用户名: 密码: 验证码:
人工源极低频电磁波传播特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工源极低频(CSELF)电磁波技术是用人工方法产生大功率交变电磁场的新技术,是无线电通信领域和地球物理领域巧妙结合的新技术,其信号强、覆盖范围广、探测深度大,可广泛用于地震监测、矿产资源探查、核废料处理,同时还可用于海陆通信及空间电离层结构探测等。目前国内对于极低频的研究才刚刚起步,特别是理论研究更为贫乏。大功率人工源极低频电磁波几乎覆盖了空间所有区段,根据传播特征可以将极低频电磁波的传播区域可以划分为近区、远区、波导区三个区域。电磁波在近区、远区的传播主要表现为传导电流的流动和感应,位移电流及电离层和地球形状的影响可忽略不计,电磁场主要是感应场(似稳场),其传播特征可用似稳场理论描述,与经典电磁测深理论一致。电磁波在波导区主要依靠位移电流进行传播,同时还须考虑电离层以及地球球体形状的影响,电磁场主要是辐射场,其传播理论与经典电磁测深理论完全不同。极低频电磁波的场强在近区、远区、波导区是如何分布,三个区域之间是如何衔接,各自的范围有多大,对于极低频电磁波的理论和应用十分重要,但目前还未开展全面系统的研究。本论文首先从经典电磁测深理论出发,归纳整理了近区、远区场的计算公式,对比分析了近区、远区场的分布特征及其衔接情况,然后借鉴通信领域波导区的近似解公式,对比研究了远区与波导区场的分布和衔接转换特征,并对影响波导区场强的多种因素做了重点分析讨论。此外,本文还在球形坐标系下,开展了极低频电磁波精确解(同时包括近区、远区、波导区)的求解工作,力求建立更完善的人工源极低频电磁波传播理论。本论文通过研究所取得的主要认识如下:
     1)近区、远区极低频电磁场的计算。对经典电磁测深领域中水平电偶极子场的计算公式进行整理,修正了部分电磁场原有的计算公式,给出了以地心为原点的空间坐标系下场的计算公式,在此基础上,计算绘制了三种主要坐标系(直角坐标系、柱坐标系、球坐标系)下似稳场的场强空间分布辐射图。结果表明,在直角坐标系下,水平分量有两条零线场呈四个象限分布状态;垂向分量场仅有一条零线,场为半平面分布状态。在柱坐标和球坐标系下,所有场分量都只有一条零线,场为半平面分布状态。场的这些分布特征对于野外地震台址选择以及数据的处理分析具有指导意义。
     同时,本文对近区、远区各自的适用范围以近似解与精确解的差值百分比为标准进行了量化分析,在近区、远区之间存在有一定的过渡区。
     2)将理论结果与观测资料进行了对比。对比结果表明两者具有较高的一致性,场强的衰减曲线能够较好的吻合。从对比结果发现磁场受外界干扰的影响小,电场受外界干扰大。在对比过程中还发现理论计算的场强曲线随距离的变化并非都是平稳光滑的,受方位角影响,在靠近零线方位,理论曲线会有抖动,呈折线变化状态,而实测数据也有相同的变化趋势。根据磁场的对比结果,本文推断了源区的大地电阻率,与大地电磁测深得到的结果一致性较好。
     在理论与实测数据对比时,发展了时间域、频率域场的标定技术。对于时间域数据,首先采用自适应滤波技术获得单频时间序列信号,然后时间域幅值标定,得到了时间域场值;在时间域场值标定的基础上,采用自动拟合的滑动标定技术,将频率域观测的谱信号转变为场值。场值的标定技术使得观测值与理论计算值之间的对比验证成为可能,尤其是使得频率域观测结果不再受困于积分时间长度的限制。
     3)对远区、波导区之间电磁波的衔接转换问题进行了量化的分析。远区场强衰减较快,波导区场强衰减很慢,体现了感应场和辐射场不同的空间分布和传播特征。在远区和波导区之间的转换过程中,电场和磁场的传播特征是不同的。电场较早进入波导区传播,而磁场较晚进入波导区传播。在相对高频端(50-100Hz)波导区与远区的划分结果与美国科学家的划分结果相接近。
     论文还对影响波导区场强的各种因素做了分析,发射电流,大地电阻率,发射频率都与波导区场强正相关,而电离层高度则与波导区场强反相关。
     4)对同时适用于近区、远区、波导区的精确解的求解。从地球-空气-电离层耦合的三层球状波导模型出发,在普适性的电磁场连续性条件下,对水平电偶极源问题进行了求解,得到了地球层、空气层以及电离层的电磁场精确解表达式。初步计算结果展示了CSELF场的主要特征,并能给出近似解所不能表现的一些特征,如场的干涉增强和震荡现象等,在一定程度上验证了求解公式得正确性。对于计算中的难点:高阶、大宗量Bessel函数计算困难、场的求和级数收敛慢等,研究寻求稳定的加速计算技术,给出了一整套求解思路和相应的求解公式,为近区、远区、波导区精确解的计算建立了坚实的基础。
     5)极低频电磁场的计算软件。利用面向对象技术,采用Delphi语言编程,编写了可视化的极低频电磁场的计算软件。实现了极低频近区、远区的近似解与精确解的计算以及波导区的近似求解,波导区的精确求解技术正在发展中,尚未完全实现。该软件的出现大大方便了我们后续的研究,在进一步完善之后,将可望成为人工源极低频电磁场研究的重要工具。
The electromagnetic (EM) method using controlled-source extremely low-frequency (CSELF) waves is a new technology that is based on the large-power alternating electromagnetic field generated by an artificial procedure. As a fine combination of radio communication and geophysics, it is characterized by strong signal, broad coverage and large exploration depth. It can be applied to earthquake monitoring, surveys for mineral resources and treatment of waste nuclear material as well as marine and land communication and detection to ionospheric structure in space. At present the research on the CSELF is still at a starting stage, particularly on its theory. The large-power CSELF EM waves cover almost all sections of space which can be divided into near, far and waveguide zones according to their propagation characteristics.The propagation of Electromagnetic waves in the near and far Zone, are mainly appeared as the distribution and induction of the conductive currents, and the displacement current and effects of the ionosphere and spheric structure of the Earth can be neglected, the EM field is primarily a induced field (quasi-stable field). The propagation characteristics can be described by the theory of quasi-stable field which is analogous to that of the classical theory of EM sounding. While in the waveguide zone, EM waves run in a way completely different from what the classic theory describe. It is an important but yet open issue that how the CSELF EM waves are distributed in the near, far and waveguide zones, how