用户名: 密码: 验证码:
基于硅微通道板的新型三维传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维结构材料的制备和应用已经引起人们极大关注,而硅基三维结构材料更是因为具有与传统集成电路工艺的兼容性以及与体材料相比所具备的独特物理与化学特性,成为制备微型电化学传感与能源器件最理想的材料。本文以电化学刻蚀技术制备的硅基微通道板为基础,开展了如下几个方面的研究工作:
     1.论文首先介绍了利用光辅助电化学刻蚀技术制备硅基微通道板的方法。工艺中实验参数如刻蚀溶液浓度,光照,偏压和温度也被进一步优化。在选定条件下制得的硅基微通道样品具备良好表面形貌,大的比表面积和高深宽比,并可以和衬底自分离,可作为新型三维材料应用于各个领域。
     2.基于竖直排列的镀镍硅基微通道板和在其表面沉积的高度分散的钯纳米粒子,制备了一种高灵敏度的电流型乙醇电化学传感器。钯修饰的镀镍硅基微通道板电极的表面形貌由扫描电子显微镜(SEM)和X射线衍射图样(XRD)表征分析。钯/镍/硅基微通道板电极对乙醇的电化学探测性能通过循环伏安法和电流测定法进行研究。这种具备三维结构的电极对于乙醇在0.10 mol L-1的氢氧化钾溶液中的氧化具有很高的催化活性。在-0.10 V的测量电位下,钯/镍/硅基微通道板电极显示了很高的灵敏度,可以达到0.992 mA mM-1 cm-2,计算得到的检测下限为16.8μM。检测线性范围高达60mmolL-1线性相关系数为0.998。它同时还具有良好的电催化性能,快速响应以及高稳定性和可重复性。
     3.利用电化学方法制备了过氧化聚吡咯修饰的钯/镍/硅微通道板电极,并应用于葡萄糖传感器,具备相当多的突出优势,例如较高的灵敏度,良好的稳定性和重复性以及快速响应。过氧化聚吡咯薄膜的修饰提高了传感器的选择性,并有效抑制了常见干扰物质如尿酸和抗坏血酸氧化所引起的干扰信号。在+0.08 V的电压下,可以获得0.37 mA mM-1 cm-2的高灵敏度,检测下限为2.06μM。线性检测的浓度范围为1 mM到24 mM,线性相关系数为0.997。此外,由于修饰了过氧化聚毗咯薄膜,有效抑制了常见干扰物质如尿酸和抗坏血酸所引起的干扰信号,因此所制备的电极具有很强的抗干扰能力。这种新型电极在葡萄糖的非酶检测方面具有巨大的潜力。
     4.本部分首先研究了燃料电池的现状和存在的主要问题,利用制备好的硅基微通道开发新型乙醇燃料电池。三维阵列中合适的通道尺寸和高多孔度增加了活性点位,增强了反应物和产物的质量输运,因此,能够加速快速电子转移,改善催化效率。在钯/镍/硅基微通道板上,乙醇的氧化电压负移,并且峰值电流密度高于平面的钯/镍/硅结构。这些结果显示了微通道结构在增强乙醇氧化活性方面的重要作用。利用计时电流法评估了钯/镍/硅基微通道板的稳定性。分别研究不同氢氧化钾浓度和不同乙醇浓度下电极对乙醇氧化的催化特性,并探讨了反应机制,为构建高功率的直接乙醇燃料电池提供了有益的基础性工作。
     5.电化学刻蚀技术不只可以用来制备硅基微通道板,还可以制备具有设定深度的多孔硅结构,并通过扩散形成三维PN结。三维PN结可用作新型能量转换装置,广泛适用于高能物理,洁净能源,以及材料测试。利用阳极氧化的电化学刻蚀是一种非常优良的构造三维PN结的方法。然而,P型硅相邻两个孔之间的孔壁厚度往往太薄,难以适应随后扩散的技术需求。在本部分中,脉冲电流被用于制造理想的具有较厚的侧壁的P型微结构。基于该新颖结构的三维PN结在光伏能量转换方面具有极大的潜力。通过将三维PN结应用在太阳能电池中,光子可以得到再次吸收的机会。因此,电学参数例如输出电流和能量转换效率可以被大大改善。这一理论的可行性通过Matlab仿真结果验证。而且常见的加工工艺使得这一制备技术无论在实验室还是在工业上都能得到广泛应用,因此这是一种不需要额外添加投资而获得更高效率的有效方法。
     综上所述,利用电化学刻蚀技术制备的硅基微通道板构成的电极具有优良的催化性能和稳定性,在电化学传感器和燃料电池中具有相当大的应用潜力,对发展可集成的新型器件具有重要意义。而同样利用电化学刻蚀方法得到的三维PN结也为新型太阳能电池的开发打下了良好的基础,为微电子机械系统加工技术在能源和传感器领域的应用提供了全新的切入点。具有一定的创新性和科研价值,它的产业化必将带来巨大的社会和经济效益。
The fabrication and application of three-dimensional materials have attracted tremendous attention. Silicon based three-dimensional materials have become the best choice to fabricate micro-electrochemical sensor and energy device arising from their unique properties in physics and chemistry compared with bulk materials and compatibility with silicon IC technology. This thesis focuses on silicon micro-channel plate prepared by electrochemical etching and the main works are listed as following:
     First, the method of the fabrication of silicon micro-channel plate by using the photo-electrochemical technology is described. The experimental parameters such as concentration of etchant, illumination, bias voltage and etching temperature are further optimized. Samples of silicon micro-channel plate fabricated under the selected conditions have good surface topography, large active area and high aspect ratio. The micro-channel layer can be separated from substrate automatically. The silicon micro-channel plate could be applied in various fields as novel three-dimensional material.
     A sensitive amperometric ethanol sensor composed of highly dispersed palladium nanoparticles on the vertically aligned nickel coated silicon microchannel plate (MCP) has been constructed. The morphology of the palladium modified nickel coated silicon MCP electrode was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The performance of the Pd/Ni/Si MCP electrode for the electrochemical detection of ethanol was investigated by cyclic voltammetry and amperometry. The electrode with three dimensional structure shows high catalytic activity towards the oxidation of ethanol in 0.10 M KOH solution. At an applied potential of-0.10 V, the Pd/Ni/Si MCP electrode shows a high sensitivity of 0.992 mA mM-1 cm-2 and the detection limit is 16.8μM. The linear range is up to 60 mM with a linear correlation coefficient of 0.998.It also possesses excellent electrocatalytic properties,rapid response,as well as good stability and repeatability.
     The OPPy-Pd/silicon MCP electrode fabricated electrochemically boasts a number of advantages such as high sensitivity,good stability,reproducibility,and quick response.Excellent selectivity is rendered by the OPPy film and signals arising from oxidation of common interferences such as UA and AA can be effectively suppressed. At a potential of+0.08 V,good sensitivity of 0.37 mA mM-1 cm-2 and detection limit of 2.06μM are attained. The linear range is up to 24 mM with a linear correlation coefficient of 0.997. Furthermore, the electrode is highly resistant to interfering substances because the effects of common coexisting substances can be effectively eliminated by the OPPy film and the response in the current to interferences on the electrode surface is almost negligible. This novel electrode has great potential application in nonenzymatic detection of glucose.
     We developed an ethanol fuel cell based on silicon micro-channel plate. The suitable spatial dimension and high porosity in this three-dimensional array can increase the active sites and enhance the mass transfer of reactants or products, thereby accelerating fast electron transfer and improving the catalyst efficiency. The onset potential for ethanol oxidation shifts negatively on Pd/Ni/Si MCP, and the current density peak is higher than that of planar Pd/Ni/Si. These results reveal that the microchannel structure plays an important role in the enhanced activity of ethanol oxidation. The stability of the Pd/Ni/Si MCP is evaluated by chronoamperogram. The electrocatalytic performance of prepared electrode for ethanol oxidation was investigated by varying concentrations of KOH and ethanol in order to understand the mechanism.
