用户名: 密码: 验证码:
电催化材料的原位光谱研究及其在生物分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外光谱给出的是分子或离子化学键的振动和转动能级跃迁的信息。将电化学技术和红外光谱技术相结合,可在电化学反应的同时原位检测固液界面发生的变化,在分子水平上研究固液界面的表面过程。本文利用原位红外光谱电化学技术开展了以下工作:
     1.单组分酸性铁氰化钾溶液中普鲁士蓝(PB)薄膜的电化学沉积机理研究
     构建了原位电化学红外反射光谱系统,并将其用于单组分酸性铁氰化钾溶液中普鲁士蓝(PB)薄膜的电化学沉积机理研究。电化学实验表明,动电位和恒电位技术均能制备致密的普鲁士蓝膜,且它们的形成为一自限制过程。原位红外光谱电化学实验结果表明,在低电位沉积过程中在2075cm-1处出现的新吸收峰为普鲁士白中CN的特征伸缩振动吸收,而在2104cm-1处红外吸收峰为普鲁士蓝中CN的特征伸缩振动吸收。最后根据实验结果讨论了普鲁士蓝薄膜的电沉积机理。
     2.多孔铂催化剂的粗糙度对乙醇催化氧化过程中C-C键断裂效率的影响研究
     提高低温直接乙醇燃料电池(direct ethanol fuel cells, DEFCs)中燃料能量转化效率的前提是在电极反应中尽可能使C-C键断裂,使整个反应向生成最终产物CO2的方向进行。我们通过电化学沉积技术制备了具有不同表面粗糙度的铂催化剂电极,采用电化学技术和原位红外光谱电化学技术研究了不同粗糙度的多孔铂电极对C-C键断裂效率的影响。结果表明,随着铂电极粗糙度的加大,最终产物CO2和可溶性中间体(乙醛和乙酸)量之比明显增加,这表明高粗糙因子的多孔铂催化剂能提高乙醇电催化氧化中C-C键断裂,更利于生成最终产物二氧化碳,提高DEFCs中乙醇燃料利用效率。研究成果对DEFCs阳极催化剂的设计与合成有指导意义。基于以上效应本文还制备了一系列分散的贵金属电催化材料,并探索了它们在无酶葡萄糖传感方面的应用。
     3. Pt-MWCNTs复合材料的合成及其在无酶葡萄糖电化学传感器中的应用多壁碳纳米管(multi-walled carbon nanotubes, MWCNTs)负载高分散铂纳米粒子形成的复合物Pt-MWCNTs对葡萄糖等生物小分子的电化学氧化具有很好的电催化活性,可用其构建无酶葡萄糖电化学传感器。我们采用两步法(吸附和热解)合成了Pt-MWCNTs复合材料,并将其制备成修饰电极,基于其对葡萄糖电催化的高催化活性构建了无酶葡萄糖电化学传感器。系统考察了传感器中Nafion覆盖量和检测电位对葡萄糖安培检测选择性的影响。实验发现,在优化的检测条件下修饰电极对生物试样中与葡萄糖共存的干扰物质尿酸(UA),抗坏血酸(AA),对乙酰氨基苯酚(AP)有很好的抗干扰性能,而对葡萄糖有很好的选择性响应和很高的灵敏度,且响应电流与葡萄糖浓度成线性关系。
     4.以普鲁士蓝膜和胶体晶模板制备钯修饰电极及其电化学传感应用
     以普鲁士蓝膜作模板制备的钯修饰电极对葡萄糖具有良好的电催化活性。实验中首先沉积普鲁士蓝纳米粒子,以此为模板沉积沉积钯粒子,洗脱普鲁士蓝后形成多孔结构的Pd纳米结构膜,以此为葡萄糖检测的传感界面。实验中考察了PB模板沉积量和检测电位对葡萄糖检测的影响;同时,还在胶体晶模板空隙中电化学沉积钯粒子制备高催化活性电化学传感器,并用于葡萄糖的无酶电化学检测,考察了聚苯乙烯(PS)胶体的覆盖量和检测电位对葡萄糖检测的影响。
     在优化的实验条件下,上述两种电极检测葡萄糖具有灵敏度高、响应时间短、线性关系良好等优点,且对常见的干扰物质如尿酸(UA)、抗坏血酸(AA)、对乙酰氨基苯酚(AP)有很好的抗干扰性能。因此,上述方法可用于构建高性能的葡萄糖无酶电化学传感器。
In-situ Fourier transform infrared (FTIR) reflection spectroscopy is one of the most powerful techniques which gives molecular specific information as to adsorbed species at electrode-solution interfaces during electrochemical process. Some research work are shown in this thesis carried out with the home-made in-situ FTIR reflection system.