these three zones link, and what their sizes are, respectively. Starting from the classic EM theory, this thesis reviews the calculation formulas for descriptions of EM wave distributions in the near and far zones as well as their linkage. Then, Learned the approximate solution of the communication field, the linkage between the far and waveguide zones is studied, and the factors affecting the field intensity of the waveguide zone are analyzed. In addition, in the spherical coordinates, this thesis thus also attempts to perform some calculation of the exact solution for the propagation of extremely low-frequency EM waves in the space including the near, far and waveguide zones simultaneously.
     (1) Calculation of the CSELF EM field in near and far zones. By examination of the calculation formulas for the horizontal electric dipole field in the classic theory of EM sounding, this work corrects the partial equations for the EM field, and suggests the calculation formula for the EM field in a spatial coordinate system with the origin of the Earth’s center. Then the distributions of the intensities of quasi-stable fields are calculated and plotted for the three coordinate systems (Cartesian, cylindrical and spherical coordinates). The result shows that in the Cartesian coordinate system, the horizontal components have two zero lines and are distributed in four quadrants. While the vertical component field has only one zero line and are distributed in two half planes. In the cylindrical and spherical coordinate systems, all the field component fields have merely one zero line and are characterized by half-plane distribution. These features are of significance for site choice of seismic observational stations and EM data processing and Analysis. Meanwhile, using the difference percentage between approximate and exact solutions, we make a quantitative analysis of the applicable ranges of near zone and far zone. The result shows that there exists a transition zone between the near zone and far zone.
     (2) Comparison of theoretical results and observational data. The comparison shows that both are well consistent and attenuation curves of the field intensities coincide fairly well. It also shows that the effect from external interference on the magnetic field is relatively little while that on the electric field is large. From the theoretical calculation, the variations of the field intensity with distance are not stable and smooth, instead they are related to azimuths. When nearby the azimuth of the zero line, the theoretical curve swings up and down like a broken line. And the curve from real measurement data has the same tendency of changes. Based on comparison of the magnetic field, this work infers the terrestrial resistivity of the source zone, which is in good agreement with the real magnetotelluric sounding.
     When comparing the theoretical result and observational data, this work develops the calibration methods of the fields in the time and frequency domains. For the data of the time domain, this work first adopts the adaptive filtering to obtain the time sequence of single frequency signals. Then it makes calibration to the amplitude values in the time domain, yielding the field values in this domain. Based on this calibration, it utilizes the sliding calibration of automatic fitting to transform the spectral signals observed from the frequency domain into the field values. The calibration method for the field values makes it possible to compare and validate the theoretical and observational data. In particular, it allows the observations in the frequency domain to be no longer limited by the length of integral time.