     The electrochemical etching technology can not only be used to prepare silicon-based micro-channel plate, but also be applied to fabricate porous silicon structure with given depth. The three-dimensional p-n junction based on porous silicon structure is formed by diffusion which can be used as novel energy conversion device adopted in high energy physics, clean energy power source and material test. The electrochemical etching process utilizing anodization has been described as a recommendable method to fabricate three-dimensional structure for p-n junction. However, the thickness of sidewall between two adjacent pores in the structure is usually too thin for p-type silicon to accord with technological requirement of following diffusion. In this section, pulse current was employed to manufacture satisfactory microstructure p-type silicon with thick sidewall.The 3D p-n junction based on this novel structure is promising for application in photovoltaic energy conversion and detection. By applying 3D p-n junction in solar cell,photons acquire an opportunity for secondary absorption. Therefore,electrical parameters such as output current and energy conversion efficiency are greatly improved. The feasibility of the theory is proved by the results of Matlab simulations.Furthermore,common fabrication process facilitates their applications both at laboratory and industrial levels, so it is an effective method which can yield higher efficiency without a large number of additional investments.
     In conclusion,electrodes constructed by silicon-based micro-channel plate have high potential in electrochemical sensors and fuel cells owing to superior electrocatalytic properties and stability.It is of great significance for development of novel integrated device.The three-dimensional p-n junction which is also obtained by electrochemical etching method has laid good foundation for the improvement of solar cell. The works in this thesis provide new entry point for the application of micro electro mechanical system technology in energy source and sensor field. The industrialization of this research with innovative and scientific value will bring huge social and economic benefits.
引文
[1]S.I. Raider, R. Flitsch and M.J. Palmer, Oxide growth on etched silicon in air at room temperature [J]. J. Electrochem. Soc,1975,122:413-418.
    [2]张帅贾,育秦,MEMS技术的研究现状和新进展[J].现代制造工程,2005,9:109-112.
    [3]邵培革,王立鼎,微机械元件和仪器新进展[J].光学精密工程,1997,1:10-15.
    [4]J. Bryzek, Impact of MEMS technology on society [J]. Sensor and Actuator A, 1996,56:1-9.
    [5]张冬至,胡国清,微机电系统关键技术及其研究进展[J].压电与声光,2010,32(3):514-520.
    [6]林日乐,谢佳维,蔡萍,翁邦英,董宏奎,赵建华,王瑞,张巧云,体微加工技术在MEMS中的应用[J].压电与声光,2005,27(3):324-327.
    [7]A.D. Dehennis, K.A. Wise, A fully-integ rated multi-site pressure sensor for wireless arterial flow characterization [J]. IEEE Journal of Micro-electromechanical Systems,2006,15(3):678-685.
    [8]陈兵芽,刘莹,胡敏,李小兵,李一冰,王强,微执行器的研究与展望[J].微纳电子技术,2005(12):561-565.
    [9]曾平,程光明,刘九龙,孙晓峰,压电泵为动力源的计算机芯片水冷系统研究[J].压电与声光,2006,28(4):403-406.
    [10]Y.S. Zhang, S. Yong, D.L. Wang, D.M. Guo, H.H. Yu, Characteristics of magnetic torque of a capsule micro robot applied in intestine [J]. IEEE Transactions on Magnetics,2009,45(5):2128-2135.
    [11]潘剑峰,张会峰,薛宏,李德桃,微热光电系统带双环形翅片燃烧室的数值模拟[J].热科学与技术,2007,6(4):351-355.
    [12]K.D. Wise. Integrated sensors, MEMS, and micro-systems:reflections on a fantastic voyage [J]. Sensors and Actuators A,2007,136(1):39-50.
    [13]P.T. Bhatti, K.D. Wise. A 32-site 4-channel high-density electrode array for a cochlear prosthesis [J]. IEEE Journal of Solid-state Circuits,2006,41(12): 2965-2973.
    [14]K.D. Wise. Silicon micro systems for use in neuroscience and neural prostheses [J]. IEEE Engineering in Medicine and Biology Magazine,2005,24(5):22-29.
    [15]G. D. Arrigo, C. Spinella, G. Arena, S. Lorenti, Fabrication of miniaturised Si-based electrocatalytic membranes [J]. Materials Science and Engineering C, 2003,23:13-18.
    [16]李野,向嵘,王国政,王新,陈力,付申成,吴奎,姜德龙,端木庆铎,田景全,硅基高长径比微孔阵列及其应用[J].微电子学,2007:862-865.
    [17]V.K. Dwivedi, R. Gopal, S. Ahmad, Fabrication of very smooth walls and bottoms of silicon microchannels for heat dissipation of semiconductor devices [J]. Microelectronics Journal,2000,31:405-410.
    [18]J.Li, Q.X.Zhang, A.Q.Liu, Advanced fiber optical switches using deep R1E (DRIE) fabrication [J]. Sensors and Actuators A,2003,102:286-295.
    [19]B.L. Gray, D. Jaeggi a, b, N.J. Mourlas, B.P. van Drieenhuizen, K.R. Williams, N.I. Maluf, G.T.A. Kovacs, Novel interconnection technologies for integrated microfluidic systems [J]. Sensors and Actuators A,1999,17:57-65.
    [20]Korbinian Kunz, Peter Enoksson, Goran Stemme, Sensors and Actuators A, 2001,92:156-160.
    [21]S.R. Nicewarner-Pena, R.G. Freeman, B.D. Reiss, L. He, D.J. Pena, I.D. Walton, R. Cromer, C.D.Keating, M.J.Natan, Science,2001,294:137.
    [22]L. Wang, A. Nichelatti, H. Schellevis, C. de Boer, C. Visser, T.N.Nguyen, P.M. Sarro; "High Aspect Ratio through-Wafer Interconnections for 3D-Microsystems" Proc.16th IEEE International MEMS conference, January 19-23,2003, Kyoto, Japan, pp.634-637.
    [23]G. Barillaro, A. Nannini, M. Piotto, Electrochemical etching in HF solution for silicon micromachining [J]. Sensors and Actuators A,2002,102:195-201.
    [24]范洪雷,侯晓远,张甫龙等,用脉冲腐蚀制备发光多孔硅[J].半导体学报,1995,16:113-117.
    [25]A. Spinter, J. Sturmann, W. Benecke, Novel Porous Silicon Formation Technology Using Internal Current Generation[J].Materials Science and Engineering C,2001,15:109-112.
    [26]A.S. Tremsin,D.F.R. Mildner,W.B.Feller,R.G. Downing. Very Compact High Performance Microchannel Plate Neutron Collimators,0-7803-8257-9/04,IEEE, 2004.
    [27]F. Muller, A. Birner, J. Schilling, A. P. Li, K. Nielsch, U. Gosele, V. Lehmann. High aspect ratio microstructures based on anisotropic porous materials [J]. Microsystem Technologies,2002,8:7-9.
    [28]杨国栋,周荣媚,光电倍增管的现状与抉择[J].四川绵阳,第九届真空技术应用学术年会,2006/09:239~242.
    [29]J.R. Horton, G.W. Tasker, J.J. Fijol. Characteristics and applications of advanced technology microchannel plates [J]. Proc. SPIE [C].1990,1306: 169-178.
    [30]C.P. Beetz, et al. Silicon Etching Process for Making MicroChannel Plates. US Patent 5997713,1999.
    [31]陈光文,袁权,微化工技术[J].化工学报,2003,54(4):428-439.
    [32]A. Gavriilidis, P. Angeli, E. Cao, K.K. Yeong, Y.S. Wan. Technology and applications of microengineered reactors [J]. Chemical Engineering Research&Design,2002,80:3-30.
    [33]Z.Y. Guo, Hot issues in international heat transfer at present-Cooling of microelectronic components [J]. Bulletin of National Natural Science Foundation of China,1988,2:20-25.
    [34]刘少波,李艳秋,刘梅冬,曾亦,微型MEMS致冷器的研究新动向[J].压电与声光,2005年2月,第27卷,第1期.
    [35]张兴,黄如,刘晓彦,微电子学概论,北京:北京人学出版社,2000:209-223.
    [36]黄庆安,硅微机械加工技术,科学出版社,1996:154-165.
    [37]N. Kaji, Y. Tezuka, Y. Takamura, etal. Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field [J]. Anal. Chem.,2004, 76:15-22.
    [38]王立凯,冯喜增,微流控芯片技术在生命科学研究中的应用[J].化学进展,2005,17(3):482-498.
