用户名: 密码: 验证码:
基于贵金属纳米颗粒/碳纳米材料复合物的燃料电池电催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池因其能量转化效率高、污染低、燃料来源广等优点,已成为新能源研究的热点。然而,电催化剂活性较低和价格高昂一直是燃料电池大规模商业化应用的主要障碍。提高催化剂的活性和利用率、降低其用量是目前燃料电池电催化剂研究的重点。为了达到这一目的,通常将小尺寸的贵金属纳米颗粒催化剂均匀分散在具有良好导电性和高比表面积的载体上。
     本论文选择碳纳米管和石墨烯为载体,发展了数种载体表面修饰方法,成功实现了贵金属纳米颗粒在这些功能化碳纳米材料表面的小粒径和均匀分布,并系统研究了获得的贵金属纳米颗粒/碳纳米材料复合物对醇类(甲醇、乙醇)、葡萄糖氧化以及氧还原的电催化性能。研究工作主要包括以下几个方面:
     (1)以1-烯丙基-3-乙基咪唑四氟硼酸离子液体聚合物修饰的碳纳米管(PIL-CNTs)为载体,银为牺牲模板,通过原位置换法在其表面“生长”具有高分散性和小颗粒尺寸Pt空心球(PtHNs/PIL-CNTs),用循环伏安法、计时电流法考察了PtHNs/PIL-CNTs催化剂在酸性介质中对甲醇的电催化氧化性能。与采用酸氧化碳纳米管通过吸附制备的PtHNs/AO-CNTs和商用E-TEK Pt/C催化剂相比,PtHNs/PIL-CNTs具有高的电催化氧化甲醇质量活性;更重要的是PtHNs/PIL-CNTs电催化氧化甲醇的长期稳定性明显高于其它二种催化剂。
     (2)利用氯化钯催化1-甲基-3-炔丙基咪唑溴离子液体聚合制备了炔基离子液体聚合物修饰的碳纳米管(AILP-CNTs),并通过一锅法合成了Pd/AILP-CNTs催化剂。经四探针和交流阻抗研究发现:AILP-CNTs(?)匕1-乙烯-3-乙基咪唑溴离子液体聚合物修饰的碳纳米管具有更好的电子导电性和更小的电荷传递阻力;透射电镜结果表明:平均粒径为3.5±0.5nm的Pd纳米颗粒均匀分布在AILP-CNTs上:循环伏安法、计时电流法研究表明:和基于未功能化处理的碳纳米管制备的Pd/CNTs催化剂相比,Pd/AILP-CNTs在碱性条件下对葡萄糖的电催化氧化具有更高的质量活性和稳定性。
     (3)以炔基离子液体聚合物修饰的碳纳米管(AILP-CNTs)为载体,通过硼氢化钠还原制备了PdAu/AILP-CNTs催化剂。透射电镜结果显示:平均粒径为4.5±0.5nm的PdAu纳米颗粒均匀地分散在AILP-CNTs表面;循环伏安法和计时电流法研究发现:与基于未功能化处理的碳纳米管制备的PdAu/CNTs催化剂相比,PdAu/AILP-CNTs在碱性条件下对乙醇的电催化氧化具有更高的活性和电化学稳定性。
     (4)用1-芘甲醛(PCA)对碳纳米管进行表面修饰制备了PCA-CNTs,以其为载体,利用PCA的还原性,通过微波辅助还原法制备了PtRu/PCA-CNTs催化剂。透射电镜结果显示:平均粒径为1.7±0.3nm的PtRu纳米颗粒均匀分布在PCA-CNTs表面;循环伏安法和计时电流法研究表明:与以未功能化处理的碳纳米管为载体,通过甲醛还原制备的PtRu/CNTs催化剂相比,PtRu/PCA-CNTs对甲醇的电催化氧化具有更高的活性及长期稳定性。
     (5)以1,10-邻二氮杂菲一水合盐酸盐修饰的石墨烯(PNT-GNs)为载体,用微波辅助乙二醇还原的方法制备了Pt/PNT-GNs催化剂。扫描电镜结果显示:Pt纳米颗粒在PNT-GNs表面比在未修饰的石墨烯表面具有更好的分散性和更小的粒径;采用旋转圆盘电极和线性扫描法研究了其对氧还原的电催化性能,结果表明:与基于未修饰石墨烯制备的Pt/GNs催化剂相比,Pt/PNT-GNs具有更好的电催化氧还原活性。
     (6)以1-芘甲醛作为石墨烯氧化物(GO)的还原剂,通过还原/功能化一步法制备了羧酸根功能化的、高度还原的石墨烯(PC--GNs),并以其为载体合成了Pt/PC---GNs催化剂。X射线光电子能谱和衍射谱证实了GO的还原,获得的PC—-GNs在水中具有极好的分散性;透射电镜结果显示:平均粒径为1.3+0.2nm的Pt纳米颗粒均匀分布在PC—-GNs表面;循环伏安法和计时电流法研究表明:与基于未修饰石墨烯制备的Pt/GNs催化剂相比,Pt/PC--GNs对甲醇的电催化氧化具有更高的活性及长期稳定性。
Fuel cells have been one of the research hotspots in new energy sources due to high power efficiency, low pollution, abundant sources, and so on. However, the low catalytic activity and high cost of the electrocatalysts are still the key issues hindering the commercial application of fuel cell. At present, the investigation of electrocatalysts focuses on the improvement of the catalytic activity and utilization of the electrocatalysts, and the decrease of the loading mass of noble metals. To achieve this aim, it is desirable that noble metal nanoparticles (NPs) with small size are dispersed uniformly on the supports with good electronic conductivity and high specific surface area.
     In this dissertation, several methods for surface modification of carbon supports (carbon nanotubes (CNTs) and graphene) have been developed and noble metal NPs with small particle size have been dispersed uniformly on the functionalized carbon supports. Additionally, the electrocatalytic performances of the obtained noble metal NPs/carbon nanomaterial hybrids towards the oxidation of alcohols (methanol, ethanol), glucose and oxygen reduction have been studied in detail. The main points are summarized as follows:
     (1)Taking CNTs modified with poly(1-allyl-3-ethylimidazolium tetrafluoroborate)(PIL-CNTs) as support and silver NPs as sacrified template, Pt hollow nanospheres (PtHNs) with high dispersion and small particle size were successfully "grown" on CNT surface by in-situ displacement method. The electrocatalytic performance of the obtained PtHNs/PIL-CNTs for methanol oxidation in acidic solution was investigated by cyclic voltammetry (CV) and chronoamperometry (CA). Comparing with commercial E-TEK Pt/C and PtHNs adsorbed on acid-oxidized CNTs, PtHNs/PIL-CNTs electrocatalyst has the highest mass activity and best long-term stability for methanol oxidation.