     (3) A detailed and quantified analysis to conversion of CSELF EM waves in the far and waveguide zones and the linkage between these zones. The decay of field intensity is rapid in the far zone, and becomes very little in the waveguide zone, respectively, which characterizes the varied spatial distributions and propagation of the induction and radiation fields. During the conversion between the far and waveguide regions, the electric and magnetic fields have different propagation features. Specifically, the electric field enters the waveguide region earlier, while the magnetic field enters the waveguide region later. The division between the waveguide and far regions at relatively high frequencies (50-100Hz) is close to that made by American researchers. This thesis also analyzes the various factors that affect the field intensity of the waveguide region. It is found that the emission current, earth resistivity, and emission frequency are all positively correlated with the field intensity of the waveguide region. The altitude of the ionosphere is negatively correlated with the intensity of the waveguide zone. ?
     (4) Exact solutions simultaneously appropriate for the near, far and waveguide zones. Based on a three-layer spherical waveguide model with coupling between the earth, air and ionosphere, in the general condition of continuation of the EM field, this work attempts to solve the problem of a horizontal dipole source, resulting in the exact expressions of the EM field for these three layers. The preliminary calculation result shows the primary characters of the CSELF field and reveals some features that the approximate solutions cannot express, such as interference enhancement and oscillation of the field. It testified the correctness of the solution formulas to some extent. To the difficulties in calculation, for example, calculation of high-order and large-amount Bessel functions, slow convergence of the summation series for the field, and how to find a stable accelerated approach for calculation, this thesis suggests a set of ideas and equations for solutions which provide a solid basis for exact calculations of the near, far and waveguide zones.
     (5) Calculation software for the CSELF EM field. Using the plane image to image technology and the Delphi language for programming, this work has complied a piece of visualized calculation software for calculation of the CSELF EM field. It realizes approximate and exact calculations of the field in the near and far zones as well as the approximate solution in the waveguide zone. And the exact solution in the waveguide zone is undergoing. This software would greatly make the followed research more convenient. After further improvement, it would become an important tool for the research of the CSELF EM field.
引文
[1] Burrows M L. ELF Communications Antennas [M]. England :Peter Peregrinus Ltd ,1978.
    [2] Carl Greifinger and Phyllis Greifinger. Approximate method for determining ELF eigenvalues in the earth-ionosphere waveguide[J]. Radio Science, 1978,13:831-837.
    [3] Carl Greifinger and Phyllis Greifinger. On the ionosphereic parameters which govern high-latitude ELF propagation in the earth-ionosphere waveguide[J]. Radio Science,1979, 14: 889-895.
    [4] Chew W C. Waves and fields in inhomogeneous media. New York: Vannostrand Reinhold, 1990,58-64.
    [5] Donald E Barrick. Exact ULF/ELF dipole field strengths in the earth-ionosphere cavity over the Schumann resonace region: Idealized boundaries. Radio Science, 1999, 34(1): 209-227.
    [6] Fock V A. Electromagnetic Diffraction and Propagation Problems. Oxford, London, Edinburgh, New York, Paris, Frankfurt: Pergamon Press,1965.
    [7] Fraser-Smith A C, Bannister P R. Reception of ELF signal an antipodal distance[J]. Radio Science, 1998,33(1):83-88.
    [8] Galejs Janis. ELF propagation in an inhomogeneous waveguide[J]. Radio Science, 1971,6(7): 727-736.
    [9] Galejs Janis. Terrestrial Propagation of long Electromagnetic Waves [M]. Pergamon Press, 1972.
    [10] Harrison E ROWE. Extremely Low Frequency Communication to Submarines [J]. IEEE Trans on COM, 1974, 22(4): 371-385.
    [11] Jackson J D. Classical Electromagnetics(3th). Johan Willey&Sons, INC,1998.
    [12] March, H. W. The Field of a magnetic dipole in the presence of a conducting sphere. Geophysics, 1953, 6:671-684.
    [13] Max Born, Emil worf. Principles of Optics. Cambridge University Press, 1999.
    [14] Perter R. Bannister and Frederick J. Williams. Results of the August 1972 Wisconsin Test Facility Effective Earth Conductivity Measurements[J]. Journal of geophysical research, 1974,79:725-732.
