用户名: 密码: 验证码:
壳聚糖及透明质酸的电化学降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚多糖在自然界储量丰富并可再生,广泛应用于医药、化工、食品、化妆品等领域。聚多糖种类繁多,常见的有壳聚糖、透明质酸等。聚多糖的应用性能与相对分子质量密切相关。当相对分子质量降低后,其性能有着显著的提高,特别是许多独特功能只有在其相对分子质量降至一定程度后才能表现出来。然而聚多糖的相对分子质量往往比较高,极大限制了其应用,因此聚多糖的降解具有重要的意义。
     本课题以壳聚糖和透明质酸为研究对象,设想通过有催化活性的电极产生活性氧使之降解,该方法无需加入化学或生化反应试剂,利于产物分离提纯,反应易控制,反应装置简单,环境友好,具有良好的工业化应用前景。基于此,本文首先详细探讨了该方法对壳聚糖的降解规律、降解动力学及其机理。在此基础上,采用同样的方法降解透明质酸,旨在为该方法在聚多糖降解中的应用提供理论和技术基础。主要研究内容及结果如下:
     (1)采用钛基氧化钌(Ti/TiO2-RuO2)和钛基锡锑(Ti/Sb-SnO2)电极皆可有效降低壳聚糖的相对分子质量,其中Ti/Sb-SnO2电极降解壳聚糖的效果明显高于Ti/TiO2-RuO2电极。两种电极的降解效果都随着电流密度、反应温度、原料相对分子质量、乙酸浓度的增大而提高,随壳聚糖初始浓度的增大而减小,基本不受乙酸钠浓度的影响,有磁力搅拌而略微提高;两种电极的降解都基本不改变其产物的主链结构、脱乙酰度,仅在其产物的端基处生成羰基或羧基,略微降低其产物的结晶度和热稳定性。
     (2)在本实验条件下,Ti/TiO2-RuO2和Ti/Sb-SnO2两种电极的电化学降解反应均为零级反应动力学,两种电极降解壳聚糖的反应活化能皆明显低于H202降解以及亚硝酸水解的反应活化能。Ti/TiO2-RuO2电极的表观速率常数与电流密度的1.28次方、原料初始浓度的-1.04次方、乙酸浓度的0.3次方成线性关系,基本不受乙酸钠浓度的影响;Ti/Sb-SnO2电极的表观速率常数与电流密度的1.13次方、原料初始浓度的-1.36次方、乙酸浓度的0.19次方成线性关系,也基本不受乙酸钠浓度的影响。
     (3)在电化学降解壳聚糖过程中,其反应历程为:Ti/TiO2-RuO2和Ti/Sb-SnO2两种电极首先分别在其电极表面电解水产生化学吸附的活性氧(晶格中高价态氧化物的氧)和物理吸附的活性氧(吸附的羟基自由基),进而攻击壳聚糖主链上的糖苷键,导致壳聚糖断链。
     (4)采用电化学法可降解制得低分子量透明质酸。在降解过程中,透明质酸化学结构基本不变,只在其端基位置生成C=O双键。与壳聚糖的降解反应历程相似,透明质酸主链上的糖苷键也受电极表面生成活性氧的攻击,导致透明质酸断链。
Polysaccharides are abundant and can be regenerated in nature, which have extensive applications in pharmaceutical, chemical, food, cosmetics and other fields. There are many kinds of polysaccharides, such as chitosan, hyaluronan and so on. The performances of polysaccharides are related with their molecular weight. When the molecular weight of polysaccharides is reduced, their performances could be greatly improved. Especially the unique functions of polysaccharides are only obtained after their molecular weight is reduced to a certain extent. However, polysaccharides generally have high molecular weight which greatly limits their application. Therefore, the degradation of polysaccharides is of great significance.
     In this study chitosan and hyaluronan were chosen for degradation using reactive oxygen species which generated at the electrode surface. This treatment did not add chemical or biochemical reagents, facilitated the separation and purification of degraded products, was easy to control the reaction and environmentally friendly, and has a simple reactor and good prospect in industrial application. Therefore, the kinetics and mechanism of chitosan degradation using the above method was firstly discussed in detail in this paper. And then the degradation of hyaluronic acid was investigated using the same method in order to provide the theoretical and technical basis in the application of polysaccharides degradation. Main research contents and results are as follows:
     (1) Ti-based RuO2 (Ti/TiO2-RuO2) electrode and Sb-doped Ti-based SnO2 (Ti/Sb-SnO2) electrode could both reduce the molecular weight of chitosan. Ti/Sb-SnO2 electrode was much more effective than Ti/TiO2-RuO2 electrode on the degradation of chitosan. The effect of chitosan degradation using two kinds of electrodes both increased with the current density, reaction temperature, molecular weight of original chitosan and concentration of acetic acid, decreased with the initial concentration of chitosan, while the concentration of sodium acetate had a negligible effect and magnetic stirring had a slight increase on the degradation of chitosan. The chemical structure and degree of deacetylation of degraded chitosan was not obviously modified besides the new formed carboxylic or carboxyl side groups. The crystallinity and thermal stability of degradation products was slightly lower than that of original chitosan.