     (2) Functionalized CNTs (AILP-CNTs) were prepared by polymerization of1-methyl-3-(prop-2-ynyl)-imidazolium bromide monomers with catalysis of PdCl2, then Pd/AILP-CNTs catalyst was synthesized by one-pot method. The results obtained by the methods of four-point and electrochemical impedance show that AILP-CNTs has better electronic conductivity and smaller charge transfer resistance than CNTs functionalized with poly(1-vinyl-3-ethylimidazolium bromide). Transmission electron microscopy (TEM) result shows that Pd NPs with an average diameter of3.5±0.5nm were uniformly dispersed on the surface of AILP-CNTs. The results from CV and CA demonstrate that Pd/AILP-CNTs catalyst has higher mass activity and stability towards glucose electrooxidation in alkali solution than Pd/CNTs.
     (3)With CNTs modified by acetylenic ionic liquid polymer (AILP-CNTs) as support, PdAu/AILP-CNTs electrocatalyst was prepared by NaBH4reduction method. TEM result shows that PdAu NPs with an average diameter of4.5±0.5nm were uniformly dispersed on the surface of AILP-CNTs. The results from CV and CA demonstrate that PdAu/AILP-CNTs catalyst has higher activity and electrochemical stability towards ethanol electrooxidation in alkali solution than PdAu/CNTs.
     (4)PCA-CNTs was prepared by the surface modification of CNTs with1-pyrenecarboxaldehyde (PCA). Using the reduction ability of the PCA's aldehyde group, PtRu/PCA-CNTs electrocatalyst was synthesized via microwave-assisted reduction process in water. TEM result shows that Pt NPs with an average diameter of1.7±0.3nm were uniformly dispersed on the surface of PCA-CNTs. The results from CV and CA demonstrate that PtRu/PCA-CNTs catalyst has higher activity and long-term stability towards methanol electrooxidation comparing with PtRu/CNTs catalyst obtained by formaldehyde reduction method.
     (5) With1,10-phenanthroline hydrochloride monohydrate-functionalized graphene (PNT-GNs) as support, Pt/PNT-GNs electrocatalyst was prepared by microwave-assisted glycol reduction method. Scanning electron microscopy result shows that Pt NPs on the surface of PNT-GNs had better dispersion and smaller particle size than those on the surface of unmodified graphene. The electrocatalytic performance of Pt/PNT-GNs for oxygen reduction was investigated by rotate disk electrode and linear scanning voltammetry. The results show that Pt/PNT-GNs has better catalytic activity than Pt/GNs.
     (6)Using1-pyrenecarboxaldehyde as the reductant for exfoliated graphene oxide (GO), carboxylate-functionalized and high-reduced graphene nanosheets (PC--GNs) were prepared based on a one-step reduction/functionalization strategy. The obtained PC--GNs have excellent dispersibility in water and then are used as support for Pt NPs. Reduction of GO was confirmed by X-ray photoelectron spectroscopy and X-ray diffraction spectroscopy. TEM result shows that Pt NPs with an average diameter of1.3±0.2nm were uniformly dispersed on the surface of PC--GNs. The results from CV and CA demonstrate that Pt/PC--GNs catalyst has higher activity and long-term stability towards methanol electrooxidation comparing with Pt/GNs catalyst.
引文
[1]毛宗强.燃料电池.北京:化学工业出版社,2005,1-2
    [2]崔爱玉,付颖.燃料电池——新的绿色能源.应用能源技术,2006,7:14-48
    [3]刘雁.燃料电池人类未来的能源终极解决方案.资源与人居环境,2007,34:28-31
    [4]刘博.直接液体(乙醇、甲酸)燃料电池电催化剂研究:[湖南大学博士学位论文].长沙:湖南大学,2009,3-4
    [5]王明涌.碳纳米管基直接醇类燃料电池电极研究:[湖南大学硕士学位论文].长沙:湖南大学,2005,1-9
    [6]李海勇.以石墨烯为载体的直接甲醇燃料电池阳极电催化剂研究:[湖南大学硕士学位论文].长沙:湖南大学,2010,5
    [7]马欣,王胜开,陈国顺等.燃料电池设计与制造.北京:电子工业出版社,2008,28-30
    [8]Carrette L, Friedrich K A, Stimming U. Fuel cells-fundamentals and applications. Fuel cell,2001,1(1):5-39
    [9]Kordeseh K V, OliVera J C. Fuel cells. Ulmattn' s Encyelopedia of industry Chemistry, Fifth
    [10]EG&G. Technical Service Inc. Science application international service. Fuel Cell Handbook (Sixth Edition), U.S.Department of energy (DOE).2002.11
    [11]刘凤君,高效环保的燃料电池发电系统及其应用.北京:机械工业出版社,2005,1-4
    [12]王凤娥.直接甲醇燃料电池的研究现状及技术进展.稀有金属,2002,26(6):497-501
    [13]孟建波,桑革,罗学建PEMFC电催化剂研究进展.材料导报,2006,20(S2):289-295
    [14]McNicol B D, Rand D A J, Williams K R. Direct methanol-air fuel cells for road transportation. Journal of Power Sources,1999,83(1-2):15-31
    [15]Antonucci V. Direct methanol fuel cells for mobile applications:A strategy for the future. Fuel Cells Bulletin,1999,2(6):6-8
    [16]Neto A O. The Electro-oxidation of Ethanol on Pt-Ru and Pt-Mo Particles Supported on High-Surface-Area Carbon. Journal of the Electrochemical Society,2002, (149):A272-A279
    [17]王卫平,吕功煊.Co/Fe化剂乙醇裂解和部分氧化制氢研究.分子催化,2002,16(6):434-437
    [18]Fujiwara N, Friedrich K A, Stimming U. Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry. Journal of Electro analytical Chemistry,1999,472(2):120-125
    [19]Leger J -M. Mechanistic aspects of methanol oxidation on platinum-based electrocatalysts. Journal of Applied Electrochemistry,2001,31(7):767-771
    [20]黄昌霆.直接醇类燃料电池(DAFC)阳极电催化剂研究:[湖南大学硕士学位论文].长沙:湖南大学,2010,8-9
    [21]Hoogers G. Fuel cell technology handbook. CRC Press LLC,2003,121-135
    [22]李金峰,宋焕巧,邱新平.直接甲醇燃料电池阳极催化剂的研究进展.电源技术,2007,31(2):167-170
    [23]庞海丽.直接醇类燃料电池和酶生物燃料电池电极研究:[湖南大学博士学位论文].长沙:湖南大学,2011,8
    [24]Kabbabi A, Faure R, Durand R, et al. In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes. Journal of Electroanalytical Chemistry,1998,444(1):41-53
    [25]Kardash D, Huang J, Korzeniewski C. Surface electrochemisty of CO and methanol at 25-75 ℃ probed in situ by infrared spectroscopy. Langmuir,2000, 16(4):2019-2023
    [26]陈胜洲,董新法,林维明.直接甲醇燃料电池甲醇电氧化催化剂研究的新动向.化工进展,2003,22(4):466-469
    [27]Gasteiger H A, Markovic N M, Ross P N, et al. CO electrooxidation on well-characterized Pt-Ru alloys. The Journal of Physical and chemistry,1997, 98(2):617-625
    [28]Gasteiger H A, Markovic N M, Ross P N, et al. Methanol electrooxidation on well-characterized Pt-Ru alloys. The Journal of Physical and Chemistry,1993, 97(46):12020-12029
    [29]Gasteiger H A, Markovic N M, Ross P N, et al. H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru.1. Rotating disk electrode studies of the pure gases including temperature effects. The Journal of Physical and Chemistry, 1995,99(20):8290-8301
    [30]Emmanuel A, Andreas F, Thomas L, et al. Co-tolerant anode catalyst for PEM fuel cells and a process for its preparation. United States Patent,1999,6007934
