用户名: 密码: 验证码:
高阶开关功率变换器中的非线性动力学行为及其控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性科学作为一门研究非线性现象共性的交叉学科、综合学科,不断地揭示着世界的非线性本质,不断地推动着人们用之改造世界的进程。各个学科领域都存在非线性问题,电力电子技术领域也不例外。开关功率变换器是电力电子电路与系统的重要组成部分,属于一类分段切换系统,具有强非线性和时变特性,能表现出丰富的非线性动力学行为。因此,运用非线性科学的理论与方法对开关功率变换器进行研究,有利于揭示其非线性本质;有利于指导电力电子技术领域的工程实践,优化变换器的稳定性、可靠性设计:有利于奠定电力电子学的理论基础,丰富非线性科学的内容与方法。
     自上世纪八九十年代开关功率变换器中的非线性现象被首次报道以来,国内外研究者从仿真、理论、实验等多维度,对开关功率变换器中的非线性动力学行为及其控制与应用展开了较为广泛的研究,形成了电力电子学非线性研究的重要分支。但已有研究多集中于低阶开关功率变换器,而鲜有对高阶开关功率变换器的非线性研究。基于此,本文以高阶开关功率变换器为研究对象,基于非线性动力学的分岔与混沌理论,对其非线性建模、非线性动力学行为的描述与分析、非线性动力学行为的控制与应用等展开研究,旨在揭示高阶开关功率变换器的非线性本质,指导高阶开关功率变换器的设计与应用。具体工作包括:
     (1)开关功率变换器非线性研究述评与非线性动力学基础。第1章分析了开关功率变换器非线性研究的意义,从变换器的非线性建模、动力学行为及其分析、动力学行为的控制与应用等三个方面,综述了相关研究概况。并基于此,提出了本文的研究价值与内容。第2章介绍了非线性动力学基础,主要包括分岔与混沌理论,总结了非线性动力学的研究方法,并给出了常用数值研究方法及其在开关功率变换器非线性研究中的应用与实现。
     (2)高阶开关功率变换器的非线性建模。建模是进行变换器非线性研究的前提,广泛使用的建模方法有状态空间平均法和离散时间映射法。本文第3章针对高阶开关功率变换器的复杂性,提出了一种综合运用这两种方法的建模方法,并将之应用于电流模式控制Cuk变换器的建模与稳定性分析,建立了变换器闭式迭代映射模型,得到了变换器稳定性判据的解析表达式,分析了电路参数对变换器稳定性的影响。仿真结果验证了此建模方法的有效性。
     (3)高阶开关功率变换器中的非线性动力学行为及其分析。混沌现象可以发生在二阶及其以上非自治开关功率变换器(一阶断续电流模式非自治变换器亦可)、三阶及其以上自治开关功率变换器中。因此,四阶开关功率变换器在一定的参数范围内定会发生分岔、混沌等非线性动力学行为。本文第4章对耦合有干扰信号的峰值电流模式SEPIC变换器中的间歇分谐波与间歇混沌现象进行了研究,通过数值仿真和电路仿真展示了间歇现象,并采用时间分岔到参数分岔的策略,基于离散时间映射模型、雅克比矩阵特征值分析法进行了相应的理论分析。仿真结果与理论分析一致表明干扰信号的强度和频率决定着间歇的类型与周期。此外,提出了基于变换器间歇现象的微弱周期信号检测方法。第5章对自治高阶开关功率变换器(滑模控制SEPIC变换器)的稳定性与复杂动力学行为进行了研究,基于滑模变结构理论,为SEPIC变换器进行了滑模控制设计,得到了变换器的等效平均模型,分析了平衡点的稳定性。通过对雅克比矩阵及其特征值的分析,判定变换器随着参考电流的增大发生了超临界Hopf分岔,并得到不同电路参数下变换器的稳定边界曲面。数值仿真结果验证了理论分析的正确性,并展示了滑模SEPIC变换器经由Hopf分岔、单极限环、双极限环、准周期而进入混沌状态的演化过程。
     (4)高阶开关功率变换器中非线性动力学行为的控制研究。对开关功率变换器中非线性动力学行为进行控制研究,是变换器非线性研究应用于工程实践的必然要求。传统的控制方法和一些特定的混沌控制方法,一般都可以应用于变换器的分岔与混沌控制,但目前关于高阶变换器的混沌控制研究很少。因此,本文第6章对高阶变换器的分岔与混沌控制进行了探讨。以峰值电流模式SEPIC变换器为例,采用时间延迟反馈控制法,对非自治高阶变换器系统中的混沌进行了有效的控制,给出了延迟反馈增益的取值范围;以滑模控制SEPIC变换器为例,采用外加周期信号的非反馈控制方法,对自治高阶开关功率变换器系统中的混沌进行了有效控制。此外,采用变量线性反馈控制方法,对滑模控制SEPIC变换器中的Hopf分岔行为进行了控制,并基于滑模变结构原理进行了理论分析。
Nonlinear science, as a comprehensive and interdisciplinary subject for studying the generality of nonlinear phenomena, reveals the nonlinear nature of the world and promotes the process of changing the world constantly. Power electronics field has its own nonlinear problems as in the other disciplinary fields. Switching power converter is an important component in power electronics circuit and system, which belongs to a class of piecewise switching system with strong nonlinearity and time-varying characteristics. Therefore, studying on the power converters based on nonlinear theories and methods are beneficial to reveal the nonlinear nature of the power converters, to guide the engineering practice by optimizing the stability and reliability design of the converters, to establish the theoretical foundations of the power electronics, and to enrich the contents and methods of nonlinear science.