     (2) The degradation process using two kinds of electrodes (Ti/TiO2-RuO2 and Ti/Sb-SnO2) obeyed the zeroth-order reaction kinetics under the experimental conditions examined. The activation energys of the degradation process using two kinds of electrodes were significantly lower than that of that for H2O2 degradation and nitrous acid hydrolysis of chitosan. The apparent rate constant at Ti/TiO2-RuO2 electrode had the linear relationship with 1.28 power of current density,-1.04 power of initial concentration of chitosan and 0.3 power of concentration of acetic acid, while the concentration of sodium acetate had a negligible effect. The apparent rate constant at Ti/Sb-SnO2 electrode had the linear relationship with 1.13 power of current density,-1.36 power of initial concentration of chitosan and 0.19 power of concentration of acetic acid, while the concentration of sodium acetate had a negligible effect.
     (3) The degradation mechanism of chitosan by electrochemical process was present as follow:during electrolysis, the chemisorbed "active oxygen" (oxygen in the oxide lattice, MOx+1) and physically adsorbed "active oxygen" (adsorbed hydroxyl radicals,·OH) generated at the Ti/TiO2-RuO2 and Ti/Sb-SnO2 electrode surface, respectively, and then attacked the glycosidic bonds of chitosan chain, leading to chain scission of chitosan.
     (4) Low molecular weight hyaluronan could be prepared by electrochemical degradation method. In this degradation process, the chemical structure of degraded hyaluronan was not obviously modified besides the new formed C=O groups. The degradation mechanism of hyaluronan was similar to that of chitosan, and was present as follow:the glycosidic bond in the main chain of hyaluronan was attacked by reactive oxygen species generated at the electrode surface, leading to the chain scission of hyaluronan.
引文
[1]吴东儒.糖类的生物化学程[M].北京:高等教育出版社,1987
    [2]甘景镐,甘纯玑,胡炳环.天然高分子化学[M].北京:高等教育出版社,1993
    [3]Choi B K, Kim KY, Yoo Y J, et al. In vitroantimicrobial activity of chitooligosaccharide mixture against Actinobacillus actinomycetem-comitans and Streptococcusmutans[J]. International Journal of Antimicrobial Agents,2001,18(6): 553-557
    [4]郑连英,朱江峰.壳聚糖的抗菌性能研究[J].材料科学与工程,2000,18(2):22-24
    [5]杜昱光,白雪芳,金宗濂,等.壳寡糖抑制肿瘤作用的研究[J].中国海洋药物,2002,21(2):18-21
    [6]陈蕾,吴皓.多糖降解方法的研究进展[J].中华中医药学刊,2008,26(1):133-135
    [7]龙柏华,张滔,王科军,等.低聚壳聚糖的制备与应用研究[J].江西化工,2006,(4):34-37
    [8]王爱勤.甲壳素化学[M].第1版.北京:科学出版社,2008
    [9]陈巍,罗志刚,李忠彦,等.物理方法在壳聚糖降解中的应用[J].酿酒,2006,33(2):57-60
    [10]王镜岩,朱圣庚,徐长法.生物化学[M].第3版.北京:高等教育出版社,2002
    [11]蒋挺大.壳聚糖[M].第1版.北京:化学工业出版社,2001
    [12]徐鑫,王静.甲壳质和壳聚糖的开发及应用[J].哈尔滨工业大学学报,2002,34(1):95-100
    [13]蒋挺大.甲壳素[M].第1版.北京:化学工业出版社,2003
    [14]杨本宏,徐洪耀.壳聚糖降解方法研究进展[J].合肥联合大学报,2003,13(1):100-106
    [15]王香爱,陈养民,王淑荣,等.壳聚糖的研究进展及应用[J].应用化工,2007,11:1134-1137
    [16]Rinaudo M. Chitin and chitosan:Properties and applications [J]. Progress in Polymer Science,200631(7):603-632
    [17]宋巍,陈元维,史国齐,等.不同脱乙酰度壳聚糖的制备及结构性能的研究[J].功能材料,2007,38(10):1705-1708
    [18]裘迪红,张芝芬,吴汉民,等.甲壳低聚糖制备的研究[J].食品与机械,2001,(3):29-30
    [19]夏文水,吴焱楠.甲壳低聚糖功能性质[J].无锡轻工大学学报,1996,15(4): 297-302
    [20]Shin Y, Yoo D I, Min K. Antimicrobial finishing of polypropylene non-woven fabric by treatment with chitosan oligomer[J]. Journal of Applied Polymer Science,1999,74: 2911-2916
    [21]刘莹,柳红.壳寡糖对人结肠癌LoVo细胞株生长的影响[J].徐州医学院学报,2002,22(2):148-151
    [22]孙长华,王静.低分子量壳聚糖制备与应用[J].粮食与油脂,2004,(1):44-46.