    [31]Takasu Y, Fujiwara T, Murakami Y, et al. Effect of structure of carbon-supported PtRu electrocatalysts on the electrochemical exidation of methanol. Journal of The Electrochemical Society,2000,147(12):4421-4427
    [32]Russell A E, Maniguet S. Mathew R J, et al. In situ X-ray absorption spectroscopy and X-ray diffraction of fuel cell electrocatalyst. Journal of Power Sources,2001,96(1):226-232
    [33]Grgur B N, Markovic N M, Ross P N. The electro-oxidation of H2 and H2/CO mixtures on carbon-supported PtxMoy alloy catalysts. Journal of The Electrochemical Society,1999,146(5):1613-1619
    [34]Gotz M, Wendt H, Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochimica Acta,1998,43(24):3637-3644
    [35]Shukla A K, Raman R K. Methanol-resistant oxygen reduction catalysts for direct methanol fuel cells. Annual Review of Materials Research,2003,33(1): 155-168
    [36]Lee S J, Mukerjes S, Ticianelli E A, et al. Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells. Electrochimica Acta,1999, 44(19):3283-3293
    [37]Antolini E. Platinum-based ternary catalysts for low temperature fuel cells Part I. Preparation methods and structural characteristics. Applied Catalysis B: Environmental,2007,74(3-4):324-336
    [38]Ley K L, Liu R X, Pu C, et al. Methanol oxidation on single-phase Pt-Ru-Os ternary alloys. Journal of The Electrochemical Society,1997,144(5):1543-1548
    [39]Xion L, Kanna A M, Manthiram A. Pt-M (M=Fe, Co, Ni and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells. Electrochemistry Communications,2002,4(3):898-903
    [40]Liu R X, Iddir H, Fan Q B, et al. Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-phase Pt, PtRu, PtOs, PtRuOs, and Ru Electrodes. The Journal of Physical and Chemistry B,2000,104(15):3518-3531
    [41]Jusys Z, Schmidt T J, Dubau L, et al. Activity of PtRuMeOx (Me=W, Mo or V) catalysts towards methanol oxidation and their characterization. Journal of Power Sources,2002,105(2):297-304
    [42]Shantha S. Redox Promters Methonal Fuel Cells. United States Patent,1997, 5683829
    [43]Wu G, Adams B, Tian M, et al. Synthesis and electrochemical study of novel Pt-decorated Ti nanowires. Electrochemistry Communications,2009,11(4): 736-739
    [44]Peng X, Koczkur K, Nigro S, et al. Fabrication and electrochemical properties of novel nanoporous platinum network electrodes. Chemical Communications. 2004,24,2872-2873
    [45]Liang H P, Zhang H M, Hu J S, et al. Pt Hollow Nanospheres:Facile Synthesis and Enhanced Electrocatalysts. Angewandte Chemie Internatioanal Edition, 2004,43(12):1540-1543
    [46]Guo D J, Zhao L, Qiu X P, et al. Novel hollow PtRu nanospheres supported on multi-walled carbon nanotube for methanol electrooxidation. Journal of Power Sources,2008,177(2):334-338
    [47]Raghuveer V, Viswanathan B. Can La2-xSrxCuCO4 be used as anodes for direct methanol fuel cells? Fuel,2002,81(17):2191-2197
    [48]Levy R B, Boudaa M. Platinium-like behavior of tungsten carbide in surface catalysis. Science,1973,181(4099):547-549
    [49]Biswas P C, Enyo M. Electro-oxidation of methanol on graphite suppoaed perovskite-modified Pt electrodes in alkaline solution. Journal of Electroanalytical Chemistry,1992,322(1-2):203-220
    [50]Deshpande K, Mukasyan A, Varma A. High throughout evaluation of perovskite-based anode catalysts for direct methanol fuel cell. Journal of Power Sources,2006,158(1):60-68
    [51]Wang Y J, Wilkinson D P, Zhang J J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chemical Reviews,2011, 111(12):7625-7651
    [52]Barnett J, Burstein T, Kucernak A R, et al. Electrocatalytic activity of some carburized nickel, tungsten and molybdenum compounds. Electrochimica Acta, 1997,42(15):2381-2388
    [53]Burstein G T, Mcintyre D R, Vossen A. Relative activity of a base catalyst toward electro-oxidation of hydrogen and methanol. Electrochemical and Solid-State Letters,2002,5(4):A80-A83
    [54]Lan A, Mukasyan A S. Perovskite-based catalysts for direct methanol fuel cells. The Journal of Physical Chemistry C,2007,111(26):9573-9582
    [55]Raghuveer V, Ravindranathan-Thampi K, Xanthopoulos N, et al. Rare earth cuprates as electrocatalysts for methanol oxidation. Solid State Ionics,2001, 140(3-4):263-274
    [56]Bianchini C, Shen P K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chemical Reviews,2009,109(6): 4183-4206
    [57]Ogrady W E, Pandya K I, Swider K E, et al. In situ X-ray absorption near-edge structure evidence for quadrivalent nickel in nickel batteryelectrodes. Journal of The Electrochemical Society,1996,143(5):1613-1622
    [58]Yang C C, Hsu S T, Chien W C, et al. Electrochemical properties of air electrodes based on MnO2 catalysts supported on binary carbons. International Journal of Hydrogen Energy,2006,31(14):2076-2087
    [59]Chen A C, Holt-Hindle P. Platinum-based nanostructured materials:synthesis, properties, and applications. Chemical Reviews,2010,110(6):3767-3804
    [60]Genies L, Faure R, Durand R. Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochimica Acta,1998,44(8-9):1317-1327
    [61]Tang H, Chen J H, Huang Z P, et al. High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon,2004, 42(1):191-197
    [62]Kongkanand A, Kuwabata S, Girishkumar G, et al. Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. Langmuir,2006,22(5):2392-2396
    [63]Yang H, Coutanceau C, Leger J M, et al. Methanol tolerant oxygen reduction on carbon-supported Pt-Ni alloy nanoparticles. Journal of Electroanalytical Chemistry,2005,576(2):305-313
    [64]Yang H, Vogel. W, Lamy. C, et al. Structure and electrocatalytic activity of carbon-supported Pt-Ni alloy nanoparticles toward the oxygen reduction reaction. The Journal of Physical and Chemistry B,2004,108(30):11024-11034
    [65]Xiong L, Kannan A M, Manthiram A. Pt-M (M=Fe, Co, Ni and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells. Electrochemistry Communications,2002,4(11):898-903
    [66]Yang H, Alonso-Vante N, Leger J M, et al. Tailoring, structure, and activity of carbon-supported nanosized Pt-Cr alloy electrocatalysts for oxygen reduction in pure and methanol-containing electrolytes. The Journal of Physical Chemistry B, 2004,108(6):1938-1947
