEE PES Innovative Smart Grid Technologies Conference Europe, Berlin, Germany,2012:196-202
    [112]谭伟,何光宇,刘锋,等.智能电网低碳指标体系初探[J].电力系统自动化,2010,34(17):1-5
    [113]吴俊勇.中国智能电网的效益评估和政策机制研究[J].电力科学与技术学报,2010,25(4):2-6
    [114]符力文.智能电网的低碳效益分析[J].电力建设,2011,32(3):51-55
    [115]U.S Department of Energy. What the smart grid means to America's future [EB/OL]. (2010-07). [2011-03-29]. http://energy.gov/sites/prod/files/oeprod/Doc umentsandMedia/TechnologyProviders.pdf
    [116]Fadlullah Z M, Fouda M M, Kato N, et al. Toward intelligent machine-to machine communications in Smart Grid[J]. IEEE Communications Magazine,2011,49(4): 60-65
    [117]Khurana H, Hadley M, Lu N, et al. Smart-Grid security issues[J]. IEEE Security & Privacy,2010,8(1):81-85
    [118]Vojdani A. Smart Integration[J]. IEEE Power & EnergyMagazine,2008,6(6): 71-79
    [119]Beyea J. The smart electricity grid and scientific research[J]. Sciecnce,2010, 328(5981):979-980
    [120]Nair N K C, Zhang L X. Smart grid:Future networks for New Zealand power systems incorporating distributed generation[J]. Energy Policy,2009,37(9): 3418-3427
    [121]Yu X H, Cecati C, Dillon T, et al. The new frontier of Smart Grid[J]. IEEE Industrial Electronics Magazine,2011,5(3):49-63
    [122]Clastres C. Smart grids:another step towards competition, energy security and climate change objectives[J]. Energy Policy,2011,39(9):5399-5408
    [123]万亦如.特高压输电若干技术研究[D].浙江:浙江大学,2012
    [124]ZHOU L S, YU S K. Research on performance incentive mode of power enterprises based on incentive compatibility principle[C]. International Conference on Management and Service Science, Wuhan, China,2011:98-102
    [125]周黎莎、余顺坤.基于激励相容的企业绩效管理模式设计[J].技术经济与管理研究,2012,(1):13-17
    [126]曾庆禹.1000kV特高压输电系统输电能力研究[J].电网技术,2012,36(2):1-6
    [127]孙宏丽,徐恒.各种新型导线的特点及经济选型方法[J].内蒙古石油化工,2010(1):35-36
    [128]周黎莎,李晨,余顺坤.基于粗糙集的电网企业低碳管理型员工绩效评价研究[J].水电能源科学,2011,29(12):184-215
    [129]Shunkun Y, Lisha Z, Chen L. A method on post-evaluation of whole staff performance management based on Fuzzy Partial Ordering and Rough Sets[C]. 2011 2nd IEEE International Conference on Emergency Management and Management Sciences, Beijing, China,2011:391-394
    [130]Hayton J C, Allen D G, Scarpello V. Factor retention decisions in exploratory factor analysis:a tutorial on parallel analysis[J]. Organizational Research Methods, 2004,7(2):191-205
    [131]Schreiber J B, Nora A, Stage F K, et al. Reporting structural equation modeling and confirmatory factor analysis results:a review[J]. Journal of Educational Research,2006,99(6):323-337
    [132]余顺坤,周黎莎,李晨.ANP-Fuzzy方法在电力企业绩效考核中的应用研究[J].中国管理科学,2013,21(1):165-173
    [133]Shunkun Y, Lisha Z, Chen L. Research on the evaluation of external economy of wind power project based on ANP-Fuzzy[C].2nd International Conference of Electrical and Electronics Engineering, Macau, China,2011:205-217
    [134]International Transport Forum at the OECD. Electric vehicles revisted-cost, subsidies and prospects[EB/OL]. (2012-03). [2012-09-28]. http://www.internatio naltransportforum.org/jtrc/DiscussionPapers/DP201203.pdf
    [135]周黎莎,李晨,余顺坤.智能电网工程项目管理模型的系统动力学仿真研究[J].华东电力,2012,40(1):31-34
    [136]余顺坤,周黎莎,李晨.基于可再生能源配额制的绿色证书交易SD模型设计[J].华东电力,2013,41(2):281-285
    [137]中国国家统计局.2012中国统计年鉴[M].北京:中国统计出版社,2012:11-25
    [138]国家电网公司.2011年社会责任报告[EB/OL]. (2012-02-22). [2012-09-28]. http: //www.sgcc.com.cn/images/sgcc_csr/reports/2012/2011report.pdf
    [139]国家能源局.可再生能源发展“十二五”规划[EB/OL].(2012-08-06).[2012-09-28]. http://www.sdpc.gov.cn/zcfb/zcfbtz/2008tongzhi/W020080318381136685896.pdf
    [140]电监会.十一五投产电力工程项目造价监管通报[EB/OL].(2012-02-15).[2012-.09-29]. http://www.gov.cn/gzdt/2012-02/16/content_2068097.htm
    [141]周利梅.电动汽车充换电站选址规划布局研究[D].济南:山东大学,2012
    [142]尤志魏,朱爱钧,潘裕新,等.碳纤维复合芯(ACCC)导线在上海电网应用分析[J].华东电力,2009,37(8):1292-1295
    [143]黄奕.清洁能源发电工程项目全寿命周期管理理论和方法研究[D].北京:华北电力大学,2010
    [144]何冰,刘新平,侯晓明,等.大城市输电线路增容工程中新型导线选择应用[J].供用电,2009,26(1):58-61
    [145]Benzi F, Anglani N, Bassi E, et al. Electricity smart meters interfacing the households[J]. IEEE Transactions on Industrial Electronics,2011,58(10): 4487-4494
    [146]Etezadi-Amoli M, Choma K, Stefani J. Rapid-charge electric-vehicle stations [J]. IEEE Transactions on Power Delivery,2010,25(3):1883-1887
    [147]王敏.改善能耗结构实现节能减排和经济效益双赢[N].中国能源报,2012-04-23(B24)
    [148]于南.“坚强智能电网”将分三步走技术升级是关键[N].证券日报, 2009-06-05(B2)
    [149]朱连波,孙松强,常磊,等.负荷率与线损的定量关系及其在分时电价成本效益分析中的应用[J].电力系统保护与控制,2010,38(17):43-46,52
    [150]Fired, Lovell, Schmidt, et al. Accounting for environmental effects and statistical noise in data envelopment analysis[J]. Journal of Productivity Analysis, 2002(17): 121-136
    [151]周黎莎,余顺坤.考虑环境因素的智能电网低碳效益评价模型研究[J].华东电力,2013,41(2):278-280
    [152]Andersen P, Petersen N C. A procedure for ranking efficient units in data envelopment analysis[J]. Management Science, 1993,39(10):1261-1264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700