    [39]M. Cabodi, S.W.P. Turner, H.G. Craighead, Entropic recoil separation of long DNA molecules [J]. Anal. Chem.,2002,74:5169-5174.
    [40]R.C. Anderson, R.S. Muller, C.W. Tobias, Investigation of the electrical properties of porous silicon [J]. J. Electrochem. Soc.1991,138:3406-3411.
    [41]A. Foucaran, B. Sorli, M.Garcia, F. Pascal-Delannoy, A. Giani, A. Boyer, Porous silicon layer coupled with thermoelectric cooler:a humidity sensor [J]. Sens. Actuators A,2001,79:189-193.
    [42]EJ. Connolly, G.M. O'Halloran, H.T.M. Pham, P.M. Sarro, P.J. French, Comparison of porous silicon, porous polysilicon and porous silicon carbide as materials for humidity sensing applications [J]. Sens. Actuators A,2002,99: 25-30.
    [43JG.D. Francia, A. Castaldo, E. Massera, I. Nasti, L. Quercia, I. Rea, A very sensitive porous silicon based humidity sensor [J]. Sens. Actuators B,2005, 111-112:135-139.
    [44]S.J. Kim, S. Lee, Intermittent strange nonchaotic attractors in quasiperiodicallyforced systems [J]. Journal of the Korean Physical Society,2004, 44:514-517.
    [45]FJ. Miao, B.R. Tao, P.L. Ci, J. Shi, L.W. Wang, P.K. Chu,3D ordered NiO/silicon MCP array electrode materials for electrochemical supercapacitors [J]. Mater. Res. Bull.,2009,44:1920-1925.
    [46]T. Liu, H.Y. Zhang, F. Wang, J. Shi, P.L. Ci, L.W. Wang, S.L. Ge, QJ. Wang, P.K. Chu, Three-dimensional supercapacitors composed of Ba0.65Sr0.35TiO3 (BST)/NiSi2/silicon microchannel plates [J]. Mat. Sci. Eng., B,2010,176: 387-392.
    [47]F.J. Miao, B.R. Tao, L. Sun, T. Liu, J.C. You, L.W. Wang, P.K. Chu, Preparation and characterization of novel nickel-palladium electrodes supported by silicon microchannel plates for direct methanol fuel cells [J]. J. Power Sources,2010, 195:146-150.
    [48]C.P. Beetz, R. Boerstler, J. Steinbeck, B. Lemieux, D.R. Winn, Silicon-micromachined microchannel plates. Nuclear Instruments and Methods in Physics Research A,2000,442:443-451.
    [49]张万忠,乔学亮,陈建国,王洪水,纳米材料的表面修饰与应用[J].化工进展,2004,23:1069-1070.
    [50]刘莹,何领好,宋锐,纳米氧化锌表面修饰的进展[J].化学通报,2007,11: 823-828.
    [51]刘有芹,颜芸,沈含熙,化学修饰电极的研究及其分析应用[J].化学研究与应用,2006,18:337-343.
    [52]M.R. Linford, C.E.D. Chidsay, Alkyl monolayers covalently bonded to silicon surfaces [J]. J. Am. Chem. Soc.1993,115 (26):12631-12632.
    [53]F. Diaz, K.K. Kanazawa, G.P. Gardini, Electrochemical polymerization of pyrrole [J]. J. Chem. Soc. Chem. Commum.,1979,4:635-636.
    [54]S.J. Dong, F. Li, Researches on chemically modified electrodes:Part ⅩⅤ. Preparation and electrochromism of the vanadium hexacyanoferrate film modified electrode [J]. J. Electroanal. Chem.,1986,210(1):31-44.
    [55]樊尚春,刘广玉,新型传感技术及应用[M]北京:中国电力出版社,2005.
    [56]C.Y. Lee, S.J. Lee, C.L. Hsieh, Application of micro sensors on diagnosis of micro fuel cells [A]. IEEE Review of Advancements in Micro and Nano Technologies [C],2007,434-437.
    [57]S. P. Lee, Synthesis and Characterization of Carbon Nitride Films for Micro Humidity Sensors [J]. Sensors,2008 (8):1508-1518.
    [58]赵玉龙,赵立波,蒋庄德,基于SIMOX技术的高温压力传感器研制[J].仪器仪表学报,2004,36(2):149-151.
    [59]B.R. Azamian, J.J. Davis, K.S. Coleman, C.B. Bagshaw, L.H. Green, Bioelectrochemical single-walled carbon nanotubes [J]. J Am Chem Soc,2002, 124(43):12664-12665.
    [60]J. Yang, Y. Xu, R.Y. Zhang, Y.Z. Wang, P.G. He, Y.Z. Fang, Direct electrochemistry and electrocatalysis of the hemoglobin immobilized on diazonium-functionalized alignedcarbon nanotubes electrode [J]. Electroanalysis, 2009,21:1672-1677.
    [61]陈桂芳,梁志强,李根喜,纳米材料用于构建新型电化学生物传感器的研究进展[J].生物物理学报,2010,26(8):711-725.
    [1]P.Steiner, W.Lang, Micromachining applications of porous silicon [J]. Thin Solid Films,1995,255(1-2):52-58.
    [2]M.I.J.Beale, J.D.Benjamin and M.J.Uren, et al., An experimental and theoretical study of the formation and microstruction of porous silicon [J]. Journal of Crystal Growth,1985,73(3):622-636.
    [3]R.L. Smith, S.D. Collins, Porous silicon formation mechanisms [J]. Journal of Applied Physics,1992,71(8):R1-R22.
    [4]V.Lehmann, U.Gosele, Porous silicon formation:A quantum wire effect [J]. Applied Physics Letters,1991,58(8):856-858.
    [5]S. John, Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett.,1987,58:2486-2489.
    [6]E. Yablonovitch, Inhibited spontaneous emission in solid state physics and electronics [J]. Phys. Rev. Lett.,1987,58:2059-2061.
    [7]K. Sakoda, Optical Properties of Photonic Crystals.Springer [M]. Berlin,2001, ISBN 3-540-41199-2.
    [8]V.Lehmann, H. FO11, Formation mechanism and properties ofelectrochemically etched trenches in n-type silicon [J]. J Electrochem. Soc,1990,137(2):653-658.
    [9]V. Lehmann, The physics of macropore formation in low doped n-type silicon [J]. J. Electrochem. Soc,1993,140:2836-2843.
    [10]V. Lehmann, U. Gosele, Porous silicon formation:a quantum wire effect [J]. Appl. Phys. Lett.,1991,58:856-858.
    [11]M. Christophersen, J. Carstensen, H. Foll, Pore Formation Mechanisms for the Si-HF System [J]. Mat. Sci. Eng. B,2000,23:69-70.
    [12]W. Lang, P. Steiner, H. Sandmaier. Porous silicon:a novel material for Microsystems [J]. Sensors and actuators A,1995,51:31-36.
    [13]V. Lehmann, The physics of macroporous silicon formation [J]. The Solid Film, 1995,225:1-4.
    [14]H. Foll, M. Christophersen, J. Carstensen, G. Hasse. Formation and Application of Porous Silicon [J]. Materials Science and Engineering R,2002,39:93-141.
    [15]P.A. Kohl, photoelectrochemical etching of semiconductors [J]. IBM Journal of Research and Development,1998,42:629-637.
    [16]X.M. Chen, J.L.Lin, D. Yuan, P.L. Ci, P.S. Xin, S.H. Xu, L.W.Wang, Obtaining of high area-ratio free-standing silicon microchannel plate via modified electrochemical procedure [J]. Journal of Micromechanics and Microengineering,2008,18:037003.
    [17]郭运德,硅片清洗方法探讨[J].上海有色金属第20卷第4期,1999年12月,162-165.
    [18]P.A. Kohl, D.B.Harris, and J. Winnick, The photoelectrochemical etching of (100)and(111)p-InP[J]. J. Electrochem. Soc.,1991,138:608-614.
    [19]O. Bisi et al., Porous Silicon:a Quantum Sponge Structure for Silicon based Optoelectonics [J]. Surface Science Reports.2000,38:1-126.
    [20]肖啸,刘世杰,光刻技术发展现状分析[J].乐山师范学院学报,第19卷第5期:26-29.
