用户名: 密码: 验证码:
调频式谐振特高压试验电源的研制及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国特高压交流输电工程的发展和特高压交流电气设备国产化能力的提升,无论是在特高压交流输电技术的研究上,还是在特高压交流电气设备的绝缘考核上都离不开特高压交流试验电源。因而展开特高压交流试验电源的研究具有重大意义,可极大推动我国特高压电网的发展和提高其运行的稳定性。目前,我国在特高压交流试验电源理论、关键技术和其工程应用方面的研究较少。
     本论文以国家电网公司1000kV级交流特高压输变电工程关键技术—调频式谐振特高压试验电源(Ultra High Voltage Frequency Tuned Resonant Test Power Supply, UHV-FTRTPS)项目为依托,以调频式谐振特高压试验电源的理论研究和工程应用为主线,研究内容涵盖了调频式谐振特高压试验电源的基本工作原理、拓扑结构、主要结构部件设计与制作、控制算法和特高压交流输电现场工程应用等方面,形成了一套较为完善的关于调频式谐振特高压试验电源的理论、关键技术、装置研制与应用方案。
     在对调频式谐振特高压试验电源通用结构和基本谐振方式介绍的基础上,对本论文提出的基于模拟放大器的UHV-FTRTPS基本原理和结构进行了详细阐述,深入研究了该类型特高压试验电源主要部件的电路及工艺特点、工作原理和关键参数的选取。并首次分析了被测试品容值(即特高压电气设备)的大小、整个电源重量与负载容性无功之间的关系、特高压谐振电路品质因数与UHV-FTRTPS输出电压信号频率上限之间的关系,从理论上指出UHV-FTRTPS输出信号频率上、下限分别为30和300 Hz较为合适。同时结合基于模拟放大器的UHV-FTRTPS电路的特点,对其调幅、调频控制方法进行了深入研究。提出的智能调频控制算法可以依据频率误差对频率进行先‘粗调’后‘细调’,精度可达0.1 Hz。提出的模糊最优非线性PI调幅控制策略,在大偏差范围内采用模糊控制,以获得更好的瞬态性能;在小偏差范围内采用最优非线性PI控制,以获得更好的稳态性能及超调抑制性能。整个控制算法具有响应速度快、鲁棒性强的特点。
     随着电力电子技术的发展,各种功率开关器件不断面世,借鉴现代电力电子技术,本论文提出一种基于不可控整流-H桥逆变的调频式谐振特高压试验电源,介绍了它的基本工作原理和谐振原理。并对其大功率H桥逆变器的缓冲电路和输出滤波器进行了优化设计,从缓冲电路抑制IGBT关断过电压能力、自身损耗和器件投资三个方面出发,建立了缓冲电路优化设计的目标函数;从大功率H桥逆变器输出滤波器初期投资、输出滤波器输出电压和电流信号畸变率、输出滤波器基波压降几个方面出发,建立了输出滤波器优化设计的目标函数;采用模糊优化方法来求解这两个多目标优化函数。对于该类型UHV-FTRTPS的调幅控制提出了电压调节自调整PI控制方法、调频控制提出了一种新的PI锁相自动调频控制方法,不仅具有计算量小、易于工程应用的特点,而且还省去了频率设定值。
     为了精确保证特高压试验电源整流输入侧电压与电流同相位,最大程度消除UHV-FTRTPS对电网的影响,本论文提出基于可控PWM整流-H桥逆变的调频式谐振特高压试验电源结构。针对可控PWM整流电路,提出了电源电压辨识的PWM整流器控制策略。针对逆变器及特高压谐振电路,提出以特高压谐振电容电压有效值为外环,以逆变器输出滤波器电容瞬时电流为内环的调幅、调频控制策略,因内环被控量为正弦量,故采用一种多模递推PID控制算法,能很好地消除周期变化信号所产生的稳态误差。为了得到特高压试验电源输出信号最佳波形,在167-300Hz高频率段采用同步SPWM调制,使逆变器输出滤波器在具有较小体积的情况下,获得最佳载波比N;在30-167Hz低频率段,采用特定次谐波消除方法在线计算各开关角度,消弱低次谐波,利于输出滤波器滤除高次谐波;同时,还引入虚拟电阻到LCL输出滤波器中,增强其滤波性能。
     本论文所研究的几种不同结构UHV-FTRTPS都拥有一个共同部分—特高压无局放产生电路,包括:中间励磁升压变压器、高压谐振电抗器、高压补偿电抗器、高压测量谐振电容器和均压环。从工艺制作和现场需求出发,给出了特高压无局放产生电路各个部件的详细参数和制作过程,并保证了各个部件具有很小的局部放电量。同时对特高压无局放产生电路的各个部件进行了型式试验,试验结果表明各个部件设计合理、符合标准要求。针对特变电工衡阳变压器厂生产的特高压变压器的局部放电试验,本论文提出了相应的试验方案;还针对特高压交流试验示范工程荆门变电站的1100kV等级GIS装置的交流耐压试验,本论文也提出了相应的试验方案;使用本文研制的基于模拟放大器的大功率UHV-FTRTPS分别对特高压变压器和GIS进行了工程现场试验,工程试验结果表明该特高压试验电源装置能够很好地完成特高压电气设备试验需求;并总结了基于模拟放大器的UHV-FTRTPS在工程实际应用中的关键问题,给出了解决方法。
With the development of China's UHV AC Transmission Project and the improvement of UHV AC electrical equipments'localization, whether in the research of UHV AC Transmission technology, or in the insulation testing of UHV AC electrical equipments, the UHV AC Test Power Supplies are indispensable. Thus, research on UHV AC Test Power Supply has great significance, which would greatly promote the development of UHV AC power system of China and improve its operation stability. At present, the research on the theory of UHV AC Test Power Supply, key technology and its engineering application are few in our country.
     Based on the key technologies of UHV AC power transmission project of State Grid Corporation-UHV Frequency Tuned Resonant Test Power Supply (UHV-FTRTPS), this paper proposes a most completely theory, key technologies, equipment research and applications relying on UHV-FTRTPS. It takes theoretical study and engineering application of UHV-FTRTPS as the main line. It also studies the basic working principle, topology, design and production of the main structural components, control algorithms of UHV-FTRTPS and the field engineering application of UHV AC Transmission, etc.
