用户名: 密码: 验证码:
基于介质柱型光子晶体波导的太赫兹功能器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前的太赫兹(Terahertz, THz)系统以自由空间为主,随着THz固态系统的发展,THz波导及其功能器件将发挥重要作用。本文基于介质柱的光子晶体结构,研究和设计了THz波段的若干波导型功能器件。
     首先,相对于常用的THz聚焦束时域光谱系统,THz平行束时域光谱系统更适用于对波导型功能器件进行实验测试。为此,进行了THz平行束时域光谱系统的研究和搭建。通过系统优化,达到了一定的性能指标:获得系统的信噪比约为128.9,动态范围约为147.3,太赫兹平行束束斑直径约为3.89cm,束斑直径沿传播方向的波动小于0.17%/cm,平行度较好。
     其次,基于光子晶体理论,分别设计加工和实验测量了一种实芯THz光子晶体光纤和一种空芯THz光子晶体光纤。实芯THz光子晶体光纤由61根聚四氟乙烯介质柱组成。实验结果表明,当输入和输出孔径的直径均为中心介质柱直径时,在较宽的频带内,长度约为3.5cm的波导相对于没有波导时的相对传输率可达250%以上,包括输入输出耦合损耗和传输损耗的插入损耗可低至2.45dB,实现了波导对THz波的约束作用。空芯THz光子晶体光纤采用60根聚四氟乙烯介质柱,测量获得了明显的光子禁带特性,在波导长度约为3.5cm情况下传输带中插入损耗可低至6.65dB。
     然后,在THz光子晶体光纤基础上,结合金属线表面等离子体效应,探讨了嵌入金属线后波导模式与表面波模式的相互作用,分析了金属线尺寸和位置变化的影响。实验尝试了结合铜丝的聚四氟乙烯实芯THz光子晶体光纤的单偏振波导,观察到了一定的单偏振现象,实验结果与仿真分析一致,在特定频率附近的偏振消光比达到7.8dB。
     最后,基于磁光效应,提出了三种具有非互易性的介质柱光子晶体波导型器件:隔离器、环形器和交叉波导。隔离器采用了钇铁石榴石介质柱,获得了连续的单向传输频带。如果定义工作带为传输端口传输率大于0.5并且隔离端口传输率小于0.1,相对带宽为实际带宽与带中心频率的比值,那么相对带宽可达10.6%,隔离度最高可达115dB。第一种环形器采用较少的YIG介质柱获得了环形效果的工作带,相对带宽达到4.7%,隔离端口的隔离度达到了35dB。十字交叉结构的环形器采用更少的YIG介质柱获得了相对带宽为2.5%的环形工作带,隔离端口的隔离度达到了31dB。设计的交叉波导利用YIG介质柱获得了16.6%的相对带宽,并且具有较低的串扰。
Nowadays terahertz (THz) applications mainly depended on free space systems, but with the development of THz solid-state system, functional devices are expected to play an important role. In this thesis, based on photonic crystal waveguide structures formed by dielectric rods, several THz functional devices are researched.
     First, comparing with commonly used THz time domain spectroscopy (THz-TDS) system with focused beam, THz-TDS system with parallel beam is more suitable for the measurement of waveguide type devices. So a THz parallel beam TDS system is set up. Through optimizing each component, the signal to noise ratio of the system reaches128.9and the dynamic range reaches147.3. The diameter of the THz beam at different positions is about the same, which is3.89cm. The fluctuation of the diameter along the propagation direction is smaller than0.17%/cm, thus the depth of parallelism is satisfying.
     Second, based on photonic crystal theory, an all-rod THz solid core photnic crystal fiber (PCF) and an all-rod THz air core PCF are designed and fabricated. The solid core PCF is composed of61dielectric rods. Experimental results show the sample relative transmission is2.5times as larger as that of the air reference with same apertures in a large frequency range and the insertion loss (including the coupling loss and the transmission loss) of the PCF with the length of3.5cm is as low as2.45dB, displaying the wave guiding function. The air core PCF is formed by60dielectric rods. Obvious photonic bandgap property is observed and in transmission bands the insertion loss of the PCF with the length of3.5cm is as low as6.65dB.
     Third, based on proposed THz PCF, the surface plasmon polaritons effect on metal wires is introduced. After sysmetrically inserting metal wires into the PCF, the coupling effect between waveguide mode and surface plasmon mode is studied. The influence brought by the size and the location of the metal wires is analized. The single polarization operation of the modified PCF is experimentally tried. In agreement with the simulation, single polarization working is observed around specific frequency and the extinction ratio reaches7.8dB.
     At last, non-reciprocal waveguide devices based on two-dimensional magneto-optical photonic crystals are designed, including isolator, circulator and crossing waveguide. The isolator uses several Yttrium Iron Garnet (YIG) rods to gain a continual one-way pass band. If the working band is defined as the band where the transmittance larger than0.5at transmission port and smaller than0.1at isolation port, the relative bandwidth is defined as the ratio of the bandwidth and center frequency, the bandwidth can reach10.6%with highest isolation of115dB. Based on the isolator, the first kind of circulators uses five YIG rods to obtain a usable circulation bandwidth of4.7%with isolation reaching35dB. Through simplification, another kind of waveguide cross structure circulators uses four YIG rods to gain a circulation bandwidth of2.5%with isolation reaching31dB. A derivative low-crosstalk crossing waveguide uses twelve YIG rods to achieve a large usable bandwidth of16.6%and has low crosstalk.