     1. Mechanism investigation of Prussian blue electrochemically deposited from a solution containing single component of ferricyanide
     Prussian white (a reduced state of Prussian blue) was electrochemically deposited on a polycrystalline Pt electrode from an acidic solution of ferricyanide. Electrochemical measurements showed that the formation of Prussian white on platinum electrode was a self-terminating process. A compacted PB film can be formed by using both potential scanning and potentiostatic methods as confirmed by AFM measurement. In-situ FTIR measurements were carried out to explore the formation mechanism. The new band arising at2075cm-1is assigned to the stretching vibration mode of CN bond in Prussian white, while the band at2104cm"-1is due to the absorbance of CN bond in Prussian blue. A possible mechanism of electrodeposition of Prussian white was discussed.
     2. Effects of the roughness of porous Pt electrodes on the elecetrochemical oxidation of ethanol
     The electrochemical oxidation of ethanol on porous Pt and smooth polycrystalline Pt electrode is studied using cyclic voltammetry and in-situ Fourier transform infrared spectroscopy (FTIR). CO2, acetaldehyde and acetic acid have been detected. From in-situ infrared spectroscopy, it is found that porous Pt electrode is much more active for the electrochemical oxidation of ethanol, because the ratio of the band integral intensity of CO2to that of CH3COOH increases significantly with Pt layer on the Pt electrode. Combined with the investigations of XRD, SEM and AFM on the surfaces of these electrodes, the possible reasons for the different reactivity of the studiedporous Pt are discussed.
     3. Highly dispersed Pt nanoparticles supported on carbon nanotubes for selectively nonenzymatic detection of glucose
     Highly dispersed platinum nanoparticles supported on multi-wall carbon nanotubes (MWCNTs) were synthesized using an easy two-step approach including adsorption and pyrolysis. The resulting catalysts show good electrocatalytic activity toward the oxidation of glucose in alkaline and thus were applied to selective detection of glucose. Detection potential and the amount of Nafion covered on the Pt-MWCNT modified glassy carbon electrode was found to have considerable influence on the selectivity for amperometric detection of glucose. Under the optimal detection conditions (detection potential of0.0V vs SCE and10uL1.5%Nafion), selective detection of glucose in the glucose concentration ranging from1.0mM to26.5mM (correlation coefficient,>0.999) can be performed. The results demonstrate that the Pt-MWCNT composite is promising for the fabrication of nonenzymatic glucose sensors.
     4. Construction of the electrochemical sensors based on Prussian blue and inverted colloidal crystal templates respectively By utilizing the macroporous palladium films electrodes fabricated from Prussian blue and inverted colloidal crystal templates respectively, the novel functional interfaces were developed for the fabrication of nonenzymatic glucose sensors and biosensors. Under the optimal conditions, selective detection of glucose in the glucose concentration ranging from1.0mM to60mM (correlation coefficient,>0.999) can be performed. These electrodes also have good anti-interfere ability toward UA, AP and AA. The present results show that they can be used for the construction of nonenzymatic glucose sensor.
引文
[1]L. Carrette, K. A. Friedrich, U. Stimming, ChemPhysChem 1 (2000) 162.
    [2]P. Piela, A. Czerwinski, Source:Przemysl Chemiczny 85 (2006) 164.
    [3]S. Kamaruzzaman, R. Wan, Renewable Energy 31 (2006) 719.
    [4]唐亚文,杨辉,周益明,李钢,邢巍,陆天虹,南京师范大学学报(工程技术版),3(2003)6.
    [5]A. K. Shukla, M. K. Ravikumar, A. S. Arico, J. Appl Electrochem.25 (1995) 528.
    [5a]文纲要,张颖,杨正龙,电化学,4(1997)73.
    [6]R. Liu, H. Iddir, Q. Fan, et al, J. Phys. Chem. B 104 (2000) 3518.