     Since the nonlinear phenomenon in power converter was reported in 1980s, the domestic and foreign researchers have widely carried out the study on the nonlinear dynamical behaviours and their control of power converters from the multi-dimensional viewpoints of computer simulation, theoretical analysis, and circuit experiments, resulting in a nonlinear study branch in power electronics. But the existing nonlinear studies are almost for lower order converters, while few work for higher converters. Based on this situation, higher order converters are selected as the research objects, and their modelling, descriptions, analysis and control of nonlinear dynamical behaviours are carried out in this dissertation with the aim to reveal the nonlinear nature of higher order converters, and to guide the design and application of higher order converters. The concrete work is as follows:
     (1) Review on nonlinear study in switching power converters and the basis of nonlinear dynamics. Chapter one analyzes the research significance of nonlinear study in power converters, gives an overview on the related research backgrounds from three aspects including nonlinear modelling, nonlinear dynamical behaviours, and control of nonlinear phenomena, and based on which, puts forward the research value and contents of this dissertation. Chapter two introduces the basis of nonlinear dynamics including bifurcation and chaos theory, summarizes the research methods in nonlinear dynamics, and presents some commonly used numerical methods and their applications to nonlinear study of power converters.
     (2) Nonlinear modelling of higher switching power converters. Modelling is the essential prerequisite of nonlinear study on power converters, which has two widely used methods including state-space average approach and discrete-time mapping approach. Aiming at strong nonlinearity and complexity of higher order power converters, an integrative modelling method by integrating these two approaches is proposed and is applied to the modelling and stability analysis of a peak-current-mode controlled Cuk converter in chapter three. The closed-form iterative mapping model is constructed, and analytical expression of the stability criterion is achieved. Furthermore, the relationship between the stability and the circuit parameters is studied. The results of simulation verify the validity of the proposed modelling method and stability analysis.
     (3) Nonlinear dynamical behaviours and their analysis in higher power converters. Chaotic phenomena can frequently appear in no less than two-order non-autonomous converters (one-order discontinuous current mode non-autonomous converter as well) or in no less than three-order autonomous converters. So four-order converters can present rich nonlinear dynamical behaviours such as bifurcation and chaos. Intermittent subharmonics and chaos in a peak-current-mode controlled SEPIC converter coupled with intruding interference is studied in chapter four. The intermittent phenomena are observed by means of numerical simulation and circuit simulation. Furthermore the relation between the circuit parameters and the threshold amplitude of interference is discussed. By mapping time-bifurcation into parameter-bifurcation, discrete-time mapping model and the analysis method of characteristic multiplier of Jacobian matrix are applied to theoretical analysis. The theoretical results are consistent with the simulation results and indicate that the intermittent type and period are decided by the strength and frequency of the intruding interference. Furthermore, a weak periodic signal detection method is proposed based on intermittency of switching converters. Stability analysis and complex dynamical behaviors of a sliding-mode controlled SEPIC converter, which is an autonomous higher order converter, are studied in chapter five. Based on sliding-mode variable structure theory, sliding-mode control of the SEPIC converter is achieved, the equivalent average model is obtained, and stability of the equilibrium point is analyzed. Analysis of the Jacobian matrix and its characteristic eigenvalues proves that the converter loses stability via a super critical Hopf bifurcation with the reference current increased, and that the circuit parameters can make important influence on the stability. Simulation results demonstrate the theoretical analysis, and show the route to chaos via Hopf bifurcation, single limit cycle, double limit cycle, and quasi-periodicity.
     (4) Control of nonlinear dynamical behaviours in higher order switching power converters. Applications of nonlinear study results to engineering practice must require the researchers to study on the control of nonlinear phenomena. Generally speaking, traditional control techniques and some special chaos control techniques can be used to control of bifurcation and chaos in power converters. But up to present, control of nonlinear dynamical behaviours is seldom investigated, so some explorations on this topic are implemented in chapter six. Firstly, time-delayed feedback control method is effectively applied to control chaos in non-autonomous higher order converter, with a peak-current-mode controlled SEPIC converter as a case study, and the value range of the feedback gain is obtained by bifurcation diagram. Secondly, external periodic signal method is successfully used to control chaos in autonomous power converter, with a sliding-mode controlled SEPIC converter as an example. Lastly, variable linear feedback control method is used to realize the Hopf bifurcation control in a sliding-mode controlled SEPIC converter, and the theoretical analysis is carried out based on sliding-mode theory, which is in agreement with the simulation results.
引文
[1]Hamill DC. Power electronics:a field rich in nonlinear dynamics[C]. International Specialisits Workshop on Nonlinear Dynamics of Electronic Systems (NDES'95),1995,165-178.
    [2]张占松,蔡宣三.开关电源的原理与设计(修订版)[M].北京:电子工业出版社,2004.
    [3]Brockett RW, Wood JR. Understanding power converter chaotic behavior mechanisms in protective and abnormal modes[C].11th Annual International Power Electronics Conference (Powercon'84),1984,4:1-15.
    [4]Wood JR. Chaos:a real phenomenon in power electronics[C]. The 4th Annual IEEE Apllied Power Electronics Conference and Exposition (APEC'89),1989. 115-124.
    [5]Banerjee S, Verghese GC. Nonlinear phenomena in power electronics[M]. New York:IEEE press,2001.
    [6]di Bernardo M, Tse CK. Chaos in power electronics:an overview[A]. Chaos in Circuits and Systems[M]. World Scientific,2002.317-340.