     Based on the introduction of universal structures and basic resonant methods of UHV-FTRTPS, this paper gives the detail description of UHV-FTRTPS's basic principles and structure on the basis of analog amplifiers. This paper also makes further research on the subcircuits, technological features, working principle and key parameters selection of this type. This paper also gives the first description of the relationship between the size of UHV electrical equipment, the weight of the entire power supply and the capacitive reactive power of the load. In addition, the relationship between the quality factor of UHV's resonant circuit and the frequency's upper limits of UHV-FTRTPS's output voltage has also been proposed. It can be found that UHV-FTRTPS has a good performance when the frequency's upper and lower limits are 30Hz and 300Hz respectively. Combined with the characteristics of UHV-FTRTPS's circuits based on the analog amplifiers, deeply study on the amplitude and frequency control methods of voltage have been carried out. According to the proposed intelligent control algorithm, the output signal frequency can be had coarse tuning first, then had fine-tuning. The accuracy of frequency control is up to 0.1 Hz. Moreover, the fuzzy optimal nonlinear PI of voltage amplitude modulation was proposed in this paper. Fuzzy control was used in large deviation range to obtain better transient performance. While, optimal nonlinear PI control was used in small deviation range, to obtain better steady-state performance and overshoot suppression performance. The whole control algorithm has the fast response and robustness.
     With the development of power electronics technology, a variety of power switching devices are continuously available. This paper proposes a new UHV-FTRTPS based on Non-controllable rectifier and H-bridge inverter by applying present power electronic technology. This paper gives the basic principle and resonance Principle of this UHV-FTRTPS. Buffer circuit and output filter of high-power H-bridge inverter are optimum designed in this paper. On one hand, optimization objectives of buffer circuit has been set up, according to the ability that the buffer circuit suppresses IGBT's turn-off over-voltage, its own power loss and the investment of the devices, on the other hand, objective functions about the optimal design of output filter have been established based on the initial investment of high-power H-bridge inverter's output filter, output filter's output voltage, THD of current and the fundamental voltage drop of output filter. Fuzzy optimization method is used to solve the two multi-objective functions. Voltage self-tuning PI control method has been designed for the voltage amplitude control of UHV-FTRTPS. A novel phase-locked PI automatic frequency method was proposed for the frequency control of UHV-FTRTPS. The proposed phase-locked PI control method not only has smaller amount of calculation and is easy for engineering application, but also does not need frequency setting value.