    [7]H. S. Liu, C. J. Song, L. Zhang, J. Power. Sources 155 (2006) 95.
    [8]K.Y. Chan, J. Ding, J. Ren, S. Cheng, K.Y. Tsang, J. Mater. Chem.14 (2004) 505.
    [9]W. Li, C. Liang, J. Qiu, et al, Carbon 40 (2002) 791.
    [10]W. Li, C. Liang, J. Qiu, et al,J. Phys. Chem. B 107 (2003) 6292.
    [11]W. Li, C. Liang, W. Zhou, et al,, Carbon 42 (2004) 436.
    [12]G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, Langmuir 15 (1999) 750.
    [13]G. Girishkumar, K. Vinodgopal, P. Kamat, J. Phys. Chem. B 108 (2004) 19960.
    [13a]C. A. Bessel, K. Laubernds, N. M. Rodriguez, R. T. K. Baker, J. Phys. Chem. B 105 (2001) 1115.
    [14]黄庆红,唐亚文,马振旄,陆天虹,刘长鹏,邢巍,杨辉.应用化学 22(2005)1277.
    [15]K. Kinoshita,J. Eleetrochem. Soc.137 (1990) 845.
    [16]F. Maillard, M. Martin, F. Gloaguen, J. M. Leger, Electrochim. Acta 47 (2002) 3431.
    [17]唐亚文,杨辉,周益明,李钢,邢巍,陆天虹.南京师范大学学报(工程技术版),3(2003)6.
    [18]S. Mukerjee, S. Srinivasan, J. Electroanal. Chem.357 (1993) 201.
    [19]A. K. Shukla, M. Neergat, P. Bera, J. Electroanal. Chem.504 (2001) 111.
    [20]Y. Z. Lu, T. H. Lu, C. P. Liu, et al,, Chin. Chem. Lett.16 (2005) 1252.
    [21]李旭光,邢巍,陆天虹.高等学校化学学报24(2003)1246.
    [22]黄红良,隋静,陈红雨,李伟善.电池工业(2004)320.
    [23]V. Tricoli, J. Electrochem. Soc.145 (1998) 3798.
    [24]A. O. Neto, M. J. Giz, J. Perez, et al, J. Electrochem. Soc.149 (2003) A272.
    [25]G. A. Camara, R. B. de Lima, T. Iwasita, Electrochem. Commun.6 (2004) 812.
    [26]E. V. Spinace, A. O. Neto, M. Linardi, J. Power Sources 129 (2004) 121.
    [27]E. V. Spinace, A. O. Neto, M. Linardi, J. Power Sources 124 (2003) 426.
    [28]E. V. Spinace, M. Linardi, A. O. Neto, Electrochem. Commun.7 (2005) 365.
    [29]E. V. Spinace, A. O. Neto, R. R. Teonas, M. Linardi, J. Power Sources 137(2004) 17.
    [30]马国仙,唐亚文,周益明,邢巍,陆天虹,无机化学学报,20(2004)394.
    [31]朱静,苏怡,马华,陈军,电化学14(2008)2.
    [32]王振波,左朋建,王广进,电源技术,33(2009)10.
    [33]C. Lamy, S. Rousseau, E. M. Belgsir, et al, Electrochim. Acta 49 (2004) 3901.
    [34]F. Vigier, C. Coutanceau, F. Hahn, et al, J. Electroanal. Chem.563 (2004) 81.
    [35]S. Q. Song, W. J. Zhou, Z. H. Zhou, et al, Int. J. Hydrogen Energ.30 (2005) 995.
    [36]W. J. Zhou, S. Q. Song, W. Z. Li, et al, J. Power Sources 140 (2005) 50.
    [37]F. Vigier, C. Coutanceau, A. Perrard, et al., J. Appl. Electrochem.34 (2004) 439.
    [38]E.V. Spinace, M. Linardi, A.O. Neto, Electrochem. Commun.7 (2005) 365.
    [39]W. Zhou, S. Song, W. Li, et al, J. Power. Sources 140 (2005) 50.
    [40]姜鲁华,臧海霞,孙公权,辛勤,催化学报,27(2006)15.
    [41]X. Zhao, W. Li, L. Jiang, et al, Carbon 42 (2004) 3263.
    [42]C. Xu, L. Cheng, P. K. Shen, Y. Liu, Electrochem. Commun.9 (2007) 997.