    [23]陈虹,侯伟革.壳寡糖及其应用[J].饲料博览,2007,21:23-24
    [24]Albersheim P, Valent B S. Host-pathogen interactions in plants, when exposed to oligosaccharides of fungal origin, defend themselves by accumulating antibiotics[J]. Journal of Cell Biology,1978,78:627-643
    [25]Hirano S, Iwata M., Yamanaka K, et al. Enhancement of Serum Lysozyme Activity by Injecting a Mixture of Chitosan Oligosaccharides Intravenously in Rabbits, Agricultural Biological Chemistry,1991,55:2623-2625
    [26]柴平海,张文清,金鑫荣,等.低聚壳聚糖功能性质及应用[J].大学化学,1999,14(2):36-40
    [27]胡志鹏.壳寡糖的研究进展[J].中国生化药物杂志,2003,24(4):210-212
    [28]朱孔营,渠荣遴,李方.低分子量壳聚糖制备与应用研究进展[J].高分子通报,2006,(2):41-45
    [29]罗平,何波兵,蔺显俊,等.水溶性低分子壳聚糖的制备[J].化学研究与应用,2000,12(6):677-679
    [30]Lang G, Clausan T. The use of chitosan in cosmetics.1st ed. London:Elsevier Applied Science,1989
    [31]Hirano S, Hirochi K, Hayashi K, et al. Cosmetic and pharmaceutical uses of chitin and chitosan. New York:Pleum Press,1991
    [32]刘幸海,李正名,王宝雷.具有农业生物活性壳寡糖的研究进展[J].农药学学报,2006,8(1):1-7
    [33]龙柏华,张滔,王科军,等.低聚壳聚糖的制备与应用研究[J].江西化工,2006,(4):34-37
    [34]邢荣娥,刘松,李鹏程.甲壳寡糖的研究与应用[J].海洋科学,2002,26(5):25-27
    [35]谭艳君,刘昌南,马新安.壳聚糖在织物上的应用[J].印染助剂,2004,21(2):20-22
    [36]李战雄,靳霏霏,谢晓清.壳聚糖降解及在织物整理中的应用[J].印染助剂,2006,23(4):20-22
    [37]Rege P R, Block L H. Chitosan processing:influence of process parameters during acidic and alkaline hydrolysis and effect of the processing sequence on the resultant chitosans properties[J]. Carbohydrate Research,1999,321:235-245
    [38]何新益,夏文水.盐酸处理对壳聚糖的降解作用研究[J].食品与机械,2007,23(5):45-48
    [39]Baker S A, Foster A B, Foster M, et al. Isolation and properties of oligosaccharides obtained by controlled fragmentation of chitin[J]. Journal of the Chemical Society. 1958, (9):2218-2227
    [40]Makoto H, Akira I, Fumihiko O. Preparation of low-molecular-weight chitosan using phosphoric acid[J]. Carbohydrate Polymer,1993,20(4):279-283
    [41]Allan G G, Peyron M. Molecular weight manipulation of chitosan I:kineties of depolymerization by nitrous acid[J]. Carbohydrate Research,1995,277:257-272
    [42]Allan G G, Peyron M. Molecular weight manipulation of chitosan II:prediction and control of extent of depolymerization by nitrous acid[J]. Carbohydrate Research,1995, 277:273-282
    [43]Todashi I. Preparation of water-soluble chitosan[P]. JP,02041301,1990
    [44]Omura H. Manufacture of Low-molecular-weight Chitosan[P]. JP 0302203,1991
    [45]Jacques D, Andree G, Christion P. Preparation of β-(1-6) oligomers of 2-acetamido-2-deoxyglacoses and galactoses as drugs[P]. Fr 2640628,1990
    [46]张卫国,周永国,杨越冬,等.有机酸及降解条件对壳聚糖降解速度的影响[J].河北科技师范学院学报,2006,20(1):32-34
    [47]金鑫荣,柴平海,张文清,等.低聚水溶性壳聚糖的制备方法及研究进展[J].化工进展,1998(2):17-21
    [48]赵海峰,张敏卿,曾爱武.H202氧化降解壳聚糖研究[J].化工进展,2003,22(2):160-164
    [49]严淑兰,陆大年.壳聚糖H202法降解研究[J].化工新型材料.2001,29(12):21-22
    [50]覃彩芹,肖玲,杜予民,等.过氧化氢氧化降解壳聚糖的可控性研究[J].武汉大学学报(自然科学版),2000,46(2):195-198
    [51]张文清,柴平海,夏玮,等.NaOCl/H202协同氧化制备壳寡糖[J].华东理工大学学报,2000,4(26):425-428
    [52]Takida K, Shimizu K, Goto, M. Manufaeture of low molecular weight chitosan [P]. JP 0111101,1989
    [53]Li J, Du Y M, Liang H B. Influence of molecular parameters on the degradation of chitosan by a commercial enzyme [J]. Polymer Degradation and Stability,2007,92: 515-524
    [54]刁建忠,蒋世琼.壳聚糖酶制备壳寡糖的研究与应用[J].四川食品与发酵.2003,39(1):30-33
    [55]曾嘉,郑连英.几丁质固定化壳聚糖酶的研究[J].食品科学,2001,22(10):21-24
    [56]王学平.略谈透明质酸的降解方法[J].医药化工,2008,26(4):31-34