     In order to ensure that the voltage and the current at input side of UHV's rectifier have same phase, eliminate UHV-FTRTPS's impact on the grid as much as possible, this paper proposes the topology of UHV-FTRTPS based on controllable PWM rectifier and H-bridge inverter. The source voltage estimation is presented in the PWM rectifier controller. This paper also presents the double closed loop control strategy, which takes resonant capacitor voltage as outer loop and output filter capacitor current as inner loop. The controlled variable of inner loop is a sine quantity, so the multi-mode recursive PID is used to eliminate steady-state error which generated by periodic changed signal. In order to get the best output signal waveforms of UHV-FTRTPS, the synchronized SPWM is used in 167-300Hz high frequency bands. Meanwhile in order to get best carrier ratio N and minimum apparent power filter of output filter, the value of carrier ratio N and the structure of output filter are combined. The SHEPWM is used to real-timely calculate the switching point in 30-167Hz low frequency bands. The low-order harmonics is weakened and transferred to the high-order harmonics, so the harmonics is easy to be filtered. At the same time, to improve filtering performance of LCL output filter, the virtual resistance has been introduced to its structure. The capacitor of output filter in series with a virtual resistance does not change the structure of output filter and add any hardware. The software control method is used to enhance the damping of output filter, so the high-order harmonics can be filtered easily.
     The different Topologies of UHV-FTRTPS studied in this paper have a common part-UHV generating circuit without partial discharge(PD), which is included intermediate excitation step-up transformer, high-voltage resonant reactors, high-voltage compensation reactors, high-voltage measured resonant capacitors and grading ring. Considering the fabrication and on-site needs, this paper gives the detailed parameters and production processes of every component and maintains every component have a small amount PD. At the same time, every component's type has been testified. The result shows that the design of every component is reasonable and meets the standards. According to the partial discharge test of TBEA Hengyang Transformer Factory's UHV transformer, this paper proposes a corresponding experiment program. Aiming at the 1100kV gas insulated switchgear(GIS) device's AC voltage withstand test of UHV AC experiment demonstration project Jingmen substation, this paper also proposes a corresponding experiment program. The proposed high-power UHV-FTRTPS based on analog amplifiers was used in the field experiment of UHV transformer and UHV GIS. The engineering application results show that this high-power UHV test power supply device can meet the requirements of UHV electrical equipment. In addition, this paper draws a conclusion about the key issues of UHV-FTRTPS's engineering applications and gives the solution of them.
引文
[1]刘振亚.特高压电网.北京:中国经济出版社,2005,1-5
    [2]Shu Y B. Current status and development of national grid of China. Transmission and Distribution Confcrence and Exhibition, Dalian, China,2005:1-12