    [67]Zhang J, Sasaki K, Sutter R, et al. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science,2007,315(5809):220-222
    [68]Ioroi T, Yasuda K J. Platinum-Iridium alloys as oxygen reduction electrocatalysts for polymer electrolyte fuel cells. Journal of The Electrochemical Society,2005,152(10):A1917-1924
    [69]He T, Kreidler E, Xiong L, et al. Alloy electrocatalysts. Journal of the Electrochemical Society,2006,153(9):A1637-A1643
    [70]Li H Q, Xin Q, Li W Z, et al. An improved palladium-based DMFCs cathode catalyst. Chemical Communications,2004,23(23):2776-2777
    [71]Wang C, Daimon H, Sun S. Dumbbell-like Pt-Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction. Nano Letters,2009,9(4): 1493-1496
    [72]Elezovic, N R, Babic B M, Radmilovic V R, et al. Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction. Electrochimica Acta,2009,54(9):2404-2409
    [73]Tamizhmani G, Capuanoga I. Improved electrocatalytic oxygen reduction performance of platinum ternary alloy oxide in solid polymer electrolyte fuel cells. Journal of the Electrochemical Society,1994,141(1):41-45
    [74]Xu Z Q, Qi Z Q, Kaufman A. Effect of oxygen storage materials on the performance of proton-exchange membrane fuel cells. Journal of Power Sources, 2006,115(1):40-43
    [75]Maillard F, Martin M, Gloaguen F, et al. Oxygen electroreduction on carbon-supported platinum catalysts. Particle-size effect on the tolerance to methanol competition. Electrochimica Acta,2002,47(21):3431-3440
    [76]李玉冰,杨玉国,康晓红等.质子交换膜燃料电池阴极催化剂的研究进展.河北理工学院学报,2005,27(4):55-59
    [77]Kiros Y, Lindstrom O, Kaimakis T. Cobalt and cobalt-based macrocycle blacks as oxygen-reduction catalysts in alkaline fuel cells. Journal of Power Sources, 1993,45(2):219-227
    [78]Gouerec P, Savy M, Riga J. Oxygen reduction in acidic media catalyzed by pyrolyzed cobalt macrocycles dispersed on an active carbon:The importance of the content of oxygen surface groups on the evolution of the chelate structure during the heat treatment. Electrochimica Acta,1998,43(7):743-753
    [79]Faubert G, Lalande G, Cote R, et al. Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black:Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells. Electrochimica Acta,1996,41(10):1689-1701
    [80]Bouwkamp-Wijnoltz A L, Visscher W, Veen J A R, et al. Electrochemical reduction of oxygen:an alternative method to prepare active CoN4 catalysts. Electrochimica Acta,1999,45(3):379-386
    [81]Ye S Y, Vigh A K. Non-noble metal-carbonized aerogel composites as electrocatalysts for the oxygen reduction reaction. Electrochemistry Communications,2003,5(3):272-275
    [82]Lefevre M, Dolet J P, Bertrand P. Molecular oxygen reduction in PEM Fuel Cells:evidence for the simultaneous presence of two active sites in Fe-based catalysts. The Journal of Physical Chemistry B,2002,106(34):8705-8713
    [83]Jiang J H, Kucernak A. Novel electrocatalyst for the oxygen reduction reaction in acidic media using electrochemically activated iron 2,6-bis(imino)-pyridyl complexes. Electrochimica Acta,2002,47(12):1967-1973
    [84]Ye X R, Lin Y H, Wai C M. Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. Chemical Communications, 2003,5:642-643
    [85]Li F H, Yang H F, Shan C S, et al. The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. Journal of Materials Chemistry,2009,19(23):4022-4025
    [86]Hu F P, Zhang X G, Xiao F, et al. Oxygen reduction on Ag-MnO2/SWNT and Ag-MnO2/AB electrodes. Carbon,2005,43(14):2931-2936
    [87]Lima F H B, Calegaro M L, Ticianelli E A. Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction. Electrochimica Acta,2007,52(11):3732-3738
    [88]Manoharan R, Goodnough J B. Oxygen reduction on CrO2 bonded to a proton-exchange membrane. Electrochimica Acta,1995,40(3):303-307
    [89]Jasin D, Abu-Rabi A, Mentus S, et al. Oxygen reduction reaction on spontaneously and potentiodynamically formed Au/TiO2 composite surfaces. Electrochimica Acta,2007,52(13):4581-4588
    [90]Kim J H, Ishihara A, Mitsushima S, et al. Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC. Electrochimica Acta,2007,52(7):2492-2497
    [91]Nguyen C H, El Abbassi K, Chartier P. Electrically Conductive Polymer/Metal Oxide Composite Electrodes for Oxygen Reduction. Electrochemical and Solid-State Letters,2000,3(4):192-195
    [92]Suresh K, Panchapagesan T S, Patil K C. Synthesis and properties of La1-xSrxFe03. Solid State Ionics,1999,126(3-4):299-305
    [93]Hayashi M, Uemura H, Shimanoe K. Enhanced Electrocatalytic Activity for Oxygen Reduction over Carbon-Supported LaMnO3 Prepared by Reverse Micelle Method. Electrochemical and Solid-State Letters,1998,1(6):268-270
    [94]Prakash J, Tryk D A, Yeagerc E B. Kinetic Investigations of Oxygen Reduction and Evolution Reactions on Lead Ruthenate Catalysts. Journal of the Electrochemical Society,1999,146(11):4145-4151
    [95]唐致远,宋世栋,刘建华.钙钛矿型双功能氧电极催化剂的研究进展.电源技术,2003,27(4):233-237
    [96]Heller N, Prestat M, Gautier J L. Oxygen electroreduction mechanism at thin NixCo3-xO4 spinet films in a double channel electrode flow cell (DCEFC). Electrochimica Acta,1997,42(2):197-202
    [97]Yang J S, Xu J J. Nanoporous amorphousmanganese oxide as electrocatalyst for oxygen reduction in alkaline solutions. Electrochemistry Communications,2003, 5(4):306-311
    [98]Rodriguez F J, Sebastian P J. MoxSey-(CO)n electrocatalyst prepared by screen-printing and sintering. International Journal of Hydrogen Energy,2000, 25(3):243-247
    [99]Alonso-Vante N, Tributsch H. Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature,1986,323(6087): 431-432
    [100]Reeve R W, Christensen P A, Hamnett A, et al. Methanol tolerant oxygen reduction catalysts based on transition metal sulfides. Journal of The Electrochemical Society,1998,145(10):3463-3471
    [101]Reeve R W, Christensen P A, Dickinson A J, et al. Methanol-tolerant oxygen reduction catalysts based on transition metal sulfides and their application to the study of methanol permeation, Electrochimica Acta,2000,45(25-26): 4237-4250
    [102]Gong K P, Du F, Xia Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science,2009,323(5915): 760-764
    [103]Liu R L, Wu D. Q, Feng X L, et al. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angewandte Chemie Internatioanal Edition,2010,49(14):2565-2569