    [7]Tse CK, di Bernardo M. Complex behavior in switching power converters[J]. Proceedings of IEEE,2002,90(5):768-781.
    [8]Tse CK. Complex behavior of switching power converters[M], Boca Raton: CRC Press,2003.
    [9]罗晓曙,汪秉宏,邹艳丽.DC-DC开关功率变换器的非线性动力学行为研究[J].力学进展,2003,33(4):471-482.
    [10]Aroudi A, Debbat M, Giral R. Bifurcations in dc-dc switching converters: review of methods and applications [J]. International Journal of Bifurcation and Chaos,2005,15(5):1549-1578.
    [11]张波.电力电子变换器非线性混沌现象及其应用研究[J].电工技术学报,2005,20(12):1-6.
    [12]马西奎,李明,戴栋,等.电力电子电路与系统中的复杂行为研究综述[J].电工技术学报,2006,21(12):1-11.
    [13]张波.电力电子学亟待解决的若干基础问题探讨[J].电工技术学报,2006,21(3):24-35.
    [14]Hamill DC, Jeffries DJ. Subharmonics and chaos in a controlled switched-mode power converter[J]. IEEE Transactions on Circuits and Systems-I,1988,35(8):1059-1061.
    [15]Hamill DC, Deane JHB, Aston PJ. Some applications of chaos in power converters[C]. IEE Colloquium on Update on Power Electronic Techniques, 1997,1-5.
    [16]Li H, Li Z, Halang WA, et al. Analyzing chaotic spectra of dc-dc converters using the prony method[J]. IEEE Transactions on Circuits and Systems-Ⅱ, 2007,54(1):61-65.
    [17]Tse KK, Ng RWM, Chung HSH, et al. An evaluation of the spectral characteristics of switching converters with chaotic carrier-frequency modulation[J]. IEEE Transactions on Industrial Electronics,2003,50(1): 171-182.
    [18]杨汝,张波.基于不变分布的开关变换器混沌PWM特性分析及频谱优化设计[J].电子学报,2007,35(11):2150-2155.
    [19]陈艳峰,丘水生,伍言真.MATLAB与PSPICE相结合并用于功率变换器仿真的方法[Z].1999.
    [20]Lee YS, Cheng KW, Wong SC. A new approach to the modeling of converters for spice simulation[Z].1992.
    [21]Wu XQ, Wong SC, Tse CK, et al. Erroneous results from spice simulations of switching converters:a dynamical system viewpoint[C]. IEEE Power Electronics Specialists Conference (PESC'06),2006,562-568.
    [22]陈艳峰,丘水生.PWM开关功率变换器分析与仿真方法简述[J].电机与控制学报,1999,3(3):153-156.
    [23]张卫平,李洁.开关变换器建模方法综述[J].浙江大学学报:自然科学版,1999,33(2):169-175.
    [24]周嘉农,曾小平.DC—DC开关变换器的建模与分析的动态评述[J].华南理工大学学报:自然科学版,2000,28(8):111-116.
    [25]Maksimovic D, Stankovic AM, Thottuvelil VJ, et al. Modeling and simulation of power electronic converters [J]. Proceedings of the IEEE,2001,89(6): 898-912.
    [26]Middlebrook RD, Cuk S. A general unified approach to modelling switching-converter power stages [C]. IEEE Power Electronics Speciallists Conference (PESC'76),1976,18-34.
    [27]Tse CK, Adams KM. Quasi-linear modeling and control of dc-dc converters [J]. IEEE Transactions on Power Electronics,1992,7(2):315-323.
    [28]林波涛,丘水生.PWM开关变换器的极限环与状态空间平均法[J].华南理工大学学报:自然科学版,1997,(3):58-62.
    [29]Sun J, Mitchell DM, Greuel MF, et al. Averaged modeling of pwm converters operating in discontinuous conduction mode[J]. IEEE Transactions on Power Electronics,2001,16(4):482-492.
    [30]Wong SC, Tse CK, Orabi M, et al. The method of double averaging:an approach for modeling power-factor-correction switching converters [J]. IEEE Transactions on Circuits and Systems-Ⅰ,2006,53(2):454-462.
    [31]Tse CK, Lee YS, So WC. An approach to modelling dc-dc converter circuits using graph theoretic concepts [J]. International Journal of Circuit Theory and Applications,1993,21(4):371-384.
    [32]丘水生.分析开关功率变换器的一种新方法[J].华南理工大学学报:自然科学版,1994,22(003):74-81.
    [33]丘水生.开关功率变换器符号分析方法的原理[J].电子学报,1997,25(001):5-10.
    [34]Ogata M, Nishi T. Graph-theoretical approach to 2-switch dc-dc converters [J]. International Journal of Circuit Theory and Applications,2005,33(2):161-173.
    [35]Hamill DC, Deane JHB, Jefferies DJ. Modeling of chaotic dc-dc converters by iterated nonlinear mappings[J]. IEEE Transactions on Power Electronics,1992, 7(1):25-36.
    [36]Banerjee S, Chakrabarty K. Nonlinear modeling and bifurcations in the boost converter[J]. IEEE Transactions on Power Electronics,1998,13(2):252-260.
    [37]Alfayyoumi M, Nayfeh AH, Borojevic D. Modeling and analysis of switching-mode dc-dc regulators[J]. International Journal of Bifurcation and Chaos,2000,10(2):373-390.