    [57]Pantaleone D, Yalpani M, Scollar M. Unusual susceptibility of chitosan to enzymic hydrolysis[J]. Carbohydrate Research,1992,237:325-332
    [58]张洪威,朱玲,苑望,等.脂肪酶法降解壳聚糖的研究[J].哈尔滨师范大学自然科学学报,2009,25(1):64-66
    [59]王霞,黎碧娜,吴勇.甲壳低聚糖的生物制备及研究进展[J].香料香精化妆品,2002(3):28-30
    [60]Yalpani M, Pantaleone D. An examination of the unusual susceptibilities of aminoglycans to enzymatic hydrolysis[J]. Carbohydrate Research,1994,256:159-175
    [61]Kittur F S, Kumar A B, Gowda L R, et al. Chitosanolysis by a pectinase isozyme of Aspergillus niger-A non-specific activity[J]. Carbohydrate Polymers,2003,53(2): 191-196
    [62]Renata C B, Bozena R, Salah L, et al. Degradation of chitosan and starch by 360-kHz ultrasound[J]. Carbohydrate Polymers,2005,60(2):175-184
    [63]刘石生,丘泰球,蔡纯,等.超声对壳聚糖降解作用的研究[J].广东工业大学学报,2002,19(3):83-86
    [64]董岸杰,张晓丽,李军,等.超声波在壳聚糖降解反应中的作用[J].高分子材料科学与工程,2002,18(6):187-189
    [65]胡健,赵国骏,姜涌明,等.γ-射线辐照降解壳聚糖的研究[J].扬州大学学报(自然科学版),1999,2(2):51-54
    [66]Choi W S, Ahn K J, Lee D W, et al. Preparation of chitosan oligomers by irradiation[J]. Polymer Degradation and Stability,2002,78:533-538
    [67]郭国瑞,钟海山.半干法微波处理制备壳聚糖[J].天然产物研究与开发,1994,6(4):103-106
    [68]Wang S M, Huang Q Z, Wang Q S. Study on the synergetic degradation of chitosan with ultraviolet light and hydrogen peroxide[J]. Carbohydrate Research,2005,340: 1143-1147
    [69]Qu X, Wirse A, Albertsson A C. Effect of lactic/glycolic acid side chains on the thermal degradation kinetics of chitosan derivatives[J]. Polymer,2000,41:4841-4847
    [70]Kasaai M R, Charlet G, Paquin P, et al. Fragmentation of chitosan by microfluidization process[J]. Innovative Food Science and Emerging Technologies,2003, (4),403-413
    [71]顾志明,蔡泉源,周今朝,等.高压均质技术降解壳聚糖研究[J].高分子材料科学与工程,2010,26(10):122-125
    [72]蒋林斌,刘大胜,姚评佳,等.机械研磨降解壳聚糖的工艺研究[J].生产与科研经验,2007,33(2):59-62.
    [73]Luo W B, Han Z, Zeng X A, et al. Study on the degradation of chitosan by pulsed electric fields treatment[J]. Innovative Food Science and Emerging Technologies,2010, 11:587-591
    [74]罗瑞明.透明质酸(HA)的国内外研究现状[J].宁夏农学院学报,2001,22(1):62-73
    [75]黄光斗,赵宇,张方樱,等.透明质酸的制备与应用研究进展[J].广西轻工业,2002,(1):24-29
    [76]赵春芳.透明质酸的性能及生产[J].湖北化工,2000,17(3):43-44
    [77]李良铸.生化制药学[M].北京:中国医药科技出版社,1991:284-285
    [78]覃彩凤.低相对分子质量透明质酸的制备研究[D].江苏:江南大学,2007
    [79]张天民,吴梧桐,王友同,等.动物生化制药学[M].北京:人民卫生出版社,1981
    [80]林元藻,王凤山,王转花.生化制药学[M].北京:人民卫生出版社,1998
    [81]王凤山,凌沛学,张天民,等.生化药物研究[M].北京:人民卫生出版社,1997
    [82]许寿春,王秀丽,王桂玲.玻璃酸钠的基本特性及其在临床中的应用[J].齐齐哈尔医学院学报,2007,28(18):2233-2235
    [83]Thomas L, Byers H R, Vink J, et al. Regulates tumor cell migration on hyzluronate coated substrate[J]. Journal of Cell Biology,1992,118(4):971-977
    [84]Darzynkiewicz Z, Balaze E A. Effect of connective tissue intercellular matrix on lymphocytic stimulation[J]. Experimental Cell Research,1971,66(1):113-125
    [85]Tokita Y, Okamoto A. Hydrolytic degradation of hyaluronic acid[J]. Polymer Degradation and Stability,1955,48(2):269-273
    [86]Balazs E A, Leshchiner A. Crosslinked gels of hyaluronic acid and products containing these gels for cosmetics and pharmaceuticals[P]. US,4582865,1986
    [87]Francesco D V, Aurelio R. New polysaccharide esters and there salts[P]. EP,216453, 1986
    [88]朱广华,方煜平.透明质酸制备方法及应用研究的进展[J].中国医药工业杂志,1996,2(8):382-384
    [89]单连海,熊雄,郭海霞.透明质酸的制备及其应用进展[J].安徽农业科学,2007,35(11):3150-3189
    [90]王敬旭.透明质酸及透明质酸酶在肿瘤诊断中的研究进展[J].国外医学肿瘤分册, 2004,31(10):752-754
    [91]范杰熊,冬生,黄岳山.透明质酸在组织工程中的应用研究[J].医疗卫生装备,2006,27(5):22-23