    [104]Tricoli V. Proton and methanol transport in poly(perfluorosulfonate) membranes containing Cs+ and H+ cations. Journal of Electrochemistry Society,1998, 145(11):3798-3801
    [105]Jung D H, Cho S Y, Peck D H, et al. Preparation and performance of Nafion/montmorillonite nanocomposite membrane for direct methanol fuel cell. Journal of Power Sources,2003,118(1-2):205-211
    [106]吴洪,王宇新,王世昌.新型阻醇质子导电聚合物膜PVA/Nafion共混膜的制备及性能研究.高等化学工程学报,2002,16(3):326-330
    [107]李磊,张军,吴洪等.直接甲醇燃料电池新型聚合物膜的研究.电化学,2002,8(2):177-181
    [108]Tricoli V, Nannetti F. Zeolite-Nafion composites as ion conducting membrane materials. Electrochimica Acta,2003,48(18):2625-2633
    [109]Wainright J S, Wang J T, Weng D, et al. Acid-doped polybenzimidazole:a new polymer electrolyte. Journal of The Electrochemical Society,1995,142(7): L121-L123
    [110]Lim D H, Lee W J, Wheldon J, et al. Electrochemical characterization and durability of sputtered Pt catalysts on TiO2 arrays as a cathode material for PEFCs. Journal of The Electrochemical Society,2010,157(12):B862-B867
    [111]Adzic R R, Zhang J, Sasaki K, et al. Platinum Monolayer Fuel Cell Electrocatalysts. Topics in Catalysis,2007,46(3-4):249-262
    [112]Arico A S, Srinivasan S, Antonucci V. DMFCs:from fundamental aspects to technology development. Fuel Cells,2001,1(2):133-161
    [113]Rao V, Simonov P A, Savinova E R, et al. The influence of carbon support porosity on the activity of PtRu/Sibunit anode catalysts for methanol oxidation. Journal of Power Sources,2005,145(2):178-187
    [114]Wang Z, Yin G, Shi P. Effects of ozone treatment of carbon support on Pt-Ru/C catalysts performance for direct methanol fuel cell. Carbon,2005,44(1): 133-140
    [115]Iijima S. Helical microtubles of graphite carbon. Nature,1991,354:56-58
    [116]Ivanov V, Nagy J B, Lambin P, et al. The study of carbon nanotubes produced by catalytic method. Chemical Physics Letters,1994,223(4):329-335
    [117]Nugent J M, Santhanam K S V, Rubio, et al. Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Letter,2001,1(2): 87-91
    [118]Matsumoto T, Komatsu T, Arai K, et al. Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chemical Communications, 2004,7:840-841
    [119]Li W, Liang C, Zhou W, et al. Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel cells. Carbon,2004,42(2):436-439
    [120]Che G, Lakshmi B B, Martin C R, et al. Metal-nanocluster-filled carbon nanotubes:catalytic properties and possible applications in electrochemical energy storage and production. Langmuir,1999,15(3):750-758
    [121]Girishkumar G, Vinodgopal K, Kamat P, et al. Carbon nanostructures in portable fuel cells:single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction. The Journal of Physical Chemistry B,2004, 108(52):19960-19966
    [122]Britto P J, Santhanam K S V, Rubio A, et al. Improved charge transfer at carbon nanotube electrodes. Advanced Materials,1999,11(2):154-157
    [123]Li W Z, Liang C H, Qiu J S, et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon,2002,40(5):791-794
    [124]黄辉,张文魁,赵峰鸣等.纳米碳管空气电极在氧还原反应中的电催化性能.应用化学,2002,19(8):760-763
    [125]Xu H, Zeng L P, XingS J, et al. Microwave-radiated synthesis of gold nanoparticles/carbon nanotubes composites and its application to voltammetric detection of trace mercury(Ⅱ). Electrochemistry Communications,2008,10(12): 1839-1843
    [126]Guo S J, Dong S J, Wang E K. Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker. Advanced Materials,2010,22(11):1269-1272
    [127]Tao L, Chen G J, Mantovani G, et al. Modification of multi-wall carbon nanotube surfaces with poly(amidoamine) dendrons:Synthesis and metal templating. Chemical Communications,2006,47:4949-4951
    [128]Wang D, Li Z C, Chen L. Templated synthesis of single-walled carbon nanotube and metal nanoparticle assemblies in solution. Journal of The American Chemical Society,2006,128(47):15078-15079
    [129]Hsin Y L, Hwang K C, Yeh C T. Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. Journal of the American Chemical Society,2007,129(32): 9999-10010
    [130]Liu X Q, Li H J, Wang F A, et al. Functionalized single-walled carbon nanohorns for electrochemical biosensing. Biosensors and Bioelectronics,2010, 25(10):2194-2199
    [131]Correa-Duarte M A, Liz-Marzan L M. Carbon nanotubes as templates for one-dimensional nanoparticle assemblies. Journal of Materials Chemistry,2006, 16(1):22-25
    [132]Wu B H, Hu D, Kuang Y J, et al. Functionalization of carbon nanotubes by an ionic-liquid polymer: dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol. Angewandte Chemie Internatioanal Edition,2009,48(26):4751-4754
    [133]Wang D L, Lu S F, Jiang S P. Pd/HPW-PDDA-MWCNTs as effective non-Pt electrocatalysts for oxygen reduction reaction of fuel cells. Chemical Communications,2010,46(12):2058-2060
    [134]Wang S Y, Wang X, Jiang S P. PtRu nanoparticles supported on 1-aminopyrene-functionalized multiwalled carbon nanotubes and their electrocatalytic activity for methanol oxidation. Langmuir,2008,24(18): 10505-10512
    [135]Wu B H, Hu D, Kuang Y J, et al. High dispersion of platinum-ruthenium nanoparticles on the 3,4,9,10-perylene tetracarboxylic acid-functionalized carbon nanotubes for methanol electro-oxidation. Chemical Communications, 2011,47(18):5253-5255
    [136]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science,2004,306(5696):666-669
    [137]Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene:the new two-dimensional nanomaterial. Angewandte Chemie Internatioanal Edition, 2009,48(42):7752-7777
    [138]Xu C, Wang X, Zhu J W. Graphene-metal particle nanocomposites. The Journal of Physical Chemistry C,2008,112(50):19841-19845
    [139]Qiu J D, Wang G C, Liang R P, et al. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. The Journal of Physical Chemistry C,2011,115(31):15639-15645
    [140]Shao Y Y, Zhang S, Wang C M, et al. Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. Journal of Power Sources, 2010,195(15):4600-4605
    [141]Choi S M, Seo M H, Kim H J, et al. Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation. Carbon,2011,49(3):904-909
    [142]Bessel C A, Laubernds K, Rodriguez N M,et al. Graphite nanofibers as an electrode for fuel cell applications. The Journal of Physical Chemistry B,2001, 105(6):1115-1118.