    [3]Provanzana J H, Adielson T. AEP. ASEA UVH research project-test line and station design. IEEE Transactions on PowerApparatus and Systems,1978,97(5): 1853-1861
    [4]Retallack R L, Bourdon P. American Electric Power-UHV bundle conductor tests at magdalen islands. IEEE Transactions on PowerApparatus and Systems, 1981,100(12):4926-4934
    [5]Annestrand S A. Parks G A. Bonneville Power Administration's prototype 1100/1200kV transmission line project. IEEE Transactions on Power Apparatus and Systems,1977,96(2):357-366
    [6]Pokomy W C, Flugum R W. UHV tower insulation parameters determined by full-scale testing. IEEE Transactions on PowerApparatus and Systems,1975, 94(2):518-529
    [7]Geus R S. BPA 1100kV transmission system development-Planning, program and objectives. IEEE Transactions on PowerApparatus and Systems,1979, 98(6):1916-1923
    [8]Vladimirsky L L. Selection of insulator strings for 1150kV ac lines under pollution conditions. Proceeding of international workshop of UHVAC transmission technology, Beijing, China,2005:67-74
    [9]Kutuzova N B, Tikhodeev N N. UHV AC power transmission lines conductor bundle features. Proceeding ofintemational workshop of UHVAC transmission technology, Beijing, China,2005:75-87
    [10]Evgueni E U, Kassikhin S D. Design, tseting and operation of high voltage bushing of 1150kV and the ways of its updating. Proceeding of international workshop of UHVAC transmission technology, Beijing, China,2005:88-93
    [11]A. Lokhanin. Insulation coordination of UHV transformers. Proceedings of the CSEE,2009,29(22):63-67
    [12]Ardito A, Nigris M D, Pigini A. The Italian 1000kV project. Proceeding of international workshop of UHVAC transmission technology, Beijing, China, 2005:1-12
    [13]Conti R, Pigmi A, Giorgi A. Evaluation of possible impacts of the new limits for human exposure to magnetic fields under consideration in Italy. CIGRE, Paris, France,2005:36-106
    [14]Bagala E, Galli F, Malaguti C. Italian 1000kV project and related test facilities. CIGRE, Paris, France,1978:3-16
    [15]Ardito A, Colombo U. Assuring the quality of UHV equipment:a modem approach. Proceeding of international workshop of UHVAC transmission technology, Beijing, China,2005:21-36
    [16]Okamoto H. System design in 1000kV ac transmission conducted by TEPCO Proceeding of international workshop of UHVAC transmission technology Beijing, China,2005:13-18
    [17]Zaima E. Insulation design for 1100kV substation in TEPCO. Proceeding of international workshop of UHVAC transmission technology, Beijing, China, 2005:37-42
    [18]Amada T Y. Experimental evaluation of a UHV tower model for lightning surge anlysis. IEEE Transactions on Power Delivery,1995,10(1):393-402
    [19]Eiichi ZAIMA, Hiroshi OKAMOTO. Issues on UHVAC transmission lines of TEPCO in upgrading existing 1100kV designed lines from 550kV to 1100kV. Proceedings of the CSEE,2009,29(22):46-52
    [20]Cavallius N H, Train D. The IREQ ultra high voltage laboratory and test facilities. IEEE Transactions on PowerApparatus and Systems,1974,93(1): 176-186
    [21]Giao N. A comparative study of the corona performance of conductor bundles for 1200kV transmission lines, IEEE Transactions on Power Apparatus and Systems,1974,93(1):940-949