    [21]J.L. Lin et al. Investigation of the Formation of undercut during the Fabrication of Silicon Microchannels by Electrochemical Etching. IEEE 2008, pp.84, The 3st IEEE-NEMS, January 6-92008, Sanya, China.
    [22]D. Yuan, P.L. Ci, F. Tian, J.Shi, S.H. Xu, P.S. Xin, L.W.Wang, Large Size P-type Silicon Microchannel Plates Prepared by Photo-Electrochemical Etching [J]. J. Micro/Nanolith. MEMS MOEMS,2009,8:033012.
    [1]单晓梅,张振宇,刘立明等,饮酒后血中乙醇的监测[J].安徽预防医学杂志,2004,10(3):142-144.
    [2]G.Walker, W. Winterlin, H. Fouda, J. Seiber, Gas chromatographic analysis of urethan (ethyl carbamate) in wine [J]. J. Agric. Food Chem.,1974,22:944-947.
    [3]U.V. Kucherenko, V.A. Moiseev, The use of H-1-NMR spectroscopy and refractometry for investigation of the distribution of nonelectrolytes n-alcohols series between human red blood cells and extracellular medium [J]. Biol. Membr., 1999,16:516-525.
    [4]M. Calull, R.M. Marce, F. Borrull, Determination of carboxylic acids, sugars, glycerol and ethanol in wine and grape must by ion-exchange high-performance liquid chromatography with refractive index detection [J]. J. Chromatogr.,1992, 590:215-222.
    [5]陆道礼,林松,陈斌,近红外光谱法快速测定啤酒中乙醇的含量[J].酿酒科技,2005,130(4):872-891.
    [6]粟智,车云霞,高学平等,用热值分析法测定饮用酒的酒精[J].中国酿造,2006,9:682-701.
    [7]朱昌青,周宏标,李永新等,催化动力学光度法测定啤酒中的乙醇[J].安徽师范大学学报,2000,23(2):1472-1481.
    [8]S. Mendesl, F.C.C. Oliveira, Determination of ethanol in fuel ethanol and beverages by Fourier transform (FT)-near infrared and FT-Raman spectrometries [J]. Anal. Chim. Acta,2003,493(2):2192-2311.
    [9]S.S.M.P. Vidigal, I.V. Toth, A.O.S.S. Rangel, Sequential injection-LOV format for peak height and kinetic measurementmodes in the spectrophotometric enzymatic determination of ethanol:Application toApp lication to different alcoholic beverages [J]. Talanta,2008,77(2):4942-4991.
    [10]左保林,人血中乙醇含量的分光光度法检测[J].刑事技术,1995,2:12-13.
    [11]李琼,谢国明,徐华建等,血乙醇浓度分析方法及其评价[J].分析仪器,2005,3:57-59.
    [12]王向阳,乙醇氧化酶法测定血清中乙醇含量[J].临床检验杂志,2002,20(4): 208-210.
    [13]苟锡斌,气相色谱法测定血液中乙醇含量[J].预防医学情报杂志,2003,19(2):188.
    [14]刘德成,气相色谱法测定血清中的乙醇[J].中华预防医学杂志,1995,29(5):307-308.
    [15]张黎军,仲翠莲,气相色谱法在甲醇和乙醇中毒诊断中的应用[J].中华预防医学杂志,2000,34(1):52-53.
    [16]朱艳英,酒精溶液中酒精度的在线测量[J].激光杂志,2005,26(3):861.
    [17]T. Yano, T. Aimi, Y. Nakano, M. Tamai, Prediction of the concentrations of ethanol and acetic acid in the culture broth of a rice vinegar fermentation using near-infrared spectroscopy [J]. J. Ferment. Bioeng.,1997,84:461-465.
    [18]R. Laenen, C. Rauscher, A. Laubereau, Vibrational energy redistribution of ethanol oligomers and dissociation of hydrogen bonds after ultrafast infrared excitation [J]. Chem. Phys. Lett.,1998,283:7-14.
    [19]G. Neri, A. Bonavita, G. Micali, N. Donato, F.A. Deorsola, P. Mossino, I. Amato, B. DeBenedetti, Ethanol sensors based on Pt-doped tin oxide nanopowders synthesised by gel-combustion [J]. Sens. Actuators B,2006,117:196-204.
    [20]E. Comini, Metal oxide nano-crystals for gas sensing [J]. Anal. Chim. Acta,2006, 568:28-40.
    [21]L. Wu, M. Mclntosh, X.J. Zhang, H.X. Ju, Amperometric sensor for ethanol based on one-step electropolymerization of thionine-carbon nanofiber nanocomposite containing alcohol oxidase [J]. Talanta,2007,74:387-392.
    [22]Y.C. Weng, T.C. Chou, Ethanol sensors by using RuO2-modified Ni electrode [J]. Sens. Actuators B,2002,85:246-255.
    [23]M. Yang, D.J. Wang, L. Peng, Q.D. Zhao, Y.H. Lin, X. Wei, Surface photocurrent gas sensor with properties dependent on Ru(dcbpy)2(NCS)2-sensitized ZnO nanoparticles[J].Sens.Actuators B,2006, 117:80-85.
    [24]Y. Weng, J.F. Rick, T. Chou, A sputtered thin film of nanostructured Ni/Pt/Ti on Al2O3 substrate for ethanol sensing [J]. Biosens. Bioelectron.,2004,20:41-51.
    [25]J. Keith, S. Puckett, G.E. Pacey, Investigation of the fundamental behavior of long-period grating sensors [J]. Talanta,2003,61:417-421.
    [26]C.W. Xu, P.K. Shen, X.H. Ji, R. Zeng, Y.L.Liu, Enhanced activity for ethanol electro oxidation on Pt-MgO/C catalysts [J]. Electrochem. Commun.,2005,7: 1305-1308.
    [27]S.L.Chen, M. Schell, Bistability and excitability in the electrochemical oxidation of ethanol[J].Electrochim.Acta,1999,44:4773-4780.
    [28]Y. Liu, L.Zhang, Q.H. Guo, H.Q. Hou, T.Y.You, Enzyme-free ethanol sensor based on electrospun nickel nanoparticle-loaded carbon fiber paste electrode[J]. Anal. Chim. Acta,2010,663:153-157.
    [29]G. Neri, A. Bonavita, G. Micali, N. Donato, F.A. Deorsola, P. Mossino, I. Amato, B. De Benedetti, Ethanol sensors based on Pt-doped tin oxide nanopowders synthesised by gel-combustion [J]. Sens. Actuators B,2006,117:196-204.
    [30]H. Razmi, Es. Habibi, H. Heidari, Electrocatalytic oxidation of methanol and ethanol at carbon ceramic electrode modified with platinum nanoparticles [J]. Electrochim. Acta,2008,53:8178-8185.
    [31]X.H. Xia, H.D. Liess, T. Iwasita, Early stages in the oxidation of ethanol at low index single crystal platinum electrodes [J]. J. Electroanal. Chem.,1997,437: 233-240.
    [32]罗彬,周德璧,赵大鹏,直接乙醇燃料电池阳极催化材料的研究进展[J].材料导报,2007,21(9):288-291.
    [33]Z.X. Liang, T.S.Zhao, J.B. Xu, et al. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media [J]. Electrochimica Acta,2009,54(8): 2203-2208.
    [34]P.K. Shen, C. Xu, Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts [J]. Electrochem. Commun.,2006,8:184-188.
    [35]C. Xu, P.K. Shen, Y.L. Liu, Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide [J]. J. Power Sources,2007,164:527-531.
    [36]C. Xu, P.K. Shen, Y.L. Liu, Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media [J]. Electrochem. Commun., 2007,9:997-1001.
    [37]F. Hu, G. Cui, Z.Wei, P.K. Shen, Improved kinetics of ethanol oxidation on Pd catalysts supported on tungsten carbides/carbon nanotubes [J]. Electrochem. Commun.,2008,10:1303-1306.
    [38]H.T.Zheng, Y.Li, S.Chen, P.K. Shen, Effect of support on the activity of Pd electrocatalyst for ethanol oxidation [J]. J. Power Sources,2006,163:371-375
    [39]方翔,沈培康,乙醇在钯电极上的电氧化机理[J].物理化学学报,2009,25(9):1933-1938.
