用户名: 密码: 验证码:
二自由度冗余驱动并联机器人的动力学建模及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的串联机器人相比,并联机器人具有刚度大、精度高、承载力强等优点。冗余驱动并联机器人能够利用冗余特性完全或部分消除奇异性,优化分配驱动力,提高并联机器人的速度和加速度能力。然而,并联机器人存在多条支链的特点给运动学性能分析带来了困难。同时,它又是一个复杂的多输入多输出的非线性系统,具有时变、强耦合和非线性动力学特性,增加了控制的难度。本文针对平面二自由度冗余驱动并联机器人,从运动学分析、机电耦合动力学模型的建立、控制器设计以及实验方面对并联机器人系统进行了深入地研究。
     研究了并联机器人的速度性能和加速度性能与装配构型之间的关系。利用位置分析得到了并联机器人的全部装配构型,引入速度性能和加速度性能评价指标对各种装配构型进行性能分析。推导出基于机构一阶Jacobian影响系数矩阵和二阶Hessian影响系数矩阵的运动学性能指标,并将抽象的性能指标用曲线的形式描绘在平面上形成直观的性能图谱。结合并联机器人的工作空间分析、奇异位形分析,得出了具有最优机构运动学性能的装配构型。避免了并联机器人设计过程中的盲目性,有利于实现并联机器人高精度的轨迹跟踪。
     建立了交流伺服电机冗余驱动并联机器人的机电耦合动力学模型。首先利用拉格朗日方程得到三个开链机构的动力学方程,在末端执行器处施加约束得到并联机构的动力学模型。用这种方法简化了建模过程,可以利用已经研究成熟的二杆开链机构的动力学模型,从而实现并联机构的快速建模。其次,利用矢量控制技术,建立了交流永磁同步伺服电机的动力学模型。然后,根据力矩匹配的原则,联立并联机构和交流伺服电机的动力学模型,得到整个并联机器人系统的机电耦合动力学模型。最后,通过对并联机器人系统进行的动力学分析,得到了并联机器人末端执行器的轨迹跟踪效果图、三个主动关节的角位移和交流伺服电机q轴电流的变化规律。
     利用非线性PID的大范围稳定和对角递归神经网络的非线性逼近能力,设计了非线性PID控制与对角递归神经网络控制相结合的新型智能复合控制器。通过比较三种不同控制策略,即PID控制、神经网络自整定PID控制和新型智能复合控制对并联机器人轨迹跟踪控制效果的影响,说明所设计的新型智能复合控制器无论是对存在初始位置误差的圆轨迹进行跟踪,还是对梯形速度规划下的直线轨迹进行跟踪,都具有较好的控制效果。研究发现,新型智能复合控制器能够克服单一控制方法的不足,鲁棒性强,从而有利于提高轨迹跟踪的精度。
     针对并联机器人运行过程中的外部扰动,提出了两种用于机器人轨迹跟踪的滑模变结构控制策略,即Terminal滑模控制和神经滑模控制。Terminal滑模控制对外界扰动具有较强的抑制能力,而且通过设定不同的Terminal时间可以实现不同的收敛速度。神经滑模控制有效抑制了常规滑模控制的抖振,即使存在系统参数误差和外界扰动等非线性不确定性因素的影响,仍能实现对期望轨迹的理想跟踪。
     对平面二自由度冗余驱动并联机器人进行了动力学性能及轨迹跟踪控制实验。进行了并联机器人振动及频率特性测试,验证了考虑交流永磁同步伺服电动机和并联机构的相互作用所建立的机电耦合动力学模型的正确性。通过在PID控制的基础上引入速度前馈和加速度前馈,提高了轨迹跟踪的精度。
     本文的工作为冗余驱动并联机器人系统的进一步应用研究奠定了基础,也为其它类型并联机器人的理论和应用研究提供了借鉴,有助于实现并联机器人高质量的运行。
In comparison with serial robots, parallel robots have very good performances in terms of rigidity, accuracy and ability to manipulate large loads. In order to avoid or reduce singularity, and optimize motor torques, actuation redundancy is introduced into parallel robots. However, due to the closed-loop existing in parallel robots, the motions of these mechanisms are rather complex. Meanwhile, it is hard to control parallel robots, because of the MIMO system with time-varying, strong coupling and nonlinear dynamic properties. In this paper, a 2-DOF redundantly actuated parallel robot was taken as the object of study. The study contents mostly included kinematic analysis, electromechanical coupling dynamic modeling, control system design, and experimental test.
     The effects of assembly configuration on the velocity and acceleration performance were studied. All types of assembly configuration were found by the forward position analysis and the inverse position analysis. Then the velocity performance index and acceleration performance index were introduced into the performance analysis of the configuration. The Jacobian matrix and the Hessian matrix were established by adopting the influence coefficient matrix. According to the given velocity and acceleration performance index, the corresponding performance atlas was plotted. Considering the workspace analysis, the singular configuration, the velocity performance and the acceleration performance, the optimal type of assembly configuration was pointed out. So the blindness of mechanism design can be reduced and the efficiency of optimization can be raised. And it is beneficial to realize high precision trajectory tracking control of parallel robots.