    [38]Di Bernardo M, Vasca F. Discrete-time maps for the analysis of bifurcations and chaos indc/dc converters [J]. IEEE Transactions on Circuits and Systems-Ⅰ, 2000,47(2):130-143.
    [39]曲颖,张波.电压控制型BUCK变换器DCM的精确离散模型及分叉稳定性分析[J].电子学报,2002,30(8):1253-1256.
    [40]张波,曲颖.电压反馈型Boost变换器DCM的精确离散映射及其分岔和混沌现象[J].电工技术学报,2002,17(3):43-47.
    [41]Rajasekaran V, Sun J, Heck BS. Bilinear discrete-time modeling for enhanced stability prediction and digital control design[J]. IEEE Transactions on Power Electronics,2003,18(1):381-389.
    [42]张波,曲颖.BUCK DC/DC变换器分岔和混沌的精确离散模型及实验研究[J].中国电机工程学报,2003,23(12):99-103.
    [43]Papafotiou GA, Margaris NI. Nonlinear discrete-time analysis of the fixed frequency switch-mode dc-dc converters dynamics[J]. IEEE Transactions on Circuits and Systems-Ⅱ,2005,52(6):322-326.
    [44]孙跃,李良,戴欣,等.电流型全桥软开关变换器的离散映射建模与仿真[J].电工技术学报,2005,20(6):20-24.
    [45]张涌萍,张波,丘东元.DC-DC变换器双线性系统建模及基于李亚普诺夫直接法的控制方法[J].中国电机工程学报,2008,28(9):7-11.
    [46]Kumar S, Banerjee BS. Bifurcation analysis of pwm-1 voltage-mode-controlled buck converter using the exact discrete model[J]. IEEE Transactions on Circuits and Systems-Ⅰ,2007,54(5):1120-1130.
    [47]Li M, Ma XK. Improved discrete-time approach for modeling a class of switching converters [J]. Chinese Journal of Electronics,2008,17(4):763-768.
    [48]罗萍,甄少伟,李彦麟,等.不同调制模式下Boost变换器DCM模态的能量模型与稳定性分析[J].中国电机工程学报,2008,28(6):49-54.
    [49]罗萍,甄少伟,李肇基,等.DCM模态下PSM Boost变换器的能量模型和分岔规律[J].电工技术学报,2009,24(2):67-72.
    [50]Deane JHB, Hamill DC. Instability, subharmonics, and chaos in power electronic systems[J]. IEEE Transactions on power electronics,1990,5(3): 260-268.
    [51]Tse CK. Flip bifurcation and chaos in three-state boost switching regulators [J]. IEEE Transactions on Circuits and Systems-Ⅰ,1994,41(1):16-23.
    [52]Tse CK. Chaos from a buck switching regulator operating in discontinuous mode[J]. International Journal of Circuit Theory and Applications,1994,22(4): 263-278.
    [53]Chakrabarty K, Plddar G, Banerjee S. Bifurcation behavior of the buck converter[J], IEEE Transactions on Power Electronics,1996,11(3):439-447.
    [54]Fossas E, Olivar G. Study of chaos in the buck converter[J]. IEEE Transactions on Circuits and Systems-Ⅰ,1996,43(1):13-25.
    [55]Tse CK, Fung SC, Kwan MW. Experimental confirmation of chaos in a current-programmed cuk converter[J]. IEEE Transactions on Circuits and Systems-Ⅰ,1996,43(7):605-608.
    [56]Chan W, Tse CK. Study of bifurcations in current-programmed dc/dc boost converters:from quasiperiodicity to period-doubling[J]. IEEE Transactions on Circuits and Systems-I,1997,44(12):1129-1142.
    [57]di Bernardo M, Fossas E, Olivar G, et al. Secondary bifurcations and high periodic orbits in voltage controlled buck converter [J]. International Journal of Bifurcation and Chaos,1997,7:2755-2772.
    [58]di Bernardo M, Budd C, Champneys A. Grazing, skipping and sliding:analysis of the non-smooth dynamics of the dc/dc buck converter[J]. Nonlinearity,1998, 11:859-890.
    [59]Yuan G, Banerjee S, Ott E, et al. Border-collision bifurcations in the buck converter[J]. IEEE Transactions on Circuits and Systems-Ⅰ,1998,45(7): 707-716.
    [60]El Aroudi A, Benadero L, Toribio E, et al. Hopf bifurcation and chaos from torus breakdown in a pwm voltage-controlled dc-dc boost converter [J]. IEEE Transactions on Circuits and Systems-1,1999,46(11):1374-1382.
    [61]El Aroudi A, Benadero L, Toribio E, et al. Quasiperiodicity and chaos in the dc-dc buck-boost converter[J]. International Journal of Bifurcation and Chaos, 2000,10(2):359-372.
    [62]Tse CK, Lai YM, Iu H. Hopf bifurcation and chaos in a free-running current-controlled cuk switching regulator[J], IEEE Transactions on Circuits and Systems-Ⅰ2,000,47(4):448-457.
    [63]Mazumder SK, Nayfeh AH, Boroyevich D. Theoretical and experimental investigation of the fast-and slow-scale instabilities of a dc-dc converter [J]. IEEE Transactions on Power Electronics,2001,16(2):201-216.
    [64]Debbat MB, El Aroudi A, Giral R, et al. Stability analysis and bifurcations of sepic dc-dc converter using a discrete-time model[C]. IEEE International Conference on Industrial Technology (ICIT'02),2002,2:1055-1060.