    [40]M.W.Xu, G.Y. Gao, W.J.Zhou, K.F.Zhang, H.L.Li, Novel Pd/beta-MnO2 nanotubes composites as catalysts for methanol oxidation in alkaline solution [J]. J. Power Sources,2008,175:217-225.
    [41]X.M. Chen, J.L. Lin, D. Yuan, P.L. Ci, P.S. Xin, S.H. Xu, L.W. Wang, Obtaining a high area ratio free-standing silicon microchannel plate via a modified electrochemical procedure [J]. J. Micromech. Microeng.,2008, 18:037003.
    [42]D. Yuan, P.L. Ci, F. Tian, J.Shi, P.S. Xin, S.H.Xu, L.W.Wang, Large-size P-type silicon microchannel plates prepared by photoelectrochemical etching [J]. J. Micro/Nanolith. MEMS MOEMS,2009,8:033012.
    [43]F.J. Miao, B.R. Tao, L. Sun, T. Liu, J.C. You, L.W. Wang, P.K. Chu, Amperometric glucose sensor based on 3D ordered nickel-palladium nanomaterial supported by silicon MCP array [J]. Sens. Actuators B:Chem., 2009,141:338-342.
    [44]K.Q. Peng, A.J. Lu, R.Q.Zhang, S.T. Lee, Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching [J]. Adv. Funct. Mater.,2008, 18:3026-3035.
    [45]X. Zhang, K.N. Tu, Y.H. Xie, C.H.Tung, High Aspect Ratio Nickel Structures Fabricated by Electrochemical Replication of Hydrofluoric Acid Etched Silicon [J]. Electrochem. Sol. State Lett.,2006,9:C150-C152.
    [46]G. Sharma, V. Kripesh, M.C.Sim, C.H. Sow, Synthesis and characterization of patterned and nonpatterned copper and nickel nanowire arrays on silicon substrate [J]. Sens. Actuators A,2007,139:272-280.
    [47]X. Zhang, F. Ren, M.S. Goorsky, K.N. Tu, Study of the initial stage of electroless Ni deposition on Si (100) substrates in aqueous alkaline solution [J]. Surface & Coatings Technology,2006,201:2724-2732.
    [48]M. Grden, A. Czerwinski, EQCM studies on Pd-Ni alloy oxidation in basic solution [J]. J. Solid State Electrochem.,2008,12:375-385.
    [49]L.J. Vracar, S. Burojevic, N. Krstajic, The surface processes at Pd-Ni alloy in acid and alkaline solutions [J]. Int. J. Hydrogen Energy,1998,23:1157-1164.
    [50]M. Grden, J. Kotowski, A. Czerwinski, The study of electrochemical palladium behavior using the quartz crystal microbalance-II. Basic solutions [J]. J. Solid State Electrochem.,2000,4:273-278.
    [51]Z.X. Liang, T.S.Zhao, J.B. Xu, L.D. Zhu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media [J]. Electrochim. Acta,2009, 54:2203-2208.
    [52]H.T.Zheng, Y.L.Li, S.X.Chen, P.K. Shen, Effect of support on the activity of Pd electrocatalyst for ethanol oxidation [J]. J. Power Sources,2006,163: 371-375.
    [53]C.W. Xu, L.Q. Cheng, P.K. Shen, Y.L. Liu, Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media [J]. Electrochem. Commun.,2007,9:997-1001.
    [54]F.P. Hu, C.L.Chen, Z.Y.Wang, G.Y.Wei, P.K. Shen, Mechanistic study of ethanol oxidation on Pd-NiO/C electrocatalyst [J]. Electrochim. Acta,2006,52: 1087-1091.
    [55]C.W. Xu, Z. Tian, P.K. Shen, S.P.Jiang, Oxide (CeO2, NiO, Co(3)O(4)and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media [J].Electrochim. Acta,2008,53:2610-2618.
    [56]B.R. Tao, J. Zhang, S.C. Hui, L.J. Wan, An amperometric ethanol sensor based on a Pd-Ni/SiNWs electrode [J]. Sens. Actuators B:Chem.,2009,142:298-303.
    [57]M.M. Barsan, C.M.A. Brett, An alcohol oxidase biosensor using PNR redox mediator at carbon film electrodes [J].Talanta,2008,74:1505-1510.
    [58]Y.S. Chen,J.H. Huang,Arrayed CNT-Ni nanocomposites grown directly on Si substrate for amperometric detection of ethanol [J]. Biosens.Bioelectron.,2010, 26:207-212.
    [1]S.R. Lee, Y.T. Lee, K. Sawada, H. Takao, M. Ishida, Development of a disposable glucose biosensor using electroless-plated Au/Ni/copper low electrical resistance electrodes [J]. Biosens. Bioelectron.,2008,24:410-414.
    [2]M. Musameh, J. Wang, A. Merkoci, Y. Lin, Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes [J]. Electrochem. Commun.,2002,4:743-746.
    [3]J.D. Newman, A.P.F. Turner, Home blood glucose biosensors:a commercial perspective [J]. Biosens. Bioelectron.,2005,20:2435-2453.
    [4]P.C. Pandey, S. Upadhyay, H.C. Pathak, A new glucose sensor based on encapsulated glucose oxidase within organically modified sol-gel glass [J]. Sensors and Actuators B,1999,60:83-89.
    [5]R. Wilson, A.P.F. Turner, Glucose oxidase:an ideal enzyme [J]. Biosens. Bioelectron.,1992,7:165-185.
    [6]P. Du, B. Zhou, C.X. Cai, Development of an amperometric biosensor for glucose based on electrocatalytic reduction of hydrogen peroxide at the single-walled carbon nanotube/nile blue A nanocomposite modified electrode [J]. J. Electroanal. Chem.,2008,614:149-156.
    [7]V.B. Kandimalla, V.S. Tripathi, H. Ju, A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application [J]. Biomaterials,2006,27:1167-1174.
    [8]Y.T.Wang, L. Yu, Z.Q. Zhu, J.Zhang, J.Z. Zhu, C.H. Fan, Improved enzyme immobilization for enhanced bioelectrocatalytic activity of glucose sensor [J]. Sens. Actuators B:Chem.,2009,136:332-337.
    [9]Z. Wang, S. Liu, P. Wu, C.X. Cai, Detection of Glucose Based on Direct Electron Transfer Reaction of Glucose Oxidase Immobilized on Highly Ordered Polyaniline Nanotubes [J]. Anal. Chem.,2009,81:1638-1645.
    [10]N. Zhang, T. Wilkop, S. Lee, Q. Cheng, Bi-functionalization of a patterned Prussian blue array for amperometric measurement of glucose via two integrated detection schemes [J].Analyst,2007,132:164-172.
    [11]H.T. Zhao, H.X. Ju, Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase [J]. Anal.Biochem.,2006,350:138-144.
    [12]M. Zhao,X. Wu,C.X. Cai, Polyaniline Nanofibers:Synthesis, Characterization, and Application to Direct Electron Transfer of Glucose Oxidase [J]. J. Phys. Chem.C,2009,113:4987-4996.
    [13]S. Hrapovic, Y. Liu, K.B. Male, J.H.T. Luong, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes [J]. Anal. Chem., 2004,76:1083-1088.
    [14]M. Yang, Y. Yang, Y. Liu, G. Shen, R. Yu, Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors [J]. Biosens. Bioelectron.,2006,21:1125-1131.
    [15]M. Yang, Y.Yang, H.Yang, G. Shen, R. Yu, Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors [J]. Biomaterials,2006,27: 246-255.
    [16]S. Park, H. Boo, T.D. Chung, Electrochemical nonenzymatic glucose sensors [J]. Anal. Chim. Acta,2006,556:46-57.
    [17]庄贞静,肖丹,李毅,无酶葡萄糖电化学传感器的研究进展[J].化学研究与应用,2009,21:1486-1493.
    [18]S.J. Choi, B.G. Choi, S.M. Park, Electrochemical sensor for electrochemically inactive beta-D(+)-glucose using alpha-cyclodextrin template molecules [J]. Anal. Chem.,2002,74:1998-2002.
    [19]S.T. Farrell, C.B. Breslin, Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles [J]. Electrochim. Acta,2004,49: 4497-4503.