     Dynamic deals with the relationship between the input torque of motors and the displacements, velocities, and accelerations of the parts of the system. In order to develop an effective controller for optimal trajectory tracking performance, the dynamics of a mechanism must be thoroughly analyzed. The steps of establishing the electromechanical coupling dynamic model were as follows:Firstly, by using the Lagrange method we got three open-loop two-bar mechanisms, by loading constraints we got the dynamic model of the parallel mechanism. The modeling process was simplified and the practical performance of the models was enhanced by using the mature dynamic model of the open-loop two-bar mechanism. Secondly, the dynamic model of the permanent-magnet AC servomotor was formulated using the field orient control principle. Thirdly, two dynamic models were integrated via torque pass, so we got the electromechanical coupling dynamic model. Lastly, through dynamic analysis, we got the trajectory tracking results of the end-effector, the angular displacement of the three active joints, and the motors'current.
     The nonlinear proportional integral differential (PID) is insensitive to the change of system parameters, and the diagonal recurrent neural network (DRNN) control has the nonlinear approach ability. So considering both of the advantages of the nonlinear PID and DRNN, we designed a new compound intelligent controller. Comparing the new compound intelligent controller with the traditional PID controller and the diagonal recurrent neural network self-tunning PID controller, we found that the new compound intelligent controller had the best performance not only for the circular trajectory with initial errors, but also for the symmetric trapezoidal trajectory. The new compound intelligent controller overcomes deficiency of the traditional single controller, and has a good robustness, so it is helpful to improve the tracking performance.
     In order to deal with external disturbance, sliding mode control schemes were introduced into trajectory tracking control of the parallel robot. The terminal sliding mode control not only guarantees the existence of the sliding phase of the closed-loop system, but also guarantees that the tracking error converges to zero under limit time. In order to deal with modeling error and external disturbance, the neuro-sliding mode control was derived. The RBF neural networks were used to approximate the discontinuous part of control gain in a classical sliding mode controller. Through the numerical simulation, the effectiveness of the sliding mode control methods was verified.
     The experiments on the dynamic properties and trajectory tracking control of the 2-DOF redundantly actuated parallel robots were carried out. Tests of vibration and frequency characteristic were finished. The electromechanical coupling dynamic model was verified by the symmetric trapezoidal trajectory tracking control experiment. On the basis of traditional PID controller, velocity and acceleration feed-forward control was introduced to improve the trajectory tracking performance.
     The work of this dissertation will lay a solid foundation for further application study of redundantly actuated parallel robots, and will give reference to theory and application study of other types of parallel robots. This will help parallel robots operate with high quality.
引文
1 蒋新松.机器人学导论[M].辽宁:辽宁科学技术出版社,I 994
    2 黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997
    3 Merlet J P. Parallel robots (2nd Ed) [M]. Dordrecht, Netherlands:Springer,2007
    4 Tsai L W. Robot analysis:The mechanics of serial and parallel manipulators [M]. USA:John Wiley & Sons,1999
    5 Company O, Pierrot F. Modeling and design issues of 3-axis parallel machine-tool [J]. Mechanism and Machine Theory,2002,37:1325-1345
    6 Gwinnett J E. Amusement Devices. US Patent No.1,789,680, January 20,1931
    7 Pollard W L G. Spray Painting Machine. US Patent No.2,213,108, August 26,1940
    8 Gough V E, Whitehall. Universal type test machine [C]. FISITA Ninth International Technical Congress,1962:117-137
    9 Stewart D. A platform with six degrees of freedom [C]. IME, Proc.,1965, (15): 371-386
    10 Hunt K H. Kinematic geometry of mechanisms [M]. Oxford, Claredon Press,1978: 304-320
    11 张曙,Heisel U.并联运动机床[M].北京:机械工业出版社,2003
    12苏玉鑫.大射电望远镜精调Stewart平台的优化、分析与控制[D].博士学位论文,西安电子科技大学,2002
    13 Nguyen C C. Analysis and experimentation of a stewart platform-based force/torque sensor [J]. International Journal of Robotics and Automation,1995, 7(3):133-140