    [143]Liu H S, Songa C J, Zhang L, et al. A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources,2006,155(2):95-110
    [144]Hyeon T, Han S, Sung Y, et al. High-performance direct methanol fuel cell electrodes using solid-phase-synthesized carbon nanocoils. Angewandte Chemie Internatioanal Edition,2003,42(36):4352-4356.
    [145]Raghuveer V, Manthiram A. Mesoporous carbons with controlled porosity as an electrocatalytic support for methanol oxidation. Journal of The Electrochemical Society,2005,152(8):A1504-A1510
    [146]Chai G S, Yoon S B, Kim J H, et al. Spherical carbon capsules with hollow macroporous core and mesoporous shell structures as a highly efficient catalyst support in the direct methanol fuel cell. Chemical Communications,2004,23: 2766-2767
    [147]Liu Y C, Qiu X P, Huang Y Q, et al. Methanol electro-oxidation on mesocarbon microbead supported Pt catalysts. Carbon,2002,40(13):2375-2380
    [148]Ioroi T, Siroma Z, Fujiwara N, et al. Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochemistry Communications,2005,7(2):183-188
    [149]Ioroi T, Senoh H, Yamazaki S, et al. Stability of corrosion-resistant magneli-phase Ti4O7-supported PEMFC catalysts at high potentials. Journal of The Electrochemical society,2008,155(4):B321-B326
    [150]Huang S Y, Ganesan P, Park, S, et al. Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. Journal of The American Chemical Society,2009,131(39):13898-13899
    [151]Saha M S, Li R, Cai M, et al. High electrocatalytic activity of platinum nanoparticles on SnO2 nanowire-based electrodes. Electrochemical and Solid-State Letters,2007,10(8):B130-B133
    [152]Ganesan R, Lee J S. An electrocatalyst for methanol oxidation based on tungsten trioxide microspheres and platinum. Journal of Power Sources,2006, 157(1):217-221
    [153]Laborde H, Leger J M, Lamy C. Electrocatalytic oxidation of methanol and C1 molecules on high dispersed electrodes Part 1:Platinum in polyaniline. Journal of Applied Electrochemistry,1994,24(3):219-226
    [154]Chen Z W, Xu L B, Li W Z, et al. Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells. Nanotechnology,2006, 17(20):5254-5259
    [155]Rajesh B, Thampi K R, Bonard J M, et al. Nanostructured conducting polyaniline tubules as catalyst support for Pt particles for possible fuel cell applications. Electrochemical and Solid-State Letters,2004,7(11):A404-A407
    [156]Bouzek K, Mangold K M, Juttner K. Platinum distribution and electrocatalytic properties of modified polypyrrole films. Electrochimica Acta,2000,46(5): 661-670
    [157]Li J, Lin X J. A Composite of polypyrrole nanowire:platinum modified electrode for oxygen reduction and methanol oxidation reactions. Journal of The Electrochemical society,2007,154(10):B1074-1079
    [158]Patra S, Munichandraiah N. Electrooxidation of methanol on Pt-modified conductive polymer PEDOT. Langmuir,2009,25(3):1732-1738
    [159]Vercelli B, Zotti G, Berlin A. Mono- and multilayers of platinum nanoparticles and poly(3,4-ethylenedioxythiophene) as nanostructure for methanol electrooxidation. The Journal of Physical Chemistry C,2009,113(9): 3525-3529
    [160]Kelaidopoulou A, Abelidou E, Kokkinidis G. Electrocatalytic oxidation of methanol and formic acid on dispersed electrodes:Pt, Pt-Sn and Pt/M(upd) in poly(2-hydroxy-3-aminophenazine). Journal of applied electrochemistry,1999, 29(11):1255-1261
    [161]Grubb W T, McKee D W. Boron carbide, a new substrate for fuel cell electrocatalysts. Nature,1966,210(5032):192-194
    [162]Jalan V, Frost D G. Fuel cell electrocatalyst support comprising an ultra-fine chainy-structured titanium carbide. United state Patent,1989,4795684
    [163]Honji A, Mori T, Hishinuma Y J. Platinum supported on silicon carbide as fuel cell electrocatalyst. Journal of The Electrochemical society,1988,135(4): 917-918
    [164]Liu N, Kourtakis K, Figueroa J C, et al. Potential application of tungsten carbide as electrocatalysts:III. Reactions of methanol, water, and hydrogen on Pt-modified C/W(111) surfaces. Journal of catalysis,2003,215(2):254-263
    [165]Musthafa O T, Sampath S. High performance platinized titanium nitride catalyst for methanol oxidation. Chemical Communications,2008, (1):67-69
    [166]Yin S, Mu S, Lv H, et al. A highly stable catalyst for PEM fuel cell based on durable titanium diboride support and polymer stabilization. Applied Catalysis B:Environmental,2010,93(3-4):233-240
    [167]Eswaramoorthi I, Dalai A K. A comparative study on the performance of mesoporous SBA-15 supported Pd-Zn catalysts in partial oxidation and steam reforming of methanol for hydrogen production. International Journal of Hydrogen Energy,2009,34(6):2580-2590
    [168]Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles. Science,2002,298 (5601):2176-2179
    [169]Lou X W, Archer L A, Yang Z C. Hollow micro-/nanostructures:synthesis and applications. Advanced Materials,2008,20(21):3987-4019
    [170]Lu X M, Tuan H Y, Chen J Y, et al. Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium. Journal of The American Chemical Society,2007,129 (6): 1733-1742
    [171]Baughman R H, Zakhidov A A, Hee W A. Carbon nanotubes--the route toward applications. Science,2002,297(5582):787-792
    [172]Guo S J, Li J, Ren W, et al. Carbon nanotube/silica coaxial nanocable as a three-dimensional support for loading diverse ultra-high-density metal nanostructures:facile preparation and use as enhanced materials for electrochemical devices and SERS. Chemistry of Materials,2009,21(11): 2247-2257
    [173]Guo D J, Cui S K. Hollow PtCo nanospheres supported on multi-walled carbon nanotubes for methanol electrooxidation. Journal of Colloid and Interface Science,2009,340(1):53-57