引文
[1]J. Z. Xu, C. L. Zhang and X. C. Zhang. Recent progress in terahertz science and technology. Progress in Natural Science,2002,12(10):729-736
    [2]G. P. Williams. Filling the THz gap-high power sources and applications. Reports on Progress in Physics,2006,69(2):301-326
    [3]P. H. Siegel. Terahertz technology. IEEE Transactions on Microwave Theory and Techniques,2002,50(3):910-928
    [4]I. Hosako, N. Sekine, M. Patrashin, et al. At the dawn of a new era in terahertz technology. Proceedings of the IEEE,2007,95(8):1611-1623
    [5]许景周,张希成.太赫兹科学技术和应用.北京:北京大学出版社,2007
    [6]R. Kohler, A. Tredicucci, F. Beltram, et al. Terahertz semiconductor hetero structure laser. Nature,2002,417:156-159
    [7]M. Exter, C. Fattinger and D. Grischkowsky. High-brightness terahertz beams characterized with an ultrafast detector. Applied Physics Letters,1989,55(4): 337-339
    [8]S. L. Chuang, S. S. Rink, B. I. Greene, et al. Optical rectification at semi-conductor surfaces. Physical Review Letters,1992,68(1):102-105
    [9]D. H. Auston, K. P. Cheung, J. A. Valdmanis, et al. Cherenkov radiation from femtosecond optical pulses in electro-optic media. Physical Review Letters,1984, 53(16):1555-1558.
    [10]C. Fattinger and D. Grischkowsky. Point source terahertz optics. Applied Physics Letters,1988,53(16):1480-1482.
    [11]J. D. Joannopoulos. Photonic Crystal:Molding the Flow of Light. Princeton: Princeton University Press,2008,15-17 & 55-58
    [12]E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters,1987,58(20):2059-2062
    [13]S. John. Strong localization of photons in certain disordered dielectric super-lattices. Physical Review Letters,1987,58(23):2486-2489
    [14]K. Takagi and A. Kawasaki. Fabrication of three-dimensional terahertz photonic crystals with diamond structure by particle manipulation assembly. Applied Physics Letters,2009,94(021110):1-3
    [15]O. Painter and K. Srinivasan. Momentum space design of high-Q photonic crystal optical cavities. Optics Express,2002,10(15):670-684
    [16]Y. Akahane, T. Asano, B. S. Song, et al. High-Q photonic nanocavity in a two dimensional photonic crystal. Nature,2003,425:944-947
    [17]A. Bingham, Y. G. Zhao and D. Grischkowsky. THz parallel plate photonic waveguides. Applied Physics Letters,2005,87(5):051101
    [18]S. G. Johnson, S. H. Fan, P. R. Villeneuve, et al. Guided modes in photonic crystal slabs. Physical Review B,1999,60(8):5751-5758
    [19]C. C. Lin, C. H. Chen, G. J. Schneider, et al. Wavelength scale terahertz two-dimensional photonic crystal waveguides. Optics Express,2004,12(23): 5723-5728
    [20]L. Rao, D. X. Yang and Z. Hong, Guiding terahertz wave within a line defect of photonic crystal slab, Microwave and Optical Technology Letters,2012,54(12): 2856-2858
    [21]J. C. Knight, T. A. Birks, P. St. J. Russell, et al. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters,1996,21(19):1547-1549
    [22]T. M. Monro, P. J. Bennett, N. G. R. Broderick, et al. Holey fibers with random cladding distributions. Optics Letters,2000,25(4):206-208
    [23]H. Han, H. Park, M. Cho, et al. THz pulse propagation in plastic photonic crystal fiber. Applied Physics Letters,2002,80(15):2634-2636
    [24]J. Y. Lu, C. P. Yu, H. C. Chang, et al. Terahertz air-core microstructure fiber. Applied Physics Letters,2008,92(6):064105
    [25]C. S. Ponseca, Jr., R. Pobre, E. Estacio, et al. Transmission of terahertz radiation using a microstructured polymer optical fiber. Optics Letters,2008,33(9): 902-904
    [26]K. Nielsen, H. K. Rasmussen, A. J. L. Adam, et al. Bendable, low-loss Topas fibers for the terahertz frequency range. Optics Express,2009,17(10):8592-8601
    [27]L. L. Tang, S. M. Drezdzon and T. Yoshie. Single-mode waveguide optical isolator based on direction-dependent cutoff frequency. Optics Express,2008, 16(20):16202-16208
    [28]N. Kono and Y. Tsuji. A novel finite-element method for nonreciprocal magneto photonic crystal waveguides. Journal of Lightwave Technology,2004,22(7): 1741-1747
    [29]Z. Wang and S. H. Fan. Optical circulators in two-dimensional magneto-optical photonic crystals. Optics Letters,2005,30(15):1989-1991
    [30]Z. Wang, Y. D. Chong, J. D. Joannopoulos, et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Physical Review Letters,2008,100(1): 013905