    [92]Kobayashi H, Sun G W, Terao T. Production of prostanoids via increased cyclo-oxygenase-2 expression in human amnion cells in response to low molecular weight hyaluronic acid fragment[J]. Biochimica et Biophysica Acta,1998,1425(2): 369-376
    [93]West D C, Kumar S. The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity[J]. Experimental Cell Research,1989, 183(1):179-196
    [94]王彦厚,王凤山,郭学平.低相对分子质量透明质酸的制备及其促血管生成作用[J].中国生化药物杂志,2007,28(2):107-109
    [95]Trabucchi E, Pallotta S, Morini M, et al. Low molecular weight hyaluronic acid prevents oxygen free radical damage to granulationt issue during wound healing[J]. International Journal of Tissue Reactions,2002,24(2):65-71
    [96]Callegaro L, Romeo A. Method of using low molecular weight hyaluronic acid for stimulating bone formation[P]. US,5646129,1997
    [97]杨桂兰,郭学平,栾贻宏.不同相对分子质量透明质酸钠的应用[J].食品与药品,2005,7(12):1-2
    [98]郭学平,凌沛学,张天民.低分子量及寡聚玻璃酸[J].中国生化药物杂志,2003,24(3):148-150
    [99]Gandolfi S A, Massari A, Orsoni J G. Low-molecular-weight sodium hyaluronate in the treatment of bacterial corneal ulcers[J].Graefes Archive for Clinical and Experimental Ophthalmology,1992,230(1):20-23
    [100]Tokita Y, Okamoto A. Hydrolytic degradation of hyaluronic acid[J]. Polymer Degradation and Stability,1955,48(2):269-273
    [101]郭学平,刘爱华,葛保胜,等.过氧化氢氧化降解法制备低分子玻璃酸[J].中国生化药物杂志,2004,25(1):10-12
    [102]Hawkins C L, Davies M J. Degradation of hyaluronic acid, poly-and monosaccharides and model compounds by hypochlorite:evidence for radical intermediates and fragmentation[J]. Free Radical Biology and Medicine,1998,24(9): 1396-1410
    [103]Jahn M, Baynes J W, Spiteller G. The reaction of hyaluronic acid and its monomers glucuronic acid and N-acetylglucosamine with reactive oxygen species[J]. Carbohydrate Research,1999,321(3-4):228-234
    [104]王学平.略谈透明质酸的降解方法[J].医药化工,2008,26(4):31-34
    [105]Miyazaki T, Yomota C, Okada S. Ultrasonic depolymerization of hyaluronic acid[J]. Polymer Degradation and Stability,2001, (74):77-85
    [106]Callegaro L, Renjer D. Process for preparing a hyaluronic acid fraction having a low polydespersion index[P]. US 6232303,2001
    [107]王增禄,杨泽田,徐西平.Y-射线辐射对透明质酸质量的影响[J].中国医药工业杂志,1995,26(1):26-28
    [108]董科云,王海英,郭学平,等.透明质酸钠热稳定性的研究[J].食品与药品,2006,8(1):29-33
    [109]付杰.微波制备相对低分子及寡聚透明质酸及其生物活性研究[D].山东:山东大学,2008
    [110]Akssaka H, Yamguehi T. Process of production of low molecular hyahronic acid[P]. JP WO 91104279,1991
    [111]贾梦秋,杨文胜.应用电化学[M].高等教育出版社,2002
    [112]路长青,张果金,杨文忠.电化学氧化处理废水中有机污染物技术进展[J].南京化工大学学报.1996,18:117-121
    [113]刘海萍,李宁,周德瑞,等.掺锑二氧化锡多孔钛阳极对苯酚的催化氧化[J].环境科学学报,2005,25(8):1015-1020
    [114]杨健,王奕.壳寡糖制备的集成反应分离装置[P].CN 100455603C,2009
    [115]黄永春,赵超越,杨锋,等.电化学间接氧化降解壳聚糖[J].广西工学院学报,2010,21(4):17-21
    [116]何斐,李磊,徐炎华.微污染水源水处理技术研究进展[J].安徽农业科学,2008,36(11):4672-4673
    [117]Smith V, Suere De, Watkinson A P. Anodie oxidation of phenol for wastewater treatment[J]. Canadian Journal of Chemical Engineering,1981,68:997-1001
    [118]王辉,王建中,张萍.电化学氧化法处理难降解有机废水的研究进展[J].宝鸡文理学院学报,2004,4:279-283
    [119]Chiang L C, Chang J E, Wen T C. Indirect oxidation effect in electrochemical oxidation treatment of land fill leachate[J]. Water Research,1995,29(2):671-678
    [120]Comninellis Ch. Electrocatalysis in the electrochemical conversion/combustion of organic Pollutants for wastewater treatment [J].Electrochemica. Acta.1994,39(11-12): 1857-1862
    [121]Oturan M A, Pioson J. Hydroxylation by Electrochemically Generated OH.bul. Radicals. Mono- and Polyhydroxylation of Benzoic Acid:Products and Isomer Distribution[J]. The Journal of Physical Chemistry,1995,99(38):13948-13954