    [22]万启发.浅谈我国交流特高压输电前景.高电压技术,1999,25(2):30-34
    [23]舒印彪.1000kV交流特高压输电技术的研究与应用.电网技术,2005,29(19):T1-T6
    [24]张仁豫,陈昌渔,王昌长.高电压试验技术.第二版,北京:清华大学出版社,2003,18-25
    [25]谷定燮.我国发展特高压输电的前景.高电压技术,2002,28(3):28-30
    [26]张文亮,吴维宁,胡毅.特高压输电技术的研究与我国电网的发展.高电压技术,2003,29(9):16-18
    [27]张小勇,贾涛,王韵,王建生.特高压电器设备绝缘试验技术研究.高压电 器,2007,43(2):106-108
    [28]舒印彪,胡毅.交流特高压输电线路关键技术的研究及应用.中国电机工程学报,2007,27(36):1-7
    [29]刘振亚.特高压交流输电技术研究成果专辑.北京:中国电力出版社,2005
    [30]张文亮,胡毅.发展特高压交流输电,促进全国联网高.高电压技术,2003,29(8):20-22
    [31]虞菊英.我国特高压交流输电研究现状.高电压技术,2005,31(12):23-25
    [32]金明成,刘继成.建设特高压电网的必要性.东北电力技术,2006,27(12):37-39
    [33]Du S C, Zhang C X, Wang S. Study on insulation coordination in 1000kV UHV AC transmission project. International conference of UHV transmission technology, Beijing, China.2006:48-53
    [34]Zhang YunZhou, Li Hui. Analysis on the development strategies of the UHV grid in China. Proceedings of the CSEE,2009,29(22):1-7
    [35]国家电网公司,中国机械工业联合会.特高压设备国产化调研报告.北京:国家电网公司,2005
    [36]国家电网公司,中国机械工业联合会.特高压电网工程设备供货和国产化意见.北京:国家电网公司,2005
    [37]国家电网公司.交流特高压主设备技术条件书(第一版).北京:国家电网公司,2005
    [38]刘振亚.特高压交流输电线路维护与检测.北京:中国电力出版社,2008,1-7
    [39]刘振亚.特高压交流电气设备.北京:中国电力出版社,2008,11-100
    [40]IEC 62271-203:HV switchgear and controlgear. Part 203:Gas insulated, metal-enclosed switchgear for rated voltages above 52 kV,2003
    [41]IEC 60840:1999 and 62067:Cables with extruded insulation and their accessories for rated voltages 30 to 150 kV respectively 150 up to 500kV, 2002
    [42]肖如泉,何金良.高电压试验工程.北京:清华大学出版社,2000,1-8
    [43]梁曦东,陈昌渔,周远翔.高电压工程.第一版.北京:清华大学出版社,2003,135-151
    [44]Kovalev V, Panibratets A, Volkova O et al. The equipment for the AC 1150 kV transmission line. Moscow:All-Russian Electrotechnical Institute (GUP VEI), 2005
    [45]W Hauschild. Frequency-Tuned Resonant Test Systems for HV On-Site Testing of XLPE Cables and SF6 Insulated Apparatus. Properties and Applications of Dielectric Materials,1997, (2):1151-1158
    [46]E Gockenbach, W Hauschild. The Selection of the Frequency Range for High-Voltage On-Site Testing of Extruded Insulation Cable Systems. IEEE Electrical Insulation Magazine,2000,16(6):11-16
    [47]James R. Booker, David K. Nichols, William Larzelere. Design of a modular UHVAC outdoor test system. IEEE transactions on power apparatus and system,1983,102(8):2501-2508
    [48]李建明,朱康.高电压电气设备使用方法.第二版.北京:中国电力出版社,2004,298-322
    [49]皮卫平.高电压试验用大功率变频电源装置.中国专利:03227875.6,2004-7-14
    [50]李光范,王晓宁,李鹏,等.1000 kV特高压电力变压器绝缘水平及试验研究.电网技术,2008,32(3):1-6
    [51]Yamagata Y, Tamaki E, Ikeda M, et al. Development and field test of 1000kV 3000MVA transformer. CIGRE Paris session 1998
    [52]Kawamura T, Kobayashi T, Ebisawa Y, et al. Development and long term field tests for UHV 3000MVA transformer in Japan. IEC/CIGRE UHV Symposium, Beijing,2007
    [53]贺以燕.工频高压试验设备的现状及其发展(上).变压器,1994,5:2-5
    [54]贺以燕.工频高压试验设备的现状及其发展(下).变压器,1994,6:2-6
    [55]张文亮,张国兵.特高压交流试验电源特点探讨及比较.中国电机工程报,2007,27(4):1-4
    [56]贺以燕.意、日、俄、乌特高压输变电设备科研、制造及输电系统简介(上).变压器,2003,40(1):26-30
    [57]贺以燕.意、日、俄、乌特高压输变电设备科研、制造及输电系统简介(下).变压器,2003,40(2):26-28
    [58]张文亮,胡毅.特高压输变电设备应用于工程的分析研究.电力设备,2004,5(7):15-18