    [43]Z. X. Liang, T. S. Zhao, J. B. Xu, L. D. Zhu, Electrochem. Acta 54 (2009) 2203.
    [44]H. Wang, C. Xu, F. Cheng, S. Jiang, Electrochem.Commun.9 (2007) 1212.
    [45]Z. Y. Zhou, Q. Wang, J. L. Lin, et al. Electrochim. Acta 55 (2010) 7995.
    [46]Y. Chen, L. Zhuang, J. Lu, Chin. J. Catal.28 (2007) 870.
    [47]Q. He, W. Chen, S. Mukerjee, et al, J. Power Sources 187 (2009) 298.
    [48]L. S. Jou, J. K. Chang, T. J. Twhang, I. W. Sun, J. Electrochem. Soc.156 (2009) D193.
    [49]S. Y. Shen, T. S. Zhao, J. B. Xu, Y. S. Li, J. Power Sources 195 (2010) 1001.
    [50]C. Fidelis, P. Donate, A. Andrade, Quimica Nova 24 (2001) 43.
    [51]M. R. Tarasevich, Z. R. Karichev, V. A. Bogdanovskaya, et al., Electrochem. Commun.7(2005) 141.
    [52]S. Song, W. Zhou, Z. Liang, et al, Appl. Catal. B:Environ.55 (2005) 65.
    [53]S. Song, P. Tsiakaras, Appl. Catal. B:Environ.63 (2006) 187.
    [54]N. L. Akers, C. M. Moore, S. D. Minteer, Electrochim. Acta 50 (2005) 2521.
    [55]N. Mano, F. Mao, A. Heller,J. Am. Chem. Soc.125 (2003) 6588.
    [56]G. T. R. Palmore, Trends Biotechnol.22 (2004) 99.
    [57]C. Jin, I. Taniguchi, Mater. Lett.61 (2007) 2365.
    [58]陈翠莲,魏小兰,沈培康.电化学12(2006)20.
    [59]Y. B. Vassilyev, N. N. Nikolaeva, J. Electroanal. Chem.196 (1985) 105.
    [60]B. Beden, F. Largeaud, K. B. Kokoh, Electrochim. Acta 41 (1996) 701.
    [61]I. T. Bae, E. Yeager, C. C. Liu, J. Electroanal. Chem.309 (1991) 131.
    [62]Y. Y. Song, D. Zhang, W. Gao, X. H. Xia, Chem. Eur. J.11 (2005) 2177.
    [63]J. H. Yuan, K. Wang, X. H. Xia, Adv. Funct. Mater.15 (2005) 803.
    [64]J. Jia, B. Wang, A. Wu, et al. Anal. Chem.74 (2002) 2217.
    [65]A. Gole, C. Dash, V. Ramakrishnan, et al. Langmuir 17 (2001) 1674.
    [66]Y. Xiao, H. X. Ju, H. Y. Chen, Anal. Chim. Acta 391 (1999) 73.
    [67]H. Zhu, X. Lu, M. Li, et. al. Talanta 79 (2009) 1446.
    [68]Y. G. Zhou, S. Yang, Q. Y. Qian, X. H. Xia Electrochem. Commun.11 (2009) 216.
    [69]W. Wang; Z. Y. Li; W. Zheng, et al. J. Nano & Nanotech.10 (2010) 7537.
    [70]L. Zhang, Y. Ni, H. Li, Microchim. Acta 171(2010) 103.
    [71]H. Q. Li, G. Sun, Q. Jiang, et. al. Electrochem. Commun.9 (2007) 1410.
    [72]L. L. Zhang, Y. W. Tang, J. C. Bao, et. al. J. Power Sources 162 (2006) 177.
    [73]W. Wang, Z. Li, Electrochem. Commun.11 (2009) 1811.
    [74]Y. Ding, Y. Wang, L. Su, et al, J. Mater. Chem.20 (2010) 9918.
    [75]Z. Liu, B. Zhao, Y. Shi, et al, Talanta 81 (2010) 1650.
    [76]T. Iwasita, F. C. Nart, Prog. Surf. Sci.55 (1997) 271.
    [77]S. Wasmus, A. Kuver, J. Electroanal. Chem.461 (1999) 14.
    [78]T. Iwasita, Electrochim. Acta 47 (2002) 3663.