    [65]Parui S, Banerjee S. Border collision bifurcations at the change of state-space dimension[J]. Chaos,2002,12(4):1054-1069.
    [66]Robert B, Robert C. Border collision bifurcations in a one-dimensional piecewise smooth map for a pwm current-programmed h-bridge inverter[J]. International Journal of Control,2002,75(16):1356-1367.
    [67]张波,齐群.PWM BUCK变换器不同工作方式下的次谐波和混沌行为[J].中国电机工程学报,2002,22(10):18-21.
    [68]Parui S, Banerjee S. Bifurcations due to transition from continuous conduction mode to discontinuous conduction mode in the boost converter[J]. IEEE Transactions on Circuits and Systems-I,2003,50(11):1464-1469.
    [69]Zhusubaliyev ZT, Soukhoterin EA, Mosekilde E. Quasi-periodicity and border-collision bifurcations in a dc-dc converter with pulsewidth modulation[J]. IEEE Transactions on Circuits and Systems-I,2003,50(8): 1047-1057.
    [70]戴栋,马西奎,李小峰.一类具有两个边界的分段光滑系统中边界碰撞分岔现象及混沌[J].物理学报,2003,52(11):2729-2736.
    [71]Banerjee S, Parui S, Gupta A. Dynamical effects of missed switching in current-mode controlled dc-dc converters[J]. IEEE Transactions on Circuits and Systems-Ⅱ,2004,51(12):649-654.
    [72]周宇飞,陈军宁,丘水生,等.开关功率变换器中的间歇现象——理论分析[J].电子学报,2004,32(2):269-273.
    [73]周宇飞,陈军宁,丘水生,等.开关功率变换器中的间歇现象——仿真与实验[J].电子学报,2004,32(2):264-268.
    [74]周宇飞,丘水生,陈军宁.滞环电流模式控制Cuk变换器的非线性现象研究[J].中国电机工程学报,2004,24(3):96-101.
    [75]Cafagna D, Grassi G. Experimental study of dynamic behaviors and routes to chaos in dc-dc boost converters [J]. Chaos, Solitons and Fractals,2005,25(2): 499-507.
    [76]Parui S, Banerjee S, Sengupta S, et al. Experimental verification of border collision bifurcation due to mode transition in a current mode controlled buck converter[J]. Journal of Circuits, Systems and Computers,2005,14(4): 653-666.
    [77]周宇飞,陈军宁.电流模式控制BOOST变换器中的切分叉及阵发混沌现象[J].中国电机工程学报,2005,25(1):23-26.
    [78]周宇飞,陈军宁,柯导明.电流模式控制Boost变换器中的呼吸现象[J].电子学报,2005,33(5):915-919.
    [79]周宇飞,陈军宁,徐超.开关变换器中吸引子共存现象的仿真与实验研究[J].中国电机工程学报,2005,25(21):30-33.
    [80]Chen Y, Tse C, Wong SC, et al. Interaction of fast-scale and slow-scale bifurcations in current-mode controlled dc/dc converters [J]. International Journal of Bifurcation and Chaos,2007,17(5):1609-1622.
    [81]刘芳,张浩,马西奎.电流型单端初级电感变换器中分岔行为与稳定性[J].电工技术学报,2007,22(9):86-92.
    [82]Zhou YF, Jiang XD, Chen JN. Analysis of complex intermittency in boost converter from a bifurcation control viewpoint[J]. Science in China Series F: Information Sciences,2008,51(12):2135-2149.
    [83]Zhou Y, Chen JN, Iu HHC, et al. Complex intermittency in switching converters [J]. International Journal of Bifurcation and Chaos,2008,18(1):121.
    [84]王发强,张浩,马西奎.单周期控制Boost变换器中的低频波动现象分析[J].物理学报,2008,57(3):1522-1528.
    [85]张笑天,马西奎,张浩.数字控制DC-DC Buck变换器中低频振荡现象分析[J].物理学报,2008,57(10):6174-6181.
    [86]邹建龙,马西奎.一类由饱和引起的非线性现象[J].物理学报,2008,57(2):720-725.
    [87]王学梅,张波,丘东元.不连续导电模式DC-DC变换器的倍周期分岔机 理研究[J].物理学报,2008,57(5):2728-2736.
    [88]Dranga O, Tse CK, Iu HHC. Bifurcation behavior of a power-factor-correction boost converter[J]. International Journal of Bifurcation and Chaos,2003, 13(10):3107-3114.
    [89]Iu HHC, Zhou Y, Tse CK. Fast-scale instability in a pfc boost converter under average current-mode control[J]. International Journal of Circuit Theory and Applications,2003,31(6):611-624.
    [90]Orabi M, Ninomiya T. Nonlinear dynamics of power-factor-correction converter[J]. IEEE Transactions on Industrial Electronics,2003,50(6): 1116-1125.
    [91]Ren HP, Liu D. Bifurcation behaviours of peak current controlled pfc boost converter[J]. Chinese Physics,2005,14(7):1352-1358.
    [92]Zhang H, Ma X, Xue B, et al. Study of intermittent bifurcations and chaos in boost pfc converters by nonlinear discrete models [J]. Chaos, Solitons and Fractals,2005,23(2):431-444.
    [93]Wu X, Tse CK, Dranga O, et al. Fast-scale instability of single-stage power-factor-correction power supplies [J]. IEEE Transactions on Circuits and Systems-I,2006,53(1):204-213.
    [94]Zou J, Ma X, Tse CK, et al. Fast-scale bifurcation in power-factor-correction buck-boost converters and effects of incompatible periodicities [J], International Journal of Circuit Theory and Applications,2006,34(3):251-264.