    [122]Farmer J C, Wang F T, Hawley-Fedder R A, et al. Electrochemical treatment of mixed and hazardous wastes:oxidation of ethylene glycol and benzene by silver (Ⅱ)[J]. Journal of The Electrochemical Society,1992,139:654-662
    [123]Panizza M, Bocca C, Cerisola G. Electrochemical treatment of waste water containing polyaroamtic organic pollutants[J]. Water Research,2000,34(9): 2601-2605
    [124]Yang C H, Lee C C, Wen T C. Hypochlorite generation on Ru-Pt binary oxide for treatment of dye wastewater [J] Journal of Applied Electrochemistry,2000,30(6): 1043-1051
    [125]Brillas E, Mur E, Casado J. Iron (Ⅱ) catalysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode[J]. Journal of The Electrochemical Society,1996, 143(3):L49-L53
    [126]Thanos J, Fritz H P, Wabner D. The influences of the electrolyte and thephysical conditions on ozone production by the electrolysis of water [J]. Journal of Applied Electrochemistry,1984,14(3):389-399
    [127]陈延禧.电解工程[M].天津:天津科学技术出版社,1993
    [128]张招贤.钛电极工学[M].第二版.北京:冶金工业出版社,2003
    [129]孙德智.环境工程中的高级氧化技术[M].第1版.北京:化学工业出版社,2002
    [130]冯玉杰,李晓岩,尤宏,等.电化学技术在环境工程中的应用[M].第1版.北京:化学工业出版社,2002
    [131]陈繁中.电催化氧化法降解水中有机物的研究进展[J].中国给水排水,1999,15(13):24-26
    [132]潘会波,鞠鹤,陈凤云.氧化处理温度对Ti/RuO2阳极性能的影响[J].氯碱工业,1994,(8):24-27
    [133]梁镇海,王森,孙彦平.硫酸中了Ti/RuO2日极性能研究[J].甘肃科学学报,1995,7(2):162-164
    [134]Lia X Y, Cui Y H, Feng Y J, et al. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes [J]. Water Research, 2005,39:1972-1981
    [135]赵国华,周兵,朱仲良.苯酚溶液电解降解的过程分析及中间体的研究[J].同济大学学报,2000,28(5):597-599
    [136]Veliehenko A, Girenko D V, Danilov F I. Mechanism of lead electrode Position[J]. Journal of Electroanalytical Chemistry,1996, (45):127-132
    [137]谢天,王斌.二氧化铅电极制备方法综述[J].成都大学学报(自然科学版),2003,22(3):25-30
    [138]陈武,杨吕柱,梅平,等.三维电极电化学方法处理印染废水实验研究[J].工业水处理,2004,8(2):43-45
    [139]崔艳萍,杨昌柱.复极性三维电极处理含酚废水的研究[J].能源环境保护,2004,1(8):23-26
    [140]郭玉凤,崔建升.三维电极电解法处理生活污水的研究[J].河北科技工业大学学报,2003,2(24):27-29
    [141]Beer H B. Electrodes and Coating therefor[P]. US 3632498,1972
    [142]Wang W, Bo S Q, Li S Q, et al. Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation[J]. International journal of biological macromolecules,1991,13(5):281-285
    [143]Nemzek T L, Guillet J E. Calculation of accuracy and correction factors in the viscometric determination of chain scission in polymers [J]. Macromolecules,1977, 10(1):94-100
    [144]张龙,夏文水.双突跃电位滴定法测定壳聚糖脱乙酰度的影响因素[J].无锡轻工大学学报,2004,23(4):20-23
    [145]陈延禧,夏晓霞,陈艳英,等.RuO2-SnO2电极的XRD分析和电化学表面谱[J].化工学报.1996,47(1):42-47
    [146]韩卫清.电化学氧化法处理生物难降解有机化工废水的研究[D],南京:南京理工大学,2007
    [147]Dreher T W, Hawthomce D B, Grant B R. Comparision of open-column and high-perforance gel permeation chromatographythe separation and molecular-weight estimation of palyscaccharides[J]. Journal of Chromatography,1979,174:443-446
    [148]Alsop R M, Vlachogiannis G J. Determination of the molecular weight of clinical dextran by gel permeation chromatography on TSK PW type columns [J]. Journal of Chromatography,1982,246:227-240
    [149]魏远安,方积年.高效凝胶渗透色谱法测定多糖纯度及相对分子质量[J].药学学报,1989,24(7):532-536
    [150]郭振楚,韩永生,封患伙.三种多糖的光谱鉴定、化学改性及活性[J].光谱学与光谱分析,1999,19(1):25-27
    [151]赵国骏,姜涌明,孙龙生,等.不同来源壳聚糖的基本特性及其红外光谱研究[J].功能高分子学报,1998,11(3):403-407
    [152]高怀生,黄是是.壳聚糖的结构分析[J].天津化工,1996(4):21-22
    [153]Tian F, Liu Y, Hu K, et al. The depolymerization mechanism of chitosan by hydrogen peroxide[J]. Journal of Materials Science,2003,38:4709-4712