    [31]Y. Hatsugai. Chern number and edge states in the integer quantum Hall effect. Physical Review Letters,1993,71(22):3697-3700
    [32]S. Raghu and F. Haldane. Analogs of quantum-Hall-effect edge states in photonic crystals. Physical Review A,2008,78(3):033834
    [33]Z. Wang, Y. D. Chong, J. D. Joannopoulos, et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature,2009,461: 772-775
    [34]X. J. Ni, N. K. Emani, A. V. Kildishev, et al. Broadband light bending with plasmonic nanoantennas. Science,2012,335(6067):427
    [35]Z. C. Ruan and M. Qiu. Enhanced transmission through periodic arrays of subwavelength holes:the role of localized waveguide resonances. Physical Review Letters,2006,96(233901):1-4
    [36]J. W. Lee, M. A. Seo, D. H. Kang, et al. Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets. Physical Review Letters,2007,99(137401):1-4
    [37]F. J. G. Vidal, L. M. Moreno, T. W. Ebbesen, et al. Light passing through subwavelength apertures. Reviews of Modern Physics,2010,82(1):729-787
    [38]J. Zenneck. Uber die Fortpflanzung ebener elektromagnetischer Wellen langs einer ebenen Leiterflache und ihre Beziehung zur drahtlosen Telegraphie. Annalen der Physik.1907,328(10):846-866
    [39]T. I. Jeon and D. Grischkowsky. THz Zenneck surface wave THz surface plasmon propagation on a metal sheet. Applied Physics Letters,2006,88(061113):1-3
    [40]J. B. Pendry, L. M. Moreno and F. J. G. Vidal. Mimicking Surface Plasmons with Structured Surfaces. Science,2004,305(5685):847-848
    [41]F. Miyamaru and M. Hangyo. Finite size effect of transmission property for metal hole arrays in subterahertz region. Applied Physics Letters,2004,84(15): 2742-2744
    [42]H. Cao and A. Nahata. Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures. Optics Express,2004,12(16): 3664-3672
    [43]M. Tanaka, F. Miyamaru, M. Hangyo, et al. Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays. Optics Letters,2005, 30(10):1210-1212
    [44]A. K. Azad, Y. G. Zhao, W. L. Zhang, et al. Effect of dielectric properties of metals on terahertz transmission in subwavelength hole arrays. Optics Letters, 2006,31(17):2637-2639
    [45]C. R. Williams, S. R. Andrews, S. A. Maier, et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photonics,2008,2:175-179
    [46]F. Z. Yang, J. R. Sambles and G. W. Bradberry. Long-range surface modes supported by thin films. Physical Review B,1991,44(11):5855-5872
    [47]K. L. Wang and D. M. Mittleman. Metal wires for terahertz wave guiding. Nature, 2004,432:376-379
    [48]T. I. Jeon, J. Q. Zhang and D. Grischkowsky. THz Sommerfeld wave propagation on a single metal wire. Applied Physics Letters,2005,86(161904):1-3
    [49]M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, et al. Waveguiding and Plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires. Physical Review B,2008,77(03417):1-4
    [50]M. A. Schmidt and P. St.J. Russell. Long-range spiralling surface plasmon modes on metallic nanowires. Optics Express,2008,16(18):13617-13623
    [51]黄昆.固体物理学.北京:高等教育出版社,1988,25-26
    [52]I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, et al. Magnetic photonic crystals. Journal of Physics D:Applied Physics,2003,36(18): R277-R287
    [53]陈抗生.电磁场与电磁波.杭州:浙大出版社,2005,25-26
    [54]http://ab-initio.mit.edu/mpb/
    [55]http://www.comsol.com/
    [56]P. Gu, M. Tani, S. Kono, et al. Study of terahertz radi-ation from InAs and InSb. Journal of Applied Physics,2002,91(9):5533-5537
    [57]李允植.太赫兹科学与技术原理.北京:国防工业出版社,2008,81-86
    [58]王璐.超快电信号电光采样测试系统的研究.[硕士学位论文].天津大学,2006,27-28
    [59]Y. S. Jin, G. J. Kim and S. G. Jeon. Terahertz dielectric properties of polymers. Journal of the Korean Physical Society,2006,49(2):513-517
    [60]M. Exter, Ch. Fattinger and D. Grischkowsky. Terahertz time-domain spectro-scopy of water vapor. Optics Letters,1989,14(20):1128-1130
    [61]K. Saitoh and M. Koshiba. Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Optics Express,2003,11(23):3100-3109
    [62]M. A. Ordal, R. J. Bell, R. W. Alexander, et al. Optical properties of fourteen metals in the infrared and far infrared:Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Applied Optics,1985,24(24):4493-4499
    [63]J. X. Fu, R. J. Liu and Z. Y. Li. Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces. Applied Physics Letters,2010,97(4): 041112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700