    [79]T. Iwasita, J. Brazil Chem. Soc.13 (2002) 401.
    [1]A. A. Karyakin, E. A. Kotel'nikova, L. V. Lukachova, et al, Anal. Chem.74 (2002) 1597.
    [2]F. Ricci, A. Amine, G. Palleschi, D. Moscone, Biosens. Bioelectron.18 (2003) 165.
    [3]M. Hermes, F. Scholz, J. Solid State Electrochem.1(1997) 215.
    [4]H. Dussel, A. Dostal, F. Scholz, Fresenius'J. Anal. Chem.355 (1996) 21.
    [5]R. Koncki, O. S. Wolfbeis, Anal. Chem.70 (1998) 2544.
    [6]P. H. Zhou, D. S. Xue, H. Q. Luo, X. G. Chen, Nano Lett.2 (2002) 845.
    [7]J.T. Culp, J. H. Park, I. O. Benitez, et al, Polyhedron.22 (2003) 2125.
    [8]S. M. Chen, J. Electroanal. Chem.521 (2002) 29.
    [9]K. C. Pan, C. S. Chuang, S. H. Cheng, Y. O. Su, J. Electroanal. Chem.501 (2001) 160.
    [10]L. C. Chen, Y. H. Huang, K. C. Ho J. Solid State Electrochem.7 (2002) 6.
    [11]P. R. Somani, S. Radhakrishnan, Mater. Chem. Phys.77 (2003) 117.
    [12]M. Jayalakshimi, F. J. Scholz, J. Power Sources 87 (2000) 212.
    [13]T. Y. Kinugasa, J. Power Sources 79 (1999) 215.
    [14]L. P. Jesus, H. Aranzazu, C. Alvaro, R. Virginia Electrochim. Acta 49 (2004) 1027.
    [15]D. Zhang, K. Wang, D. C. Sun, X. H. Xia, H. Y. Chen, Chem. Mater.15 (2003) 4163.
    [16]D. Zhang, K. Wang, D. C. Sun, X. H. Xia, H. Y. Chen, J. Solid State Electrochem. 7(2003)561.
    [17]T. Iwasita, F. C. Nart, Prog. Surf. Sci.55 (1997) 271.
    [18]P. A. Christensen, A. Hamnett, S. J. Higgins, J. Chem. Soc., Dalton Trans. (1990) 2233.
    [19]M. P. Christine, R. G. Peter, Anal. Chem.69 (1997) 4673.
    [20]K. Ogura, M. Nakayama, K. Nakaoka, J. Electroanal. Chem. 474 (1999) 101.
    [21]S. Q. Liu, Y. Chen, H.Y. Chen, Electroanalysis 14 (2002) 116.
    [1]E. Pastor, T. Iwasita, Electrochim. Acta 39 (1994) 531.
    [2]N. R. de Tacconi, R. O. Lezna, B. Beden, et al, J. Electroanal. Chem.379 (1994) 329.
    [3]J. P. I. de Souza, S. L. Queiroz, K. Bergamaski, et al, J. Phys. Chem. B 106 (2002) 9825.
    [4]J. Willsau, J. Heitbaum, J. Electroanal. Chem.194 (1985) 27.
    [5]T. Iwasita, B. Rasch, E. Cattaneo, W. Vielstich, Electrochim. Acta.34 (1989) 1073.
    [6]S. C. Chang, L. W. H. Leung, M. J. Weaver, J. Phys. Chem.94 (1990) 6013.
    [7]J. Shin, W. J. Tornquist, C. Korzeniewski, C. S. Hoaglund, Surf. Sci.364 (1996) 122.
    [8]V. P. Santos, V. D. Colle, R. Bezerra, G. Tremiliosi-Filho, Electrochim. Acta 49 (2004) 1221.
    [9]H. A. Gasteiger, N. Markovic, P. N. Jr. Ross, E. J. Cairns, J.Phys. Chem.97 (1993) 12020.
    [10]V. M. Schmidt, R. Ianniello, E. Pastor, S. Gonzales, J. Phys.Chem.100 (1996) 17901.
    [11]Y. Morimoto, E. B. Yeager, J. Electroanal. Chem.444 (1998) 95.
    [12]F. Delime, J.M. Leger, C. Lamy, J. Appl. Electrochem.29 (1999) 1249.