    [20]A. Salimi, M. Roushani, Non-enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol-gel dispersed renewable carbon ceramic electrode [J]. Electrochem. Commun.,2005,7:879-887.
    [21]Y. Sun, H. Buck, T.E. Mallouk, Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors [J]. Anal. Chem.,2001,73:1599-1604.
    [22]J.Zhao, F.Wang, J. Yu, S. Hu, Electro-oxidation of glucose at self-assembled monolayers incorporated by copper particles [J]. Talanta,2006,70:449-454.
    [23JK.D. Popovic, A.V. Tripkovic, R.R. Adzic, Oxidation of glucose on single-crystal platinum electrodes:A mechanistic study [J]. J. Electroanal. Chem.,1992,339: 227-245.
    [24]S. Ernst, J. Heitbaum, C.H. Hamann, The electrooxidation of glucose in phosphate buffer solutions Part I. Reactivity and kinetics below 350 mV/RHE [J]. J. Electroanal. Chem.,1979,100:173-183.
    [25]B. Beden, F. Largeaud, K.B. Kokoh, C. Lamy, Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of glucose: Identification of reactive intermediates and reaction products [J]. Electrochim. Acta,1996,41:701-709.
    [26]U. Gebhardt, G. Luft, G.J. Richter, F. von Sturm,253-Development of an implantable electrocatalytic glucose sensor [J]. Bioelectrochem. Bioenerg.,1978, 5:607-624.
    [27]Y. Li, Y.Y. Song, C. Yang, X.H. Xia, Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose [J]. Electrochem. Commun.,2007,9:981-988.
    [28]Q. Shen, L.Jiang, H.Zhang, Q. Min, W. Hou, J.J. Zhu, Three-dimensional Dendritic Pt Nanostructures:Sonoelectrochemical Synthesis and Electrochemical Applications [J]. J. Phys. Chem. C,2008,112:16385-16392.
    [29]Y.B. Vassilyev, O.A. Khazova, N.N. Nikolaeva, Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts Part I. Adsorption and oxidation on platinum [J]. J. Electroanal. Chem.,1985,196:105-125.
    [30]S. Houghes, D.C. Johnson, Amperometric detection of simple carbohydrates at platinum electrodes in alkaline solutions by application of a triple-pulse potential waveform [J]. Anal. Chim. Acta,1981,132:11-22.
    [31]S. Houghes, D.C. Johnson, Triple-pulse amperometric detection of carbohydrates after chromatographic separation [J]. Anal. Chim. Acta,1983,149:1-10.
    [32]G.G. Neuburger, D.C. Johnson, Comparison of the pulsed amperometric detection of carbohydrates at gold and platinum electrodes for flow injection and liquid chromatographic systems [J]. Anal. Chem.,1987,59:203-204.
    [33]P. Luo, F. Zhang, R.P. Baldwin, Comparison of metallic electrodes for constant-potential amperometric detection of carbohydrates, amino acids and related compounds in flow systems [J]. Anal. Chim. Acta,1991,244:169-178.
    [34]L. Nagy, G. Nagy, P. Hajos, Copper electrode based amperometric detector cell for sugar and organic acid measurements [J]. Sens. Actuators B,2001,76: 494-499.
    [35]I.G. Casella, E. Desimoni, T.R.I. Cataldi, Study of a nickel-catalysed glassy carbon electrode for detection of carbohydrates in liquid chromatography and flow injection analysis [J]. Anal. Chim. Acta,1991,248:117-125.
    [36]J. Wang, D.F.Thomas, A.Chen, Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks [J]. Anal. Chem.,2008,80:997-1004.
    [37]K.M. Manesh, P. Santhosh, A. Gopalan, Kwang-Pill Lee, Electrospun poly(vinylidene fluoride)/poly(aminophenylboronic acid) composite nanowbrous membrane as a novel glucose sensor [J]. Anal. Biochem.,2007,360:189-195.
    [38]L.M. Santos, R.P.Baldwin, Liquid chromatography/electrochemical detection of carbohydrates at a cobalt phthalocyanine containing chemically modified electrode [J]. Anal. Chem.,1987,59:1766-1770.
    [39]V.G. Gavalas, S.A. Law, J.C. Ball, R. Andrews, L.G. Bachas, Carbon nanotube aqueous sol-gel composites:enzyme-friendly platforms for the development of stable biosensors [J]. Anal. Biochem.,2004,329:247-252.
    [40]Y. Lin, X. Cui, X. Ye, Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid [J]. Electrochem. Commun.,2005,7:267-274.
    [41]A. Merkoci, M. Pumera, X. Llopis, B.Perez, M. del Valle, S. Alegret, New materials for electrochemical sensing VI:Carbon nanotubes [J]. Trac-Trends Anal. Chem.,2005,24:826-838.
    [42]P.M.Ajayan, Nanotubes from Carbon [J]. Chem. Rev.,1999,99:1787-1799.
    [43]C. Batchelor-McAuley, G.G. Wildgoose, R.G. Compton, L.D. Shao, M.L.H. Green, Copper oxide nanoparticle impurities are responsible for the electroanalytical detection of glucose seen using multiwalled carbon nanotubes [J]. Sens. Actuators B,2008,132:356-360.
    [44]J. Wang, M. Musameh, Y.Lin, Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors [J]. J. Am. Chem. Soc,2003, 125:2408-2409.
    [45]L.Q. Rong, C.Yang, Q.Y. Qian, X.H. Xia, Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes [J].Talanta,2007,72:819-824.
    [46]L.H. Li, W.D. Zhang, Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing [J].Microchim.Acta,2008,163:305-311.
    [47]S. Park, T.D. Chung, H.C. Kim, Nonenzymatic glucose detection using mesoporous platinum [J]. Anal. Chem.,2003,75:3046-3049.
    [48]S. Cho, C. Kang, Nonenzymatic glucose detection with good selectivity against ascorbic acid on a highly porous gold electrode subjected to amalgamation treatment [J]. Electroanalysis,2007,19:2315-2320.
    [49]C. Shin, W. Shin, H.G. Hong, Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor [J]. Electrochim. Acta,2007,53: 720-728.
    [50]ZJ. Zhuang, X.D. Su, H.Y. Yuan, Q. Sun, D. Xiao, M.M.F. Choi, An improved sensitivity nonenzymatic glucose sensor based on a CuO nanowire modified Cu electrode [J]. Analyst,2008,133:126-132.
    [51]蔡本慧,曹雷,王肇军,导电聚合物聚吡咯的制备、性质及其应用[J].化工科技市场,2010,33:11-16.
    [52]Y.F. Li, Effect of anion concentration on the kinetics of dectrochemical polymerization of pyrrole [J]. J. Electmanal. Chem.,1997,433:181-186.
    [53]程发良,宁满霞,莫金垣,戴晓云,水介质中吡咯的电化学聚合反应[J].分析测试学报,2002,21:30-33.
    [54]J. Li, X. Lin, Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode [J]. Sens. Actuators B,2007,124:486-493.
    [55]F.M. Tian, L.D. Zhu, B.Xu, G.Y. Zhu, Ceramic carbon/polypyrrole materials for the construction of bienzymatic amperometric biosensor for glucose [J]. Chin. Chem.Lett.,2001,12:1011-1022.
    [56]J.C. Vidal, E. Garcia, J.R. Castillo, In situ preparation of overoxidized PPy/oPPD bilayer biosensors for the determination of glucose and cholesterol in serum [J]. Sens. Actuators B,1999,57:219-226.
    [57]S. Skaarnp, L. Bay, K. Vidanapathirana, Simultaneous anion and cation mobility in polypyrrole [J]. Solid State Ionics,2003,159:143-147.
    [58]蔡本慧,杨凤林,柳丽芬,聚吡咯复合膜材料制备、表征及阳离子交换性能研究[J].化工新型材料,2008,36(12):78-80.
    [59]H. Zhao, W.E. Price, G.G.Wallace, Synthesis, characterization and transport properties of layered conducting eleetroactive polypyrrole membranes [J]. Journal of Membrane Science,1998,148:161-172.
    [60]K. Kontturi, P. Pentti, G. Sundholm, Polypyrrole as a model membrane for drug delivery [J]. Journal of Electmanalytieal Chemistry,1998,453:231-238.