    [59]Saetieo S, et al. The design and implementation of a three-phase active power filter based on sliding mode control, IEEE Trans. Ind. Appl.,1995,31(5): 993-1000
    [60]Carpita M, Marchesoni M. Experimental study of a power conditioning system using sliding mode control. Power Electronics, IEEE Transactions on.1996, 11(5):731-742
    [61]Ruiz JM, Lorenzo S, Lobo I, et al. Minimal UPS structure with sliding mode control and adaptative hysteresis band. Proceeding Int Conference Ind Electron Control Instrum (IECON).1990,2:1063-1067
    [62]Nicolas B, Fadel M, Cheron Y. Sliding mode control of DC-to-DC converters with input filter based on the Lyapunov-function approach. Proc Eur Power Electron Conf(EPE).1995:1338-1343
    [63]Shih-Liang J, Ying-Yu T. Discrete sliding-mode control of a PWM inverter for sinusoidal output waveform synthesis with optimal sliding curve. Power Electronics, IEEE Transactions on.1996,11(4):567-577
    [64]雷元超,陈春根.滞环比较PWM跟踪控制分析.水电能源科学.2004,22(1):83-85
    [65]赵振波,李和明.采用电流滞环调节器的电压矢量控制PWM整流器系统.电工技术学报.2004,19(1):31-34
    [66]Xu Dianguo, Gu Jianjun, Liu Hankui, et al. Improved hysteresis current control for active power filter. In:IEEE ISIE.2003,2:836-840
    [67]曾江,焦连伟,倪以信等.有源滤波器定频滞环电流控制新方法.电网技术,2000,24(6):1-8
    [68]Gokhale K P, Kaw amura A. Dead Beat Microprocessor Control of PWM Inverter for Sinusoidal Output Waveform Synthesis. IEEE Trans Ind Appl, 1987,23 (5):901-910
    [69]Kukrer O. Deadbeat Control of a Three-Phase Inverter with an Output LC Filter. IEEE Trans Power Electronics,1996,11(1):16-23
    [70]Escobar G, Valdez A A, Leyva-Ramos J. Repetitive-based controller for a UPS inverter to compensate unbalance and harmonic distortion. IEEE Transactions on Industrial Electronics,2007,54(1):504-510
    [71]Rech C, Pinheiro J R. New repetitive control system of PWM inverters with improved dynamic performance under non-periodic disturbances.35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany,2004
    [72]谢少军,陈万.电压电流双闭环瞬时值控制级联逆变器研究.南京航空航天大学学报,2004,36(5):589-594
    [73]龚春英,沈忠亭,李春燕,严仰光.神经网络在逆变器控制中的应用.电工技术学报,2004,19(2):98-102
    [74]Narri Y, Mummadi V. Adaptive controller for PV supplied buck-boost converter. Power Electronics and Drive Systems, PEDS'99 Proceedings of the IEEE International Conference on.1999,2:789-793
    [75]Premrudeepreechacharn S, Poapornsawan T. Fuzzy logic control of predictive current control for grid-connected single phase inverter. Photovoltaic Specialists Conference, Conference Record of the Twenty-Eighth IEEE.2000: 1715-1718
    [76]J DA, M SZ. Fuzzy Logic Modeling of a Grid-connected Wind/Photovoltaic System with Battery Storage. Power Engineering, Large Engineering systems Conference.2004:129-135
    [77]刘风君.现代逆变技术及应用.北京:电子工业出版社,2006,137-200
    [78]刘琨,翁利民,吴波.基于特定消谐技术产生任意波形的研究.武汉大学学报(理学版),2005,51(S2):69-71
    [79]刘文华,吕建升,宋强,陈远华.五电平电压型逆变器的变频SHE-PWM控制策略.清华大学学报(自然科学版),2004,44(4):450-453
    [80]D. Grahame Ho,周克亮(译).电力电子变换器PWM技术原理与实践.北京:人民邮电出版社,2010,249-261
    [81]王斌,李兴源,王颢雄,郭贵莲.基于马尔可夫的双随机PWM技术研究.电工技术学报,2005,20(6):16-19
    [82]Stankovic Aleksandar M. Analysis and Synthesis of Randomized Modulation Schemes for Power Converters. IEEE Transactions Power Electron,1995,10(6): 680-693
    [83]Lai Y S. Random switching techniques for inverter control. IEE Transactions on Electronics Letters,1997,33(9):747-749