    [13]F. Vigier, C. Coutanceau, F. Hahn, E. M. Belgsir, C. Lamy, J. Electroanal. Chem. 563(2004)81.
    [14]H. Kita, H. Nakajima, K. Shimazu, J. Electroanal. Chem.248 (1988) 181.
    [15]I. de A. Rodrigues, J. P. I. de Souza, E. Pastor, F.C. Nart, Langmuir 13 (1997) 6829
    [16]X. H. Xia, T. Iwasita, F. Ge, W. Vielstich, Electrochim. Acta 41 (1996) 711.
    [17]X. H. Xia, T. Iwasita, J. Electrochem. Soc.140 (1993) 2559.
    [18]T. Iwasita, E. Pastor, Electrochim. Acta 39 (1994) 531
    [19]R. Ianniello, V. M. Schmidt, J. L. Rodriguez, E. Pastor,J. Electroanal Chem. 471 (1999)67.
    [1]X. Zhang, K. Y. Chan, A. Tseung, J. Electrochem. Chem.386 (1995) 241.
    [2]J. Ye, Y. Wen, W. D. Zhang, et al, Electrochem. Commun.6 (2004) 66.
    [3]R. P. Deo, J. Wang, Electrochem. Commun.6 (2004) 284.
    [4]J. Zhao, F. Wang, J. J. Yu, S. S. Hu, Talanta 70 (2006) 449.
    [5]G. L. Luque, M. C. Rodriguez, G. A. Rivas, Talanta 66 (2005) 467.
    [6]I. T. Bae, E. Yeager, X. Xing, C. C. Liu, J. Electroanal. Chem.309 (1991) 131.
    [7]Y. P. Sun, H. Buck, T. E. Mallouk, Anal. Chem.73 (2001) 1599.
    [8]E. Shoji, M. S. Freund, J. Am. Chem. Soc.123 (2001) 3383.
    [9]X. L. Wei, P. K. Shen, Chin. J. Chem. Phys.16 (2003) 395.
    [10]Y. Y. Song, D. Zhang, W. Gao, X. H. Xia, Chem. Eur. J.11 (2005) 2177.
    [11]J. H. Yuan, K. Wang, X. H. Xia,Adv. Funct. Mater.15 (2005) 803.
    [12]S. Park, T. D. Chung, H. C. Kim, Anal. Chem.75 (2003) 3046.
    [13]S. Hrapovic, Y. Liu, K. B. Male, J. Luong,Anal. Chem.76 (2004) 1083.
    [14]H. Tang, J. Chen, S. Yao, L. Nie, G. Deng, Y. Kuang, Anal. Biochem.331 (2004) 89.
    [15]H. J. Dai, Surf. Sci.500 (2002) 218.
    [16]A. Bianco, M. Prato, Adv. Mater.15 (2003) 1765.
    [17]E. Katz, I. Willner, Chem Phys Chem 5 (2004) 1085.
    [18]C. E. Banks, A. Crossley, C. Salter, S. et al,Angew. Chem. Int. Ed.45 (2006) 2533.
    [19]B. Sljukic, C. E. Banks, R. G. Compton, Nano Lett.6 (2006) 1556.
    [20]Y. L. Yao, D. Zhang, X. H. Xia, Chin. J. Inorg. Chem.20 (2004) 531.
    [21]Y. L. Yao, Y. Ding, L. S. Ye, X. H. Xia, Carbon 44 (2006) 61.
    [22]J. Willsau, J. Heitbaum, J. Electroanal. Chem.194 (1985) 27.
    [23]T. Iwasita, B. Rasch, E. Cattaneo, W. Vielstich, Electrochim. Acta 34 (1989) 1073.
    [24]S. C. Chang, L. W. H. Leung, M. J. Weaver, J. Phys. Chem.94 (1990) 6013.
    [25]J. Shin, W. J. Tornquist, C. Korzeniewski, C. S. Hoaglund, Surf. Sci.364 (1996) 122.
    [26]J. Li, Y. B. Wang, J. D. Qiu, D. C. Sun, X. H. Xia, Anal. Bioanal. Chem.383 (2005) 918.
    [27]E. Dujardin, T. W. Ebbesen, H. Hiura, K. Tanigaki, Science 265 (1994) 1850.