    [154]Huang Q Z, Wang S M, Huang J F, et al. Study on the heterogeneous degradation of chitosan with hydrogen peroxide under the catalysis of phosphotungstic acid[J]. Carbohydrate Polymers,2007,68:761-765
    [155]Wang S M, Huang Q Z, Wang Q S. Study on the synergetic degradation of chitosan with ultraviolet light and hydrogen peroxide[J]. Carbohydrate Research,2005,340: 1143-1147
    [156]Kang B, Dai Y D, Zhang H Q, et al. Synergetic degradation of chitosan with gamma radiation and hydrogen peroxide[J]. Polymer Degradation and Stability 2007,92: 359-362
    [157]Tirkistani F A A. Thermal analysis of some chitosan Schiff bases [J]. Polymer Degradation and Stability,1998,60(1):67-70
    [158]张海容,郭祀远,李琳,等.壳聚糖与五种过渡金属离子形成配合物的研究[J].光谱实验室,2006,23(5):1035-1038
    [159]Marselli B J, Garcia-Gomez P A, Michaud M A, et al. Electrogeneration of Hydroxyl Radicals on Boron-Doped Diamond Electrodes[J]. Journal of Environmental Sciences,2003,150,79-83
    [160]Kong J T, Shi S Y, Zhu X P, et al. Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2 electrodes in the oxidation of 4-chlorophenol[J]. Journal of Environmental Sciences,2007,19,1380-1386
    [161]孙智权,陆海彦,任秀彬,等.刷涂热分解法制备Ti/Sn 02-Sb205阳极及其性能[J].物理化学学报,2009,25(7):1385-1390
    [162]Johnson D C, Feng J, Houk L L. Direct electrochemical degradation of organic wastes in aqueous media [J]. Electrochimica Acta,2000,46(2-3):323-330
    [163]刘正烈,周亚平.物理化学(下册)[M].北京:高等教育出版社,2001:203-218
    [164]Buxton G V, Greenstock C L, Helman W P, et al. Critical review of rate constants for reactions of hydrated electrons,hydrogen atoms and hydroxyl radicals(-OH/-O-) in aqueous solution[J]. Physical Chemistry and Reference Data,1988,17(2):513-530
    [165]Tayal A, Kelly R M, Khan S A. Rheology and molecular weight changes during enzymatic degradation of a water-soluble polymer [J]. Macromolecules 1999,32: 294-300
    [166]Chang K L B, Tai M C, Cheng F H. Kinetics and products of the degradation of chitosan by hydrogen peroxide [J]. Journal of Agricultural and Food Chemistry 2001,49:4845-4851
    [167]Lii C Y, Chen C H, Yeh A I, et al. Preliminary study on the degradation kinetics of agarose and carrageenans by ultrasound [J]. Food Hydrocolloids,1999,13:477-481
    [168]Cheng Y, Prud'homme R K. Enzymatic Degradation of Guar and Substituted Guar Galactomannans [J]. Biomacromolecule,2000,1:782-788
    [169]Bejankiwar R, Lalman J A, Seth R, et al. Electrochemical degradation of 1, 2-dichloroethane (DCA) in a synthetic groundwater medium using stainless-steel electrodes [J]. Water Research,2005,39:4715-4724
    [170]Kim S, Kim T H, Park C, et al. Electrochemical oxidation of polyvinyl alcohol using a RuO2/Ti anode[J]. Desalination,2003,155:49-57
    [171]Mahmoud S S, Ahmed M M. Electrocatalytic oxidation of phenol using N1-Al2O3 composite-coating electrodes [J]. Journal of Alloys and Compounds,2009,477: 570-575
    [172]Tran L H, Drogui P, Mercier G, et al. Electrochemical degradation of polycyclic aromatic hydrocarbon in creosote solution using ruthenium oxide on titanium expanded mesh anode[J]. Journal of Hazardous Materials,2009,164:1118-1129
    [173]Chen X, Chen G. Anodic oxidation of orange Ⅱ on Ti/BDD electrode:variable effects [J]. Separation and Purification Technology,2006,48:45-49
    [174]Samet Y, Elaoud S C, Ammar S, et al. Electrochemical degradation of 4-chloroguaiacol for wastewater treatment using PbO2 anodes [J]. Journal of Hazardous Materials,2006,138:614-619