    [95]任海鹏.平均电流控制型PFC Boost变换器中的低频分岔现象研究[J].电子学报,2006,34(5):784-789.
    [96]Dai D, Li S, Ma X, et al. Slow-scale instability of single-stage power-factor-correction power supplies [J]. IEEE Transactions on Circuits and Systems-Ⅰ, 2007,54(8).
    [97]Liu F. Fast-scale border collision bifurcation in sepic power factor pre-regulators[J]. Chinese Physics B,2008,17(7):2394-2404.
    [98]邹建龙,马西奎.功率因数校正Boost变换器中快时标分岔的实验研究[J].中国电机工程学报,2008,28(012):38-43.
    [99]王发强,张浩,马西奎,等.平均电流控制型Boost功率因数校正变换器中的中频振荡现象分析[J].物理学报,2009,58(10):6838-6844.
    [100]王学梅,张波,丘东元.H桥正弦逆变器的快变和慢变稳定性及混沌行为研究[J].物理学报,2009,58(4):2248-2254.
    [101]Iu HHC, Tse CK. Bifurcation behaviour of parallel-connected buck converters [J]. IEEE Transactions on Circuits and Systems-Ⅰ,2001,48(2): 233-240.
    [102]Iu HHC, Tse CK, V. P, et al. Bifurcation behaviour of parallel-connected boost converters [J]. International Journal of Circuit Theory and Apllications,2001, 29:281-298.
    [103]Iu HHC, Tse CK. Study of low-frequency bifurcation phenomena of a parallel-connected boost converter system via simple averaged models [J]. IEEE Transactions on Circuits and Systems-Ⅰ,2003,50(5):679-686.
    [104]陈明亮,马伟明.多级并联电流反馈型DC-DC升压变换器中的分岔与混 沌[J].中国电机工程学报,2005,25(6):67-70.
    [105]贤燕华,罗晓曙,蒋品群,等.高维并联buck变换器的非线性动力学行为研究[J].系统工程与电子技术,2005,27(7):1214-1218.
    [106]Banerjee S. Coexisting attractors, choatic saddles, and fractal basins in a power electronics circuit[J]. IEEE Transactions on Circuits and Systems-Ⅰ,1997, 44(9):847-849.
    [107]Cheng KWE, Liu M, Ho YL. Experimental confirmation of frequency correlation for bifurcation in current-mode controlled buck-boost converters [J]. IEEE Power Electronics Letters,2003,1(4):101-103.
    [108]Dai D, Tse CK, Ma X. Symbolic analysis of switching systems:application to bifurcation analysis of dc/dc switching converters [J]. IEEE Trans. Circuits Syst. I, Reg. Papers,2005,52(8):1632-1643.
    [109]王学梅,张波,丘东元,等.DC-DC变换器的符号时间序列描述及模块熵分析[J].物理学报,2008,57(10):6112-6119.
    [110]Dai D, Ma Y, Tse CK, et al. Existence of horseshoe maps in current-mode controlled buck-boost dc/dc converters [J]. Chaos, Solitons and Fractals,2005, 25(3):549-556.
    [Ill]Giaouris D, Maity S, Banerjee S, et al. Application of filippov method for the analysis of subharmonic instability in dc-dc converters [J]. International Journal of Circuit Theory and Applications,2009,37(8):899-919.
    [112]Giaouris D, Banerjee S, Zahawi B, et al. Stability analysis of the continuous conduction mode buck converter via filippov's method[J]. IEEE Transactions on Circuits and Systems-Ⅰ,2008,55(4):1084-1096.
    [113]Daho I, Giaouris D, Zahawi B, et al. Stability analysis and bifurcation control of hysteresis current controlled?uk converter using filippov's method[C]. IET International Conference on Power Electronics, Machines and Drives (PEMD'08),2008,381-385.
    [114]Lai YM, Tse CK, Chow M. Control of bifurcation in current-programmed dc/dc converters:an alternative viewpoint of ramp compensation[J]. Circuits, Systems, and Signal Processing,2001,20(6):695-707.
    [115]Tse CK, Lai YM. Controlling bifurcation in power electronics:a conventional practice re-visited[J]. Latin American Applied Research,2001,31(3):177-184.
    [116]Zhou Y, Tse CK, Qiu SS, et al. An improved resonant parametric perturbation for chaos control with applications to control of dc/dc converters [J]. Chinese Physics,2005,14:61-66.
    [117]Zhou Y, Tse CK, Qiu SS, et al. Applying resonant parametric perturbation to control chaos in the buck dc/dc converter with phase shift and frequency mismatch considerations[J]. International Journal of Bifurcation and Chaos, 2003,13(11):3459-3471.
    [118]罗晓曙,陈关荣.DC-DC buck变换器的分岔行为及混沌控制研究[J].物理学报,2003,52(1):12-17.
    [119]周宇飞,陈军宁,谢智刚,等.参数共振微扰法在Boost变换器混沌控制中的实现及其优化[J].物理学报,2004,53(11):3676-3683.
    [120]邹艳丽,罗晓曙,方锦清,等.脉冲电压微分反馈法控制buck功率变换 器中的混沌[J].物理学报,2003,52(12):2978-2984.
    [121]Tse CK, Adams KM. Qualitative analysis and control of a dc-dc boost converter operating in discontinuous mode[J]. IEEE Transactions on Power Electronics, 1990,5(3):323-330.