    [28]J. Z. Wang, H. Z. Huang, X. A. Mao, et al, (Eds.), Nanoparticle Analyse, vol.1, Chemical Engineering Press, Beijing,2003 (Chapter 9).
    [29]H. X. Luo, Z. J. Shi, N. Q. Li, et al, Anal. Chem.73 (2001) 915.
    [30]A. Curulli, F. Valentini, S. Orlanduci, et al, Biosens. Bioelectron.20 (2004) 1223.
    [31]D. Zhang, K. Zhang, Y. L. Yao, X. H. Xia, H.Y. Chen, Langmuir 20 (2004) 7303.
    [32]K. Wang, D. Zhang, T. Zhou, X. H. Xia, Chem. Eur. J.11 (2005) 1341.
    [33]K. Wang, J. J. Xu, D. C. Sun, H. Wei, X. H. Xia, Biosens. Bioelectron.20 (2005) 1366.
    [34]W. Z. Jia, K. Wang, Y. L. Hu, Y. Y. Song, X. H. Xia, Electrochem. Commun.9 (2007)1553.
    [35]W. Z. Jia, Y. L. Hu, Y. Y. Song, K. Wang, X. H. Xia, Biosens. Bioelectron.23 (2008) 892.
    [I]X. Zhang, K. Y. Chan, A. Tseung, J. Electrochem. Chem.386 (1995) 241.
    [2]B. R. Raghavan, J. Phys. Chem.B113 (2009) 3190.
    [3]R. P. Deo, J. Wang, Electrochem. Commun.6 (2004) 284.
    [4]J. Zhao, F. Wang, J. J. Yu, S. S. Hu, Talanta 70 (2006) 449.
    [5]G. L. Luque, M. C. Rodriguez, G. A. Rivas, Talanta 66 (2005) 467.
    [6]赵常志,张志慧,葛童,焦奎,应用化学,24(2007)192.
    [7]Y. P. Sun, H. Buck, T. E. Mallouk, Anal. Chem.73 (2001) 1599.
    [8]E. Shoji, M. S. Freund, J. Am. Chem. Soc.123 (2001) 3383.
    [9]S. Park, H. Boo, T. D. Chung, Analytica Chimica Acta,556 (2006) 46
    [10]Y. B. Vassilyev, O. N. N. Nikolaeva, J. Electroanal. Chem.196 (1985) 105.
    [11]B. Beden, F. Largeaud, K. B. Kokoh, C. Lamy, Electrochim. Acta.41 (1996) 701.
    [12]I. T. Bae, E. Yeager, X. Xing, C. C. Liu,J. Electroanal. Chem.309 (1991) 131.
    [13]J. H. Yuan, K. Wang, X. H. Xia, Adv. Fund. Mater.15 (2005) 803.
    [14]S. Park, T. D. Chung, H. C. Kim, Anal. Chem.75 (2003) 3046.
    [15]P. Holt-Hindl, S. Nigro, M. Asmussen, A. Chen, Electrochem. Commun.10 (2008) 1438.
    [16]M. Yoon, M. J. Dong, J. C. Yong, J. Phys. Chem. C 113 (2009) 1251.
    [17](a)Y. Li, Y. Y. Song, C. Yang, X. H. Xia, Electrochem. Commun.9 (2007) 981. (b) Y. Y. Song, D. Zhang, W. Gao, X. H. Xia, Chem. Eur. J.11 (2005) 2177.(c) L.-Q. Rong, C. Yang, Q.-Y. Qian, X. H. Xia, Talanta,72 (2007) 819. (d) Y.-G. Zhou, S. Yang, Q. Y. Qian, X. H. Xia*, Electrochem. Commun.,11 (2009) 216.
    [18]Y. Bai, Y. Sun, C. Sun Biosen and Bioelectron.24 (2008) 579.
    [19]Y. Bai, W. Yang, Y. Sun, C. Sun, Sensors and Actuators B,134 (2008) 471.
    [20]L. Meng, J. Jin, G. X. Yang, H. Zhang, C. X. Cai, Anal. Chem.81 (2009) 7271.
    [21]V. D. Neff, J Electrochem Soc,125 (1978) 886.
    [22]Ttaya K., Ataka T, Toshima S. J. Am Chem,104 (1982) 4767.