    [61]M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors [J]. Biosens. Bioelectron.,2002,17:345-359.
    [62]M.R. Majidi, A.Jouyban, K. Asadpour-Zeynali,Voltammetric behavior and determination of isoniazid in pharmaceuticals by using overoxidized polypyrrole glassy carbon modified electrode[J].J. Electroanal.Chem.,2006,589:32-37.
    [63]S.B.Saidman,The potentiometric response of polypyrrole electrosynthesized in alkaline media [J].European Polymer Journal,2005,41:433-437.
    [64]G.Q. Zhang,F.L.Yang,W.S.Yang,The effect of polypyrrole-bound anthraquinonedisulphonate dianion on cathodic reduction of oxygen [J].Reactive & Functional Polymers,2007,67(10):1008-1017.
    [65]C.Y. Jin, F.L. Yang, Ion transport and conformational relaxation of a polypyrrole film in aqueous solutions [J]. Sensors and Actuators B,2006,114:737-739.
    [66]H.N. Le, B. Garcia, C. Deslouis, Q.L. Xuan, Corrosion protection and conducting polymers:polypyrrole films on iron [J]. Electrochimica Acta,2001,46: 4259-4272.
    [67]F.J. Miao, B.R. Tao, L. Sun, T. Liu,J.C. You, L.W. Wang, P.K. Chu, Amperometric glucose sensor based on 3D ordered nickel-palladium nanomaterial supported by silicon MCP array [J]. Sens. Actuators B:Chem., 2009,141:338-342.
    [68]H.F. Cui, J.S. Ye, W.D.Zhang, C.M.Li, J.H.T.Luong, F.S. Sheu, Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites [J]. Anal. Chim.Acta,2007,594:175-183.
    [69]Y. Myung, D.M.Jang, Y.J. Cho, H.S.Kim, J. Park, J.U.Kim, Y.Choi, C.J. Lee, Nonenzymatic Amperometric Glucose Sensing of Platinum, Copper Sulfide, and Tin Oxide Nanoparticle-Carbon Nanotube Hybrid Nanostructures [J]. J. Phys. Chem. C,2009,113:1251-1259.
    [70]L. Meng, J. Jin., G.X. Yang, T.H. Lu, H. Zhang, C.X. Cai, Nonenzymatic Electrochemical Detection of Glucose Based on Palladium-Single-Walled Carbon Nanotube Hybrid Nanostructures [J]. Anal. Chem.,2009,81:7271-7280.
    [71]R. Qiu, X.L. Zhang, R. Qiao, Y. Li, Y. Kim, Y.S. Kang, CuNi dendritic material: Synthesis, mechanism discussion, and application as glucose sensor [J]. Chem. Mater.,2007,19:4174-4180.
    [72]Z.H. Dai, J.C. Bao, X.D. Yang, H.X. Ju, A bienzyme channeling glucose sensor with a wide concentration range based on co-entrapment of enzymes in SBA-15 mesopores [J]. Biosens. Bioelectron.,2008,23:1070-1076.
    [73]J.D. Qiu, W.M. Zhou, J. Guo, R. Wang, R.P. Liang, Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose [J]. Anal. Biochem.,2009,385: 264-269.
    [74]E.M. Woolley, J. Tomkins, L.G. Hepler, Ionization Constants for Very Weak Organic Acids in Aqueous Solution and Apparent Ionization Constants for Water in Aqueous Organic Mixtures [J]. J. Solution Chem.,1972,1:341-351.
    [1]刘洁,王菊香,邢志娜,李伟,燃料电池研究进展及发展探析[J].节能技术,2010,28:364-368.
    [2]A.B.Stambouli, E. Traversa,Solid oxide fuel cells(SOFCs):a review of an environmentally clean and efficient source of energy [J]. Renewable and Sustainable Energy Reviews,2002,6(5):433-455.
    [3]贾林,邵震宇,燃料电池的应用与发展[J].煤气与热力,2005,25(4):73-74.
    [4]A J.Appleby,F.R. Foulkess,Fuel Cell Handbook [M]. Van Nostrand Reinhold, New York,1989, Ch.11.
    [5]C.Pu,W. Huang,L.Kevinll,et al.,Amethanol impermeable proton conducting composite electrolyte system [J].J.Electrochem.Soc.,1995,142:119-120.
    [6]衣宝廉,燃料电池-原理技术应用[M].化学工业出版社(北京),2004.
    [7]Vincenzot,Proton and methanol transport in poly (perfluorosulfonate) Membranes containing Cs and H cations [J].J. Electrochem. Soc.,1998,145: 3798-3801.
    [8]陆天红,邢巍,燃料电池一定不十分遥远的环保型电化学发动机[J].产业论坛,2003,9:23.
    [9]W.J. Zhou, S.Q. Song, W.Z. Li, Z.H. Zhou, G.Q. Sun, Q. Xin, S. Douvartzides, P.Tsiakaras, Direct ethanol fuel cells based on PtSn anodes:the effect of Sn content on the fuel cell performance [J]. J. Power Sources,2005,140:50-58.
    [10]C. Coutanceau, L. Demarconnay, C. Lamy, J.M. Leger, Development of electrocatalysts for solid alkaline fuel cell (SAFC) [J]. J. Power Sources,2006, 156:14-19.
    [11]杜华,氢氧燃料电池的研究进展[J].化学工程师,2002,8(4):15.
    [12]M. Baldauf, W. Preidel, Status of the development of a direct methanol fuel cell [J]. J. Power Sources,1999,84:161-166.
    [13]陈胜洲,直接甲醇燃料电池甲醇电氧化催化剂研究的新动向[J].化工进展,2003,22(4):466-470.
    [14]C.W. Xu, L.Q.Cheng, P.K. Shen, et al. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media [J]. Electrochem. Commun.,2007,9:997-1001.
    [15]F.P. Hu, Z.Y.Wang, Y.L.Li, et al. Improved performance of Pd electrocatalyst supported on ultrahigh surface area hollow carbon spheres for direct alcohol fuel cells [J]. Journal of Power Sources,2008,177:61-66.
    [16]H. Wang, C.W. Xu, F.L.Cheng, et al. Pd Nanowire arrays as electrocatalysts for ethanol electrooxidation [J]. Electrochem. Commun.,2007,9:1212-1216.
    [17]J. Liu, J. Ye, C. Xu, S.P.Jiang, Y. Tong, Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti [J]. Electrochem. Commun.,2007,9:2334-2339.
    [18]Z. Wang, G. Yin, Y. Lin, Synthesis and characterization of PtRuMo/C nanoparticle electrocatalyst for direct ethanol fuel cell [J]. J. Power Sources,2007, 170:242-250.
    [19]H. Razmi, E. Habibi, H. Heidari, Electrocatalytic oxidation of methanol and ethanol at carbon ceramic electrode modified with platinum nanoparticles [J]. Electrochim.Acta,2008,53:8178-8185.
    [20]J. Bagchi, S.K. Bhattacharya, The effect of composition of Ni-supported Pt-Ru binary anode catalysts on ethanol oxidation for fuel cells [J]. J. Power Sources, 2007,163:661-670.
    [21]K. Matsuoka, Y. Iriyama, T.Abe, M. Matsuoka, Z. Ogumi, Alkaline Direct Alcohol Fuel Cells Using an Anion Exchange Membrane [J]. J. Power Sources, 2005,150:27-31.
    [22]V. Rao, C.C. Hariyanto, U. Stimming, Investigation of the Ethanol Electro-Oxidation in Alkaline Membrane Electrode Assembly by Differential Electrochemical Mass Spectrometry [J]. Fuel Cells,2007,7:417-423.
    [23]P. Paul, J. Bagchi, S.K. Hattacharya, Inorganic, physical, theoretical& analytical [J]. Indian J.Chem.:Sect. A,2006,45:1144-1152.
    [24]Z. Ogumi, K. Matsuoka, S. Chiba, M. Matsuoka, Y. Iriyama, T. Abe, M. Inaba, Preliminary study on direct alcohol fuel cells employing anion exchange membrane [J]. Electrochemistry,2002,70:980-983.
    [25]韩家军,李宁,张天云等,AFC催化剂中毒原因及预防办法的研究现状[J].电池,2006,36(4):315-316.