    [175]Aquino Neto S, de Andrade A R. Electrooxidation of glyphosate herbicide at different DSA compositions:pH, concentration and supporting electrolyte effect[J]. Electrochimica Acta,2009,54:2039-2045
    [176]Chen R H, Chang J R, Shyur J S. Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan[J]. Carbohydrate Research,1997,299:287-294
    [177]Szpyrkowicz L, Juzzolino C, Kaul S N, et al. Electrochemical Oxidation of Dyeing Baths Bearing Disperse Dyes[J]. Industrial Engineering Chemistry research 2000,39: 3241-3248
    [178]Cao J L, Zhao H Y, Cao, F H, et al.Electrocatalytic degradation of 4-chlorophenol on F-doped PbO2 anodes[J]. Electrochimica Acta,2009,54:2595-2602
    [179]丁海洋,冯玉杰,刘峻峰.采用循环伏安与Tafel曲线比较不同阳极的电催化性 能[J].催化学报,2007,28(7):646-650
    [180]Li Y, Wang F, Zhou G D, et al. Aniline degradation by electrocatalytic oxidation[J]. Chemosphere,2003,53:1229-1234
    [181]Muff J, Bennedsen L R, Sogaard E G. Study of electrochemical bleaching of p-nitrosodimethylaniline and its role as hydroxyl radical probe compound[J]. Journal of Applied Electrochemistry,2011,41:599-607
    [182]张芳,李光明,盛怡,等.三维电解法处理苯酚废水的粒子电极研究[J].环境科学,28(8):1715-1719.
    [183]Peller J, Wiest O, Kamat P V. Sonolysisof 2-Dichlorophenoxyacetic acid in aqueous solutions. Evidence for-OH-radical-mediated degradation [J]. Journal of Physical Chemistry A,2001,105(13):3176-3181
    [184]Kaur H, Halliwell B. Aromatic Hydroxylation of Phenylalanine as an assay for Hydroxyl Radicals [J]. Analytical Biochemistry,1994,220:11-15
    [185]吴迪.羟基自由基在电催化氧化体系中的形成规律及其在废水处理中的应用研究[D],吉林:吉林大学,2007
    [186]Kawakishi S, Kito Y, Namiki M. Radiation-induced Degradation of D-Glucose in Anaerobic Condition [J]. Agricultural Biology and Chemistry.1977,41:951-957
    [187]Laurent, T C, Ryan M, Pietruszkiewicz A. Fraction of hyaluronic acid. The polydispersity of hyaluronic acid from the bovine vitreous body[J]. Biochimica et Biophysica Acta,1960,42(3):476-485
    [188]Bitter T, Muir H M. Amodified uronic acid carbazole reaction[J]. Analytical Biochemistry,1962,4:330-333
    [189]Gilli R, Kacurakova M, Mathouthi M, et al. FT-IR studies of hyaluronate and its oligomers in the amphorphous solid phase and in aqueous solution[J]. Carbohydrate Research,1994,263(2):315-326
    [190]Welti D, Rees D A, Welsh E J. Solution confoifnation of glycosamino-glycans: assignment of the 300-MHz H-magnetic resonance spectra of chondroitin 4-sulphate, chondroitin 6-sulphate and hyaluronate, and investigation of an alkali-induced coformation cbange[J]. European Journal of Biochemistry,1979,94(2):505-514
    [191]Bociek S M, Darke A H, Welti D, et al. The C-NMR spectra of hyaluronate and chondroitin sulphates Further evidence on an alkali-induced conformation change[J]. The Federation of European Biochemical Societies Journal,1980,109(2):447-456
    [192]Drimalova E, Velebny V, Sasinkova V, et al. Degradation of hyaluronan by ultrasonication in comparison to microwave and conventional heating[J]. Carbohydrate Polymers,2005,61(5):420-426
    [193]Bezakova Z, Hermannova M, Drimalova E, et al. Effect of microwave irradiation on the molecular and structural properties of hyaluronan[J]. Carbohydrate Polymers, 2008,73:640-646
    [194]胡长华,黄津梨.薏米、玉米、木薯及淮山多糖的热谱与SEM研究[J].广西师范大学学报,1997,15(2):65-68
    [195]佘志刚,胡谷平,郭志勇,等.鲍鱼多糖Hal-A的热分析研究[J].有机化学,2003,23(10):1149-1151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700