    [23]Ttaya K., Ataka T, Tohoku U. J Phys Chem,86 (13) (1982)2415.
    [24]Ttaya K., Atakashi H, Toshima S J [J] Electrochem Soc [J],129(7)(1982) 1498.
    [25]J. Li, J. D. Qiu, J. J. Xu, H. Y. Chen, X.-H. Xia, Adv. Funct Mater.17 (2007) 1574.
    [26]L. Nicolas Langmuir,25 (2009) 14030.
    [27]A. A. Karyakin. Anal. Chem.76 (2004) 474.
    [28]D. Zhang, K. Wang, D. C. Sun, X. H. Xia, H. Y. Chen, Chem. Mater.15 (2003) 4163.
    [29]Y. L. Hu, J.-H. Yuan, W. Chen, K. Wang, X. H. Xia, Electrochem. Commun., 7(2005)1252
    [30]Y. Y. Song, W. Z. Jia, Y. Li, X. H. Xia, et al. Adv. Funct. Mater.17 (2007) 2808.
    [31]L. Cao, B. Zhang, L. Lu, ACS Appl. Mater. Interfaces,2 (2010) 2339
    [32]H. Tang, J. Chen, S. Yao, G. Deng, Y. Kuang, Anal. Biochem.331 (2004) 89.
    [1]S. Sotiropoulou, N. A. Chaniotakis, Biosens. Bioelectron.18 (2003) 211.
    [2]B. R. Raghavan, J. Phys. Chem.B 113 (2009) 3190.
    [3]S. H. Lim, J. Lin, Q. Li, J. K. You, Biosens. Bioelectron.20 (2005) 2341.
    [4]X. Wang, Biosens. Bioelectron.24 (2009) 1527.
    [5]C. T. Hsu, H. H. Chung, Anal. Chem.81 (2009) 515.
    [6]H. Zheng, Y. F. Zhang, Z. Q. Shen, Biosens. Bioelectron.17 (2002) 541.
    [7]X. Liu, Biosens. Bioelectron.25 (2010) 2675.
    [8]赵常志,张志慧,葛童,焦奎,应用化学,24(2007)192-195.
    [9]Y. B. Vassilyev, N. N. Nikolaeva, J. Electroanal. Chem.196 (1985) 105.
    [10]B. Beden, F. Largeaud, K. B. Kokoh, Electrochim. Acta 41 (1996) 701.
    [11]I. T. Bae, E. Yeager, C. C. Liu, J. Electroanal. Chem.309 (1991) 131.
    [12]Y. Y. Song, D. Zhang, W. Gao, X. H. Xia, Chem. Eur. J.11 (2005) 2177.
    [13]J. H. Yuan, K. Wang, X. H. Xia, Adv. Funct. Mater.15 (2005) 803.
    [14]P. Wang, D. F. Thomas, A. C. Chen, Anal. Chem.80 (2008) 997.
    [15]W. Wang, Z. Li, Electrochem. Commun.11 (2009) 1811.
    [16]Z. Liu, B. Zhao, Y. Shi, et al, Talanta,81 (2010) 1650
    [17]M. J. Song, S. W. Hwang, Talanta 80 (2010) 1648.
    [18]J. Li, J. D. Qiu, J. J. Xu, H. Y. Chen, X. H. Xia, Adv. Funct. Mater.17 (2007) 1574.
    [19]J. S. Ye, Y. Wen, W. D. Zhang, Electrochem. Commun.6 (2004) 66.
    [20]L. Q. Rong, C. Yang, Q. Y. Qian, X. H. Xia, Talanta 72 (2007) 819.
    [21]X. Chen, Z. Lin, Biosens. Bioelectron.25 (2010) 1803.
    [22]Y. Li, Y. Y. Song, C. Yang, X. H. Xia, Electrochem. Commun.9 (2007) 981.
    [23]Han S., Yun Y., Park K. W., Sung Y. E., Hyeon T. Adv. Mater.15 (2003) 1922.
    [24]Hyeon T., Han S., Sung Y. E., et al,Angew. Chem. Int. Ed..42 (2003) 4352.
    [25]齐静,邬冰,高颖,哈尔滨师范大学自然科学学报 22(2006)63.
    [26]Y. Bai, Y. Sun, C. Sun, Biosen. Bioelectron.24 (2008) 579

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700