    [122]Cevantes I, Alvarez-Ramirez J. A simple chaos control strategy for dc-dc power converters[C]. IEEE Industrial Electronics Conference (IECON'04),2004, 193-198.
    [123]Bueno RS, Marrero JLR. Control of dc-dc converters in the chaotic regime[C]. IEEE International Conference on Control Applications,1998,2:832-837.
    [124]Poddar G, Chakrabarty K, Banerjee S. Control of chaos in dc-dc converters[J]. IEEE Transactions on Circuits and Systems-Ⅰ,1998,45(6):672-676.
    [125]Zhu N, Wu WL. Two-parameter chaotic control in the voltage controlled buck converter[C]. International Conference on Power Electronics and Drive Systems (PEDS'03),2003,1329-1333.
    [126]Dragan F. Controlling chaos in a current mode controlled boost converter using ott-grebogi-yorke and derivate methods[C]. WSEAS International Conference on Automation& Information,2006,62-65.
    [127]Batlle C, Fossas E, Olivar G. Stabilization of periodic orbits of the buck converter by time-delayed feedback[J]. International Journal of Circuit Theory and Applications,1999,27(6):617-631.
    [128]Hikihara T, Konaka M, Ueda Y. Controlling chaotic chattering in discontinuous switching mode of dc-dc buck converter[C].26th Annual Conference of Industrial Electronics Society (IECON'00),2000,4:2400-2406.
    [129]Iu HHC, Robert B. Control of chaos in a pwm current-mode h-bridge inverter using time-delayed feedback[J]. IEEE Transactions on Circuits and Systems-Ⅰ, 2003,50(8):1125-1129.
    [130]Robert B, Iu HHC, Feki M. Adaptive time-delayed feedback for chaos control in a pwm single phase inverter[J]. Journal of Circuits, Systems, and Computers, 2004,13(3):519-534.
    [131]Robert B, Feki M, Iu H. Control of a pwm inverter using proportional plus extended time-delayed feedback[J]. International Journal of Bifurcation and Chaos,2006,16(1):113-128.
    [132]卢伟国,周雒维,罗全明.电压模式BUCK变换器输出延迟反馈混沌控制[J].物理学报,2007,56(10):5648-5654.
    [133]卢伟国,周雒维,罗全明,等.BOOST变换器延迟反馈混沌控制及其优化[J].物理学报,2007,56(11):6275-6281.
    [134]杨汝,张波.DC-DC buck变换器时间延迟反馈混沌化控制[J].物理学报,2007,56(7):3789-3795.
    [135]Natsheh AN, Kettleborough JG, Janson NB. Experimental study of controlling chaos in a dc-dc boost converter[J]. Chaos, Solitons and Fractals,2009,40(5): 2500-2508.
    [136]Poddar G, Chakrabarty K, Banerjee S. Experimental control of chaotic behavior of buck converter[J]. IEEE Transactions on Circuits and Systems-I,1995, 42(8):502-504.
    [137]Poddar G, Chakrabarty K, Banerjee S. Control of chaos in the boost converter[J]. Electronics letters,1995,31(11):841-842.
    [138]Fang CC, Abed EH. Robust feedback stabilization of limit cycles in pwm dc-dc converters [J]. Nonlinear dynamics,2002,27(3):295-309.
    [139]Ma Y, Kawakami H. Control of bifurcation in dc/dc pwm switching converters [C]. International Control, Automation, Robotics and Vision Conference (ICARCV'04),2004,2:1421-1426.
    [140]汪剑鸣,许镇琳.PWM型DC/DC变换器的Washout滤波器混沌控制方法[J].信息与控制,2005,34(3):269-273.
    [141]Lu WG, Zhou LW, Luo QM, et al. Filter based non-invasive control of chaos in buck converter [J]. Physics Letters A,2008,372(18):3217-3222.
    [142]Lu WG, Zhou LW, Wu JK. Self-stable chaos control of dc-dc converter[J]. Chinese Physics Letters,2009,26(3):30503.
    [143]Baranovski AL, Mogel A, Schwarz WJ, et al. Chaotic control of a dc-dc-converter[C]. IEEE International Symposium on Circuits and Systems (ISCAS'00),2000,2:108-111.
    [144]高金峰,吴振军,赵坤.混沌调制技术降低Buck型变换器电磁干扰水平研究[J].电工技术学报,2003,18(6):23-27.
    [145]Banerjee S, Baranovski AL, Marrero J, et al. Minimizing electromagnetic interference problems with chaos [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES E SERIES A,2004,87(8):2100-2109.
    [146]Morel C, Bourcerie M, Chapeau-Blondeau F. Extension of chaos anticontrol applied to the improvement of switch-mode power supply electromagnetic compatibility[C]. IEEE International Symposium on Industrial Electronics (ISIE'04),2004,1:447-452.
    [147]汪剑鸣,许镇琳.利用混沌提高dc/dc变换器的EMC性能[J].电子科技大学学报,2004,33(5):586-589.
    [148]Mukherjee R, Nandi S, Banerjee S. Reduction in spectral peaks of dc-dc converters using chaos-modulated clock[C]. IEEE International Symposium on Circuits and Systems (ISCAS'05),2005,4:3367-3370.
    [149]李志忠,丘水生,张黎.混沌频率调制增强开关变换器EMC的研究[J].电子学报,2005,33(011):1983-1987.
    [150]张波,李虹.Boost变换器的特征向量法混沌量化及EMI抑制[J].华南理工大学学报:自然科学版,2005,33(009):1-5.