    [174]Liu Z L, Zhao B, Guo C L, et al. Carbon nanotube/raspberry hollow Pd nanosphere hybrids for methanol, ethanol, and formic acid electro-oxidation in alkaline media. Journal of Colloid and Interface Science,2010,351(1):233-238
    [175]Chen H M, Liu R S, Lo M Y, et al. Hollow platinum spheres with nano-channels: synthesis and enhanced catalysis for oxygen reduction. The Journal of Physical Chemistry C,2008,112(20):7522-7526
    [176]Pozio A, Francesco M D, Cemmi A, et al. Comparison of high surface Pt/C catalyst by cyclic voltammetry. Journal of Power Sources,2002,105(1):13-19
    [177]Wang R F, Liao S J, Ji S. High performance Pd-based catalysts for oxidation of formic acid. Journal of Power Sources,2008,180(1):205-208
    [178]Lim S H, Wei J, Lin J Y, et al. A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode. Biosensors and Bioelectronics,2005,20(11):2341-2346
    [179]Meng L, Jin J, Yang GX, et al. Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Analytical Chemistry,2009,81(17):7271-7280
    [180]Liu B, Li H Y, Die L, et al. Carbon Nanotubes Supported PtPd Hollow Nanospheres For Formic Acid Electrooxidation. Journal of Power Sources,2009, 186(1):62-66
    [181]Hu F P, Shen P K, Li Y L, et al. Highly stable catalytic nanoarchitectures for low temperature fuel cells. Fuel Cells,2008,8(6):429-435
    [182]Tian Z Q, Jiang S P, Liang Y M, et al. Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. The Journal of Physical Chemistry B,2006, 110(11):5343-5350
    [183]Xue B, Chen P, Hong Q, et al. Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. Journal of Materials Chemistry,2001,11(9):2378-2381
    [184]Choi H C, Shim M, Bangsaruntip S, et al. Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. Journal of The American Chemical Society,2002,124(31):9058-9059
    [185]Yoon B, Wai CM. Microemulsion-templated synthesis of carbon nanotube-supported Pd and Rh nanoparticles for catalytic applications. Journal of The American Chemical Society,2005,127(49):17174-17175
    [186]Ye X R, Lin Y H, Wai C M, Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. Chemical Communications, 2003,9:642-643
    [187]Chen X, Hou Y, Wang H, et al. Facile Deposition of Pd Nanoparticles on Carbon Nanotube Microparticles and Their Catalytic Activity for Suzuki Coupling Reactions. The Journal of Physical Chemistry C,2008,112(22):8172-8176
    [188]Karousis N, Tsotsou G E, Evangelista F, et al. Carbon Nanotubes Decorated with Palladium Nanoparticles:Synthesis, Characterization, and Catalytic Activity. The Journal of Physical Chemistry C,2008,112(35):13463-13469
    [189]Bera D, Kuiry S C, McCutchen M, et al. In-situ synthesis of carbon nanotubes filled with metallic nanoparticles using arc discharge in solution. Chemical Physics Letters,2004,386(4):364-368
    [190]Kim K S, Choi S, Cha J H, et al. Facile one-pot synthesis of gold nanoparticles using alcohol ionic liquids. Journal of Materials Chemistry,2006 16(14): 1315-1317
    [191]Migowski P, Dupont J. Catalytic applications of metal nanoparticles in imidazolium ionic liquids. Chemistry-A European Journal,2006,13(1):32-39
    [192]Scheeren C W, Machado G, Teixeira S R, et al. Synthesis and characterization of Pt(0) nanoparticles in imidazolium ionic liquids. The Journal of Physical Chemistry B,2006,110(26):13011-13020
    [193]Zhao D B, Fei Z F, Ang W H, et al. A strategy for the synthesis of transition-metal nanoparticles and their transfer between liquid phases. Small, 20062(7):879-883
    [194]Batra D, Seifert S, Varela L M, et al. Solvent-mediated plasmon tuning in a gold-nanoparticle-poly(ionic liquid) composite. Advanced Functional Materials, 2007,17(8):1279-1287
    [195]Schottenberger H, Wurst K, Horvath U E I, et al. Synthesis and characterisation of organometallic imidazolium compounds that include a new organometallic ionic liquid. Dalton Transactions,2003,22:4275-4281
    [196]Delts W, Cukor P, Rubner M, et al. Analogues of polyacetylene. preparation and properties. Industrial & Engineering Chemistry Product Research and Development,1981,20(4):696-704.
    [197]Marcilla R, Bleazquez J A, Rodriguez J, et al. Tunning the solubility of polymerized ionic liquids by simple anion-exchange reactions. Journal of Polymer Science:Part A:Polymer Chemistry,2004,42(1):208-212
    [198]Dresselhaus M S, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes. Physics Reports,2005,409(2):47-99
    [199]Belin T, Epron F. Characterization methods of carbon nanotubes:a review. Materials Science and Engineering B,2005,119(2):105-118
    [200]Park H S, Choi B G, Yang S H, et al. Ionic-liquid-assisted sonochemical synthesis of carbon-nanotube-based nanohybrids:control in the structures and interfacial characteristics. Small,2009,5(15):1754-1760
    [201]Mazumder V, Sun S H. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. Journal of The American Chemical Society, 2009,131(13):4588-4589
    [202]Guo S J, Dong S J, Wang E K. Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker. Adanced Materials,2009,22(11):1269-1272
    [203]Nirmala G A, Pandian K. Synthesis of gold and platinum nanoparticles using tetraaniline as reducing and phase transfer agent—A brief study and their role in the electrocatalytic oxidation of glucose. Journal of Physics and Chemistry of Solids,200768(12):2278-2285
    [204]Aoun S B, Dursun Z, Koga T, et al. Effect of metal ad-layers on Au(111) electrodes on electrocatalytic oxidation of glucose in an alkaline solution. Journal of Electroanalytic Chemistry,2004,567(2):175-183
    [205]Chen Y, Zhuang L, Lu J, et al. Non-Pt anode catalysts for alkaline direct alcohol fuel cells. Journal of Catalysis,2007,28(10):870-874
    [206]Shen P K, Xu C W. Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts. Electrochemistry Communications,2006,8(1):184-188.