    [15] Perter R. Bannister. ELF Propagation update[J]. IEEE Journal of oceanic Engineering,1984, OC-9(3):179-188.
    [16] Perter R. Bannister. Extremely-low-frequency propagation measurements 14 Marchto 9 April1971[J]. Radio Science,1973,8:623-631.
    [17] Perter R. Bannister. Quasi-static fields of dipole Amtennas at the earth’s surface[J]. Radio Science,1966, 1: 1321-1330.
    [18] Perter R. Bannister. Some Note on ELF earth-ionosphere waveguide daytime propagation parameters [J]. IEEE Antenna and propagation, 1979, Ap-27:696-698.
    [19] Perter R. Bannister. Summary of the Wisconsin Test Facility Effective Earth Conductivity Measurements [J]. Radio Science, 1976, 11: 405-411.
    [20] R. Barra,D. Llanwyn Jonesb, C.J. Rodgerc. ELF and VLF radio waves [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62: 1689-1718.
    [21] Saraev A, Kostkin P M, Ivochkin V G. Features of polarization of the ELF Radio station electromagnetic field. Physics of the Earth. 1998, 7:50-55.
    [22] Vadim C. Mushtak, Earle R. Williams. ELF Propagation parameters for uniform models of the Earth-ionosphere waveguide[J]. Jouranl of Atmospheric and Solar-Terrestrial Physics, 2002, 64:1989-2001.
    [23] Wait J R. Electromagnetic Wave in Stratified Media [M]. Oxford University Press, 1970.
    [24] Wait J R. On the electromagnetic response of a conduction sphere to a dipole field. Geophysics, 1960, 25(3):649-658.
    [25]陈小斌,赵国泽.关于人工源极低频电磁波发射源的讨论—均匀空间交流点电流源的解[J].地球物理学报,2009,52(8): 2158-164.
    [26]陈小斌.大地电磁正反演新算法研究及资料处理与解释的可视化集成系统开发[D]. [学位论文].北京:中国地震局地质研究所, 2003.
    [27]地球物理研究及地震预测研究中发射—测量装置的发射系统安装场地选择的技术要求及建议.国立圣彼得堡大学文森—列辛克地壳研究所编写.
    [28]底青云,王妙月,王若等.长偶极大功率可控源电磁波响应特征研究[J].地球物理学报, 2008, 51(6): 1917~1928.
    [29]国家地震局科技监测司编.震前电磁波观测与实验研究文集[M].地震出版社,北京, 1989.
    [30]郭自强.地震低频电磁辐射研究[J].地球物理学报, 1994, 37(增刊1):261-267.
    [31]何继善等.可控源音频大地电磁法[M].中南工业大学出版社. 1990.
    [32]郝建国,李德瑞,张云福等.震前极低频电磁异常及其频谱特征[J].地震学报, 1995, 17(1):81-88.
    [33]考夫曼A A,凯勒G V.频率域和时间域电磁测深[J].王建谋译.地质出版社, 1987.
    [34]雷银照.时谐电磁场解析方法[M].科学出版社,2000.
    [35]李帝铨.“地-电离层”模式有源电磁场R函数法一维及三维积分方程法正演[D]. [学位论文].北京:中国科学院地质与地球物理研究所, 2010.
    [36]李帝铨,底青去,王妙月.电离层-空气层-地球介质耦合下大尺度大功率可控源电磁波响应特征研究[J].地球物理学报,2010,53(2): 411~420.
    [37]李莉.天线与电波传播[M].科学出版社, 2009.
    [38]李勇,林品荣、王妙月等.电离层影响层下均匀半空间水平谐变电偶极子的电磁响应计算[J].物探化探计算技术,2008,30(6):500.
    [39]李勇,林品荣、王妙月等.电离层影响层状介质长导线源的电磁场[J].物探化探计算技术,2009,31(3): 183-188.
    [40]李勇,林品荣等.极低频电磁波技术电磁响应建模及电离层影响分析[J].物探与化探, 2010, 34(3): 332-339.
    [41]刘国栋,赵国泽.大地电磁法新进展[M].地球科学进展,1994,9(4):97-100.
    [42]柳超,翟奇,谢慧等.极低频发射天线场地等效视电阻率的计算[J].西安电子科技大学学报,2005,32(4):584-586,656.
    [43]卢新城,龚沈光,周骏等.海水中极低频水平电偶极子电磁场的解析解[J].电波科学学报,2004,19(3):290-295,159.
    [44]毛桐恩.中国震前电磁波观测与试验研究[J].地球物理学报, 1989, 32(专辑1): 500-504.