    [26]A.J. Appleby, Fuel celltechnology and innovation, Heat treatment of a-and b-battery lead dioxide and its relationship to capacity loss [J]. J.Power Sources, 1996,37:223-239.
    [27]A. Caillard, C. Coutanceau, P. Brault, Structure of Pt/C and PtRu/C catalytic layers prepared by plasma sputtering and electric performance in direct methanol fuel cells (DMFC) [J]. J. Power Sources,2006,162:66-73.
    [28]R.N. Singh, A.Singh, Anindita, Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT, and Ni for ethanol electro-oxidation in alkaline solutions [J]. Carbon,2009,47:271-278.
    [29]Z. Liang, T.Zhao, J. Xu, L. Zhu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media [J]. Electrochim. Acta,2009,54: 2203-2208.
    [30]P.K. Shen, C.W. Xu, Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts [J]. Electrochem. Commun.,2006,8:184-188.
    [31]C.H. Feng, L. Guo, Synthesis of short palladium nanoparticle chains and their application in catalysis [J]. Solid State Sci.,2008,10:1327-1332.
    [32]J. Xu, T. Zhao, Y. Li, W. Yang, Synthesis and characterization of the Au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells [J]. Int. J. Hydrogen Energy,2010,35:9693-9700.
    [33]Y. Wang, Y. Zhao, C. Xu,, D. Zhao, M. Xu, Z. Su, H. Li, Improved performance of Pd electrocatalyst supported on three-dimensional nickel foam for direct ethanol fuel cells [J]. J. Power Sources,2010,195:6496-6499.
    [34]B. Beden, F. Hahn, J.M. Leger, C. Lamy, C.L. Perdriel, N.R.D. Tacconi, R.O. Lezna, A.J. Arvia, Electromodulated infrared spectroscopy of methanol electrooxidation on electrodispersed platinum electrodes:Enhancement of reactive intermediates [J]. J. Electroanal. Chem.,1991,301:129-138.
    [35]K.Uosaki, R.Yoneda, H. Kita, Effect of platinization on the electrochemical behavior of titanium dioxide electrode in aqueous solutions [J]. J. Phys. Chem., 1985,89(19):4042-4046
    [36]P.L. Schilardi, R.C. Salvarezza, A.H. Creus, A.J. Arvia, S.L. Marvhino, Kinetics and growth modes of quasi-2d silver branched electrodeposits produced in the presence of a supporting electrolyte [J].Journal of Electroanalytical Chemistry, 1997,431:81-98.
    [37]N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding, Z.L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity [J]. Science,2007,316:732.
    [38]M.H. Martin, A. Lasia, Study of the hydrogen absorption in Pd in alkaline solution [J].ElectrochimicaActa,2008,53:6317-6322.
    [39]C.W. Xu, L.Q. Cheng, P.K. Shen, Y.L. Liu, Evaluation of ethanol,1-propanol, and 2-propanol in a direct oxidation polymer-electrolyte fuel cell a real-time mass spectrometry study [J]. Electrochem. Commun.,2007,9:997-1001.
    [40]Y.L. Lo, B.J. Hwang, In situ Raman studies on cathodically deposited nickel hydroxide films and electroless Ni-P electrodes in 1 M KOH solution [J]. Langmuir,1998,14:944-950.
    [41]J. Munk, P.A. Christensen, A. Hammnett, E. Skou, particulate electrodes studied by in-situ FTIR spectroscopy and electrochemical mass spectrometry [J]. J. Electroanal. Chem.,1996,401:215-522.
    [42]C.W. Xu, P.K. Shen, Catalysts for electrooxidation of alcohols in alkaline media [J]. Chem. Commun.,2004,19:2238-2239.
    [43]E.T. Hayes, B.K. Bellingham, H.B. Mark Jr, A. Galal, An amperometric aqueous ethanol sensor based on the electrocatalytic oxidation at a cobalt-nickel oxide electrode [J]. Electrochim. Acta,1996,41:337-344.
    [44]M. Nie, H.L. Tang, Z.D.Wei, S.P. Jiang, P.K. Shen, Highly efficient AuPd-WC/C electrocatalyst for ethanol oxidation [J]. Electrochem. Commun.,2007,9: 2375-2379.
    [45]Z.X. Liang, T.S.Zhao, J.B. Xu, L.D. Zhu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media [J]. Electrochimica Acta,2009, 54:2203-2208.
    [46]H.T.Zheng, Y.L.Li, S.X.Chen, P.K. Shen, Effect of support on the activity of Pd electrocatalyst for ethanol oxidation [J]. J. Power Sources,2006,163: 371-375.
    [1]张帅,太阳能电池工作原理简介[J].灯与照明,2009,33(3):49-51.
    [2]M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 33) [J]. Progress in Photovoltaics,2009,17,85-94.
    [3]胡汍.非晶硅太阳电池背电极制作技术中的改进[J].中国能源,1994,4:47-49.
    [4]M.S. Haque, H.A. Naseem, W.D. Brown, Aluminum induced degradation and failure mechanisms of a-Si:H solar cell [J].Solar Energy Materials and Solar Cells,1996,41-2:543-555.
    [5]庾莉萍,提高太阳能电池效率的主要措施[J].光源与照明,2009,4:39-40.
    [6]施敏,半导体器件物理,1987,12,41-47.
    [7]S. I. Parker, C. J. Kenney, J. Segal,3D-A proposed new architecture for solid-state radiation detectors [J]. Nucl. Instrum. Methods Phys. Res., Sect. A, 1997,395:328-343.
    [8]D.V. Cinzia, D. Mario, H. Jasmine, et al.3D active edge silicon detector tests with 120 GeV muons [J]. IEEE transactions on nuclear science,2009,56(2): 505-518.
    [9]J. P. Clarkson; W. Sun; K. D. Hirschman, et al. Betavoltaic and photovoltaic energy conversion in three-dimensional macroporous silicon diodes [J]. phys. stat. sol. (a),2007,204(5):1536-1540.
    [10]J.L. Li, S.H. Xu, X.P. Qu, G.P. Ru, Z.Y. Yu, W.L. Liu, Z.T. Song, L.W. Wang, A 3D pn junction structure for radiation energy conversion chip [J]. Ext. Abs. of 6th Inter. Workshop on Junction Technol. (Shanghai, China,2006) pp.123-6.
    [11]T.T. Liu, T.Liu, J.L.Li, X.M.Chen, X.L. Guo, P.S. Xin, S.H. Xu and L.W. Wang, Fabrication and characterization of 3D pn junction structure for radiation detection [J]. Sixth International Conference on Thin Film Physics and Applications, Proceedings of the SPIE (2008), Vol.6984,69843M.
    [12]V. Lehmann, U. Gosele, Porous silicon formation-a quantum wire effect [J]. Appl. Phys. Lett.,1991,58:856-858.
    [13]R. Bruggemann, M. Rosch, J. Meyer, Apparent quantum efficiencies greater than unity from lateral photocurrents [J]. Solar Energy Materials & Solar Cells,1999, 57(3):303-311.
    [14]Two-Dimensional Device Simulation Program Version 4.1 User's Manual, Avant! Corporation, TCAD Business Unit, Fremont,1998,16-17.
    [15]S. M. Sze, K.K. Ng, Physics of Semiconductor Devices, John Wiley & Sons, Inc., Hoboken, New Jersey,2007,542-554.
    [16]T.K.P. Wong, P.C.H. Chan, An equivalent circuit model approach to the numerical modelling of a p-n solar cell and photodetector [J].International Journal of Optoelectronics,1997,11(1):29-38.
    [17]J. Meie,R. Flueckiger,H. Keppner, A. Shah, Complete microcrystalline p-i-n solar cell—Crystalline or amorphous cell behavior? [J]. Appl. Phys. Lett,1994, 65:860-862.
    [18]S.P. Bremner, Analysis of tandem solar cell efficiencies under AMI.5G spectrum using a rapid flux calculation method [J].Progress in Photovoltaics,2008,16(3): 225-233.
    [19]T.Y. Kim, Y.K. Lee, H.G. Ahn, et al, A study on the parameter estimation of solar cell module [J]. Transactions of the Korean Institute of Electrical Engineers, B, 2002,51(2):92-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700