    [207]Hu F P, Shen P K. Ethanol oxidation on hexagonal tungsten carbide single nanocrystal-supported Pd electrocatalyst. Journal of Power Sources,2007, 173(2):877-881
    [208]Nie M, Tang H, Wei Z, et al. Highly efficient AuPd-WC/C electrocatalyst for ethanol oxidation. Electrochemistry Communications,2007,9(9):2375-2379
    [209]Xu C W, Tian Z Q, Shen P K, et al. Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted electrocatalysts for alcohol electrooxidation in alkaline media. Electrochimica Acta,2008,53(5):2610-2618
    [210]Zhu L D, Zhao T S, Xu J B, et al. Preparation and characterization of carbon-supported sub-monolayer palladium decorated gold nanoparticles for the electro-oxidation of ethanol in alkaline media. Journal of Power Sources,2009, 187(1):80-84
    [211]Liu J P, Ye J Q, Xu C W, et al. Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti. Electrochemistry Communications,2007,9(9): 2334-2339
    [212]Huang J C, Liu Z L, He C B, et al. Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell. The Journal of Physical Chemistry B,2005,109(35):16644-16649
    [213]Fang B Z, Kim M S, Kim J H, et al. High Pt loading on functionalized multiwall carbon nanotubes as a highly efficient cathode electrocatalyst for proton exchange membrane fuel cells. Journal of Materials Chemistry,2011,21(22): 8066-8073;
    [214]Huang X B, Wei W, Zhao X L, et al. Novel preparation of polyphosphazene-coated carbon nanotubes as a Pt catalyst support. Chemical Communications,2010,46(46):8848-8850
    [215]Liu L Q, Wang T, Li J, et al. Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker. Chemical Physics Letters,2003,367(5-6):747-752
    [216]Ou Y Y, Huang M H. High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker. The Journal of Physical Chemistry B,2006,110(5):2031-2036.
    [217]Wang X R, Tabakman S M, Dai H J. Atomic layer deposition of metal oxides on pristine and functionalized graphene. Journal of The American Chemical Society,2008,130(26):8152-8153
    [218]Kabbabi A, Faure R, Durand R, et al. In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes. Journal of Electroanalytical Chemistry,1998,444(1):41-53
    [219]Hoa L Q, Vestergaard M C, Yoshikawa H, et al. Functionalized multi-walled carbon nanotubes as supporting matrix for enhanced ethanol oxidation on Pt-based catalysts. Electrochemistry Communications,2011,13(7):746-748
    [220]Geim A K, MacDonald A H. Graphene:exploring carbon flatland. Physics Today,2007,60(8):35-41
    [221]Qiu J D, Wang G C, Liang R P, et al. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. The Journal of Physical Chemistry C,2011,115(31):15639-15645
    [222]Kundu P, Nethravathi C, Deshpande P A, et al. Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene:synergistic co-reduction mechanism and high catalytic activity. Chemistry of Materials, 2011,23 (11):2772-2780
    [223]Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials,1999,11(3):771-778
    [224]Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of The American Chemcal Society,1958,80(6):1339-1339
    [225]杨树平,韩立军,潘燕.铋(Ⅲ)苯乙酸-1,10-邻菲罗啉三元配合物[Bi2(PPA)6. (Phen)2]的合成、晶体结构及抑菌活性.化学学报,2012,70(4):519-524
    [226]Xie X F, Gao L. Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon,2007,45(12): 2365-2373
    [227]Zhang M, Yan Y, Gong K, et al. Electrostatic layer-by-layer assembled carbon nanotube multilayer film and its electrocatalytic activity for O2 reduction. Langmuir,2004,20(20):8781-8785
    [228]Chen W, Kim J, Sun S H, et al. Electrocatalytic reduction of oxygen by FePt alloy nanoparticles. The Journal of Physical Chemistry C,112(10):3891-3898
    [229]Chen D, Tang L H, Li J H. Graphene-based materials in electrochemistry. Chemical Society Reviews,2010,39(8):3157-3180
    [230]Guo S J, Dong S J. Graphene nanosheet:synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews,2011,40(5):2644-2672
    [231]Deng D H, Pan X L, Zhang H, et al. Free-standing graphene by thermal splitting of silicon carbide granules. Advanced Materials,2010,22(19):2168-2171
    [232]Li X S, Cai W W, An J H, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science,2009,324(5932):1312-1314
    [233]Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of The American Chemical Society,2009,131(10):3611-3620
    [234]Zhou Y, Bao Q L, Tang L A L, et al. Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chemistry of Materials,2009,21(13): 2950-2956
    [235]Park S J, Ruoff R S, Chemical methods for the production of graphenes. Nature Nanotechnology,2009,4:217-224
    [236]Yang Q, Pan X J, Huang F, et al. Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives. The Journal of Physical Chemistry C, 2010,114(9):3811-3816
    [237]Zhou X F, Liu Z P. A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets. Chemical Communictions,2010,46(15): 2611-2613
    [238]Patil A J, Vickery J L, Scott T B, et al. Aqueous stabilization and self-assembly of graphene sheets into layered bionanocomposites using DNA. Advanced Materials,2009,21(31):3159-316
    [239]Guo Y J, Guo S J, Ren J T, et al. Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability:synthesis and host-guest inclusion for enhanced electrochemical performance. ACS Nano, 2010,4(7):4001-4010
    [240]Gao J, Liu F, Liu Y L, et al. Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chemistry of Materials,2010,22(7): 2213-2218
    [241]Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology,2008,3:101-105
    [242]Zhang J L, Yang H J, Shen G X, et al. Reduction of graphene oxide via L-ascorbic acid. Chemical Communications,2010,46(7):1112-1114
    [243]Zhu C Z, Guo S J, Fang Y X, et al. Reducing sugar:new functional molecules for the green synthesis of graphene nanosheets. ACS Nano,2010,4(4): 2429-2437
    [244]Xu Y X, Bai H, Lu G W, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of The American Chemical Society,2008,130(18):5856-5857
    [245]Dubin S, Gilje S, Wang K, et al. A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano, 2010,4(7):3845-3852
    [246]Hunter C A, Sanders J M K. The nature of .pi.-.pi. interactions. Journal of The American Chemical Society,1990,112(14):5525-5234
    [247]Zhao J J, Lu J P, Han J, et al. Noncovalent functionalization of carbon nanotubes by aromatic organic molecules. Applied Physics Letters,2003, 82(21):3746-3748
    [248]Zhang M, Parajuli R R, Mastrogiovanni D, et al. Simple production of graphene sheets by direct dispersion with aromatic doping and healing agents. Small, 2010,6(10):1100-1107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700