    [45]米萨克N.纳比吉安.勘查地球物理电磁法[M].赵经祥,王艳君译.地质出版社, 1991.
    [46]潘威炎,张红旗.地层各向异性对极低频水平低架天线的影响.电波科学学报,2005,20 (2): 137~159.
    [47]潘威炎.长波超长波极长波传播[M].电子科技大学出版社,2004.
    [48]钱书清,陈智勇,李彦堂等.大同5.5级地震前的电磁前兆信号[J].地震电磁观测与研究, 1996, 17(1):54-60.
    [49]钱书清.地震电磁辐射与地震预报的观测实验研究[J].国际地震动态, 2009(7): 57-62.
    [50]任熙宪,祁贵仲,詹志佳.唐山地震前后北京地区地磁总强度的变化[J].地震学报, 6(3):271-286.
    [51]石昆法.可控源音频大地电磁法理论与应用[M].北京科学出版社,北京,1999.
    [52]石应骏、刘国栋等.大地电磁测深法[M].地震出版社,1985.
    [53]汪晓.人工源SLF/ELF电磁信号提取及数据处理[D]. [学位论文].北京:中国地震局地质研究所, 2008.
    [54]王继军,赵国泽等.中国地震电磁现象的观测与研究[J].大地测量与地球动力学,2005, 25(2):11-21.
    [55]王兰伟. SLF/ELF观测系统研究及应用[D]. [学位论文].北京:中国地震局地质研究所,2005.
    [56]王祥书.大地电阻率在超低频/极低频电波传播技术中的作用[J].地震地质,2001,23(4): 581~587.
    [57]王元新,潘威炎,樊文生等.垂直电偶极子在地-电离层波导中场的球级数解[J].电波科学学报,2007 ,22(2) :204~211.
    [58]王元新,彭茜,潘威炎等.SLF/ELF水平电偶极子在地电离层波导中的场[J].电波科学学报,2007,22(5): 728~734.
    [59]王元新.极低频在地-电离层波导中传播的新的理论计算方法[D]. [学位论文].中国电波传播研究所, 2007.
    [60]王竹溪、郭敦仁.特殊函数概论[M].北京大学出版社, 2004.
    [61]熊皓.低频率电波的传播特性及其应用[M].电波传播研究(文集),科学出版社. 1998.
    [62]熊皓.地电磁辐射研究的新进展[J].地震学报, 1991, 13(2):254-258
    [63]徐建华,聂在平.多层球体对电磁场散射响应的求解方法[J].地球物理学报, 1998,41(6): 865~876.
    [64]徐建华.层状媒质中的电磁场与电磁波[M].石油工业出版社,1997.
    [65]徐志锋,吴小平.电离层-均匀地球模型中地表水平电偶极子激发的电磁场[J].地球物理学报, 2010, 53(10): 2497-2506.
    [66]杨秀文,梁立华.数学物理方程与特殊函数[M].天津大学出版社, 1989.
    [67]姚端正,梁家宝.数学物理方法[M].武汉大学出版社, 1996.
    [68]袁家治,高桥耕三,钱书清等. ULF和VLF地震电磁辐射的观测与研究[J].地震学报, 1996, 18(2): 272-275.
    [69]赵国泽,陆建勋.用人工源超低频电磁波监测地震的试验与分析[J].中国工程学,2003 ,5 (10) : 27~33.
    [70]赵国泽,汤吉,邓前辉等.人工源超低频电磁波技术及在首都圈地区的测量研究[J].地学前缘,2003 ,10 (增刊) : 248~257.
    [71]赵国泽,王立凤等.地震监测人工源极低频电磁技术(CSELF)新试验.地球物理学报,2010, 53(3):479-486.
    [72]詹志佳,高金田,张洪利等.震磁前兆研究[J].地震研究, 1996, 19(4): 340-345.
    [73]张云琳,安海静,刘晓玲等.青海共和7.0级地震临震电磁辐射前兆振幅谱的研究[J].1993, 15(2): 186-193.
    [74]卓贤军,赵国泽,底青云,毕文斌,汤吉,王若.无线电磁(WEM)在地球物理勘探中的初步应用[J].地球物理学进展,2007,22(6):1921~1924.
    [75]卓贤军,赵国泽.一种资源探测人工源电磁新技术[J].石油地球物理勘探,2004 ,39 (增刊) : 114~117.
    [76]卓贤军.人工源超低频电磁场场强分布及测量的研究[D]. [学位论文].北京:中国地震局地质研究所, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700