    [84]幸善成,吴正国.基于多电平随机脉宽调制技术的共模电压和谐波抑制方法.中国电机工程学报,2006,26(17):57-61
    [85]裘锦勇,宋文祥,韩杨,等.基于电压空间矢量的三电平PWM整流器研究.电力系统保护与控制,2009,37(13):58-62
    [86]方宇,裘迅,邢岩,等.基于预测电流控制的三相高功率因数PWM整流器研究.中国电机工程学报,2006,26(20):69-73
    [87]高春侠,张磊,张加胜.新型磁通分量跟踪型SVPWM控制技术仿真.大功率变流技术,2009,1:14-16
    [88]李建明,朱康.高压电气设备试验方法.北京:中国电力出版社,2001,200-300
    [89]张文亮,张国兵.特高压GIS现场工频耐压试验与变频谐振装置限频方案原理.中国电机工程学报,2007,27(24):1-4
    [90]孔锐睿,仇汝臣,周田惠.单纯形的加速算法.南京理工大学学报,2003,27(2):119-213
    [91]康忠健,陈学允.用于静止无功补偿器的非线性状态PI控制器.中国电力,2001,34(2):35-37
    [92]邱宇,陈学允.用于静止无功补偿器的非线性PID控制器.中国电机工程学报,2002,22(11):41-44
    [93]苏玉鑫,段宝岩.一种新型非线性PID控制器. 控制与决策,2003,18(1):126-128
    [94]Homayoun Seraji. A new class of nonlinear PID controllers with robotic applications. J Robotic Systems,1998,15(3):161-181
    [95]盛庆华,张亚君,毛振宇.基于DDS的高精度频率信号源.杭州电子科技大学学报.2006,26(1):54-57
    [96]邓文浪,杨欣荣, 朱建林,等. 非正常输入情况下双级矩阵变换器调制策略的改进.电工技术学报,2007,22(1): 96-107
    [97]唐欣,罗安,涂春鸣.新型注入式混合有源滤波器的研究.电工技术学报,2004,19(11):50-55,60
    [98]金红元,邹云屏,林磊,等. 三电平PWM整流器双环控制技术及中点电压平衡控制技术的研究.中国电机工程学报,2006,26(10):64-68
    [99]韩民晓, 尤勇, 刘昊.线电压补偿动态电压调节器(DVR)的原理与实现.中国电机工程报,2003,23(12):49-53
    [100]徐晓峰,连级三.IGBT逆变器吸收电路的研究.电力电子技术,1998,3:43-47
    [101]Rahul Chokhawala, Saed Sobhani. Switching voltage transient protection schemes for high current IGBT modules. IEEE Trans. On Industry Applications, 1997,33(6):1601-161
    [102]涂春鸣.新型谐振阻抗型混合有源滤波器RITHAF研究:[中南大学博士学位论文].长沙:中南大学,2003,63-80
    [103]付青,罗安,成晓明.智能水压自动调节系统的研制.中国电机工程学报,2002,22(6):105-108
    [104]Bayindir N S, Kukrer O, Yakup M. DSP-based PLL-controlled 50-100kHz 20kW High-frequency induction heating system for surface hardening and welding applications. IEEE Electric Power Applications,2003,150(3):365-371
    [105]Robinson F. V. P, Willianms B. W. Active or passive snubbing for fast switches. IEEE IECON record.1998, (10):617-622
    [106]S. J. Finney, B. W. Williams, T. C. Green. The RCD snubber revisited. IEEE Trans. On Industry Application,1996,32:155-160
    [107]刘惟信.机械最优化设计.北京:清华大学出版社,1994,51-120
    [108]吴受章.应用最优控制.西安:西安交通大学出版社,1987,12-142
    [109]诸静.模糊控制原理与应用.北京:机械工业出版社,1995,56-71
    [110]符曦.系统最优化及控制.北京:机械工业出版社,1995,83-123
    [111]王毅,李和明,石新春等.多电平PWM逆变电路谐波分析与输出滤波器设计.中国电机工程学报,2003,23(10):78-82.
    [112]陈希有,颜斌,徐殿国等.变频器输出滤波器的模糊优化设计.中国电机工程学报,2003,23(8):71-75
    [113]罗安.电网谐波治理和无功补偿技术及装备.北京:中国电力出版社,2006,150-158
    [114]Dong Choonlee, Tae Yunkin. Low-cost single-phase to three-phase PWM AC/DC/AC converters without source voltage sensor. IEEE ICIT'02. Thailand, 2002,792-797
    [115]荣飞,罗安, 唐杰.新型大功率串联谐振注入式混合有源电力滤波器.电工技术学报,2007,22(3):121-127
    [116]郑春芳,张波.基于Walsh变换的逆变器SHEPWM技术.电工技术学报,2005,20(5):65-71
    [117]Dahono, P. A. Bahar, Y. R. Sato, Y. Damping of transient oscillations on the output LC filter of PWM inverters by using a virtual resistor. Power Electronics and Drive Systems,2001. Proceedings.,2001 4th IEEE International Conferenceon, 2001:403-407
    [118]周腊吾,杨德志.电机及拖动基础实验指导.长沙:湖南大学出版社,2005,33-50
    [119]邓远北,周润兰.应用概率统计.北京:科学出版社,2001,221-230
    [120]夏天伟,丁明道.电器学.北京:机械工业出版社,1999,7-20
    [121]邱毓昌,施围,张文元.高电压工程.西安:西安交通大学出版社,1995,70-80
    [122]罗卓伟.智能型特高压变频谐振试验电源的研制及工程应用:[湖南大学硕士学位论文].长沙:湖南大学电气与信息工程学院,2009,40-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700