    [151]李志忠,丘水生,陈艳峰.混沌映射抑制DC-DC变换器EMI水平的实验研究[J].中国电机工程学报,2006,26(5):76-81.
    [152]杨汝,张波.开关变换器混沌PWM频谱量化特性分析[J].物理学报,2006,55(11):5667-5673.
    [153]杨汝,张波.开关变换器混沌PWM抑制EMI的机理和实验研究[J].中国电机工程学报,2007,27(10):114-119.
    [154]吴振军,胡智宏,崔光照.基于混沌反控制降低Buck型变换器EMI及纹波研究[J].系统仿真学报,2008,20(4):993-996.
    [155]杨汝,张波,丘东元.开关变换器离散子系统混沌点过程描述及EMI抑 制[J].物理学报,2008,57(3):1389-1397.
    [156]周宇飞.DC-DC开关变换器的滑模变结构控制方法及混沌状态研究[D].广州:华南理工大学,2001.
    [157]汪剑鸣.PWM型DC/DC变换器基于混沌动力学的建模、控制及应用[D].天津:天津大学,2003.
    [158]郝柏林.从抛物线谈起[M].上海:上海科技教育出版社,1993.
    [159]刘廷柱.非线性动力学[M].上海:上海交通大学出版社,2000.
    [160]吴祥兴,陈忠.混沌学导论[M].上海:上海科学技术文献出版社,2001.
    [161]高普云.非线性动力学:分岔、混沌与孤立子[M].长沙:国防科技大学出版社,2005.
    [162]Lorenz EN. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences,1963,20:130-141.
    [163]May R. Simple mathematical models with very complicated dynamics[J]. Nature,1976,261(5560):459-467.
    [164]张琪昌,王洪礼,竺致文,等.分岔与混沌理论及应用[M].天津:天津大学出版社,2005.
    [165]Li TY, Yorke JA. Period three implies chaos[J]. American Mathematical Monthly,1975,82(10):985-992.
    [166]邵明望.一维Logistic映射的分形维数[J].科技通报,2000,16(1):58-60.
    [167]Feigenbaum MJ. Quantitative universality for a class of non-linear transformations [J]. Journal of statistical physics,1978,19(1):25-52.
    [168]Wu J, Liu MJ, Yang P. Study of bifurcation and chaos in the current-mode controlled buck-boost dc-dc converter (i)[J]. Control Theory and Apllications, 2002,19(3):387-394.
    [169]Benettin G. Kolmogorov entropy and numerical experiments [J]. Physical Review A,1976,14(6):2338-2345.
    [170]王利清,魏学业,温伟刚,等.电流模式Buck-Boost电路从有序到混沌的分形研究[J].北京交通大学学报:自然科学版,2004,28(005):62-65.
    [171]Qu Z, Hu G, Qin G. Phase effect in taming nonautonomous chaos by weak harmonic perturbations [J]. Physical Review Letter,1995,74(10):1736-1739.
    [172]Tse CK, Zhou YF, Lau FCM. Intermittent chaos in switching power supplies due to unintended coupling of sprious signals[C]. IEEE Power Electronics Specialist Conference (PESC'03),2003.
    [173]Ferreira JA, Willcock PR, Holm SR. Sources, paths and traps of conducted emi in switch mode circuits[C]. IEEE Industry Apllications Conference (IAS'97), 1997,1584-1591.
    [174]Wang GY, Chen DJ, Lin JY, et al. The application of chaotic oscillators to weak signal detection[J]. IEEE Transactions on Industrial Electronics,1999,46(2): 440-444.
    [175]Wang GY, He SL. A quantitative study on detection and estimation of weak signals by using chaotic duffing oscillators [J]. IEEE Transactions on Circuits and Systems-Ⅰ,2003,50(7):945-953.
    [176]Sira-Ramirez H. Sliding motions in bilinear switched networks [J]. IEEE Transactions on Circuits and Systems,1987,34(8):919-933.
    [177]Mattavelli P, Rossetto L, Spiazzi G, et al. Sliding-mlde conrol of sepic converters[C]. European Space Power Conference (ESPC'93),1993,173-178.
    [178]Mattavelli P, Rossetto L, Spiazzi G. Small-signal analysis of dc-dc converters with sliding-mode control[J]. IEEE Transactions on Power Electronics,1997, 12(1):96-102.
    [179]高为炳.变结构控制理论基础[M].北京:中国科学技术出版社,1990.
    [180]刘芳.电流型单端初级电感变换器的不稳定性与分岔控制[J].西安交通大学学报,2007,41(12):1465-1469.
    [181]Iu HHC, Tse CK. A study of synchronization in chaotic autonomous cuk dc/dc converters[J]. IEEE Transactions on Circuits and Systems-Ⅰ,2000,47(6): 913-918.
    [182]Pyragas K. Contiuous control of chaos by self-controlling feedback[ J]. Physics Letters A,1992,170:421-428.
    [183]胡岗.混沌控制[M].上海:上海科技出版社,2000.
    [184]Kittel A, Parisi J, Pyragas K. Delayed feedback control of chaos by self-adapted delay time[J]. Physics Letter A,1995,198:433-436.
    [185]Nakajima H, Ito H, Ueda Y. Automatic adjustment of delay time and feedback gain in delayed feedback control of chaos [J]. IEICE Transactions on Fundamentals,1997,80(9):1554-1559.
    [186]陈予恕,梁建术.自适应延时反馈控制混沌方法[J].河北科技大学学报,2006,27(4):267-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700