    14 Ferrarresi C. Static and dynamic behavior for a high stiffness stewart platform-based force/torque sensor [J]. Journal of Robotics and Automation,1995, 12(12):883-893
    15高峰,陈玉龙,彭斌彬,等.新型解耦和各向同性五维力传感器性能分析[J].机械工程学报,2004(9):71-74
    16 Collins C L. Forward kinematics of planar parallel manipulators in the Clifford algebra of P2 [J]. Mechanism and Machine Theory,2002,37(8):799-813
    17 Qiao S G, Liao Q Z, Wei S M, et al. Inverse kinematics analysis of the general 6R serial manipulators based on double quaternions [J]. Mechanism and Machine Theory,2010(45):193-199
    18 Bonev I A, Ryu J. A new method for solving the direct kinematics of general 6-6 Stewart platform using three linear extra sensors [J]. Mechanism and Machine Theory,2000,35:423-436
    19 Lee T Y, Shim J K. Improved dialytic elimination algorithm for the forward kinematics of the general Stewart-Gough platform [J]. Mechanism and Machine Theory,2003,38:563-577
    20 Tian Y L, Shirinzadeh B J. Performance evaluation of a flexure-based five-bar mechanism for micro/nano manipulation [C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore,2009:76-81
    21姜虹,贾嵘,董洪智,等.六自由度并联机器人位置正解的数值解法[J].上海交通大学学报,2000(3):351-353
    22董彦良,吴盛林.一种实用的6-6Stewart平台的实时位置正解法[J].哈尔滨工业大学学报,2002,34(1):116-119
    23裴葆青,韩先国,陈五一,基于传感器的6-DOF并联机构运动学正解[J].北京航空航天大学学报,2005,31(4):421-424
    24陈学生,陈在礼,孔民秀.并联机器人研究的进展与现状[J].机器人,2002(5):464-470
    25 Innocenti C, Parenti-Castelli V. Echelon form solution of direct kinematics for the general fully-parallel spherical wrist [J]. Mechanism and Machine Theory,1993, 28(4):553-561
    26 Wohlhart K. Displacement analysis of the general spherical Stewart platform [J]. Mechanism and Machine Theory,1994,29(4):581-589
    27 Yin J P, Liang C G. The forward displacement analysis of a kind of special platform manipulator mechanisms [J]. Mechanism and Machine Theory,1994,29(1):1-9
    28 Sreenivasan S V, Waldron K J. Closed-form direct displacement analysis of a 6-6
    platform [J]. Mechanism and Machine Theory,1994,29(6):855-864
    29 Faugere J C, Lazard D. Combinatorial classes of parallel manipulators [J]. Mechanism and Machine Theory,1995,30(6):765-776
    30冯志友,李永刚,张策,等.并联机器人机构运动与动力分析研究现状及展望[J].中国机械工程,2006,17(9):979-984
    31 曲义远,黄真.空间六自由度并联机构位置的三维搜索方法[J].机器人,1989,3(5):25-29
    32 Innocenti C, Castelli V P. Forward kinematics of the general 6-6 fully parallel mechanism:an exhaustive numerical approach via a mono-dimensional-search algorithm [J]. ASME Journal of Mechanical Design,1993,115:932-937
    33 Dasgupta B, Mruthyunjaya TS. A constructive predictor-corrector algorithm for the direct position kinematics problem for a general 6-6 Stewart platform [J]. Mechanism and Machine Theory,1996,31(6):799-811
    34 McAree P R, Daniel R W. A fast, robust solution to the Stewart platform forward kinematics [J]. Journal of Robotic Systems,1996,13(7):407-427
    35 Boudreau R, Turkkan N. Solving the forward kinematics of parallel manipulators with genetic algorithms [J]. Journal of Robotic Systems,1996,13(2):119-125
    36 Ku D M. Direct displacement analysis of a Stewart platform mechanism [J]. Mechanism and Machine Theory,1999,34:453-465
    37 Yang C F, Huang Q T, Ogbobe P O, et al. Forward kinematics analysis of parallel robots using global Newton-Raphson method [C]. Second International Conference on Intelligent Computation Technology and Automation,2009:407-410
    38 Fichter E F. A stewart platform-based manipulator:General theory and practical construction [J]. The international journal of robotics research,1986,5(2):157-182
    39李波,陈安军.3-PCR并联机器人机构的运动学分析[J].机械设计与研究,2009,25(5):31-34
    40刘善增,余跃庆,杜兆才,等.并联机器人的研究进展与现状[J].组合机床与自动化加工技术,2007,7:4-10
    41 Thomas M, Tesar D. Dynamic modeling of serial manipulator arms [J]. Journal of dynamic systems,1982,104(9):218-227
    42 Freeman R A, Tesar D. The Generalized Coordinate Selection for the Dynamics of Complex Planar Mechanical System [J]. J. of Mech Des,1982,104:207-217
    43 Huang Z. Modeling formulation of 6-DOF multi-loop parallel manipulators, Part-1: Kinematic influence coefficients [C]. Proc. of the 4th IFToMM International Symposium on Linkage and Computer Aided design Methods, Bucharest Romania, 1985:155-162
    44 Huang Z. Modeling formulation of 6-DOF multi-loop parallel manipulators, Part-2: Dynamic modeling and example [C]. Proc. of the 4th IFToMM International Symposium on Linkage and Computer Aided design Methods, Bucharest Romania, 1985:163-170
    45黄真,孔宪文.具有冗余度空间并联机构的运动分析[J].机械工程学报,1995,31(3):44-50
    46方跃法,黄真.三自由度3-RPS并联机器人机构的运动分析[J].机械科学与技术,1997,16(1):82-88
    47黄真,郭希娟.虚设机构法正确性的论证[J].机械工程学报,2001,37(5):40-43
    48刘爽,郭希娟,刘彬.4-RR(RR)R并联机构的动力学性能指标分析[J].机械工程学报,2008,44(7):63-68
    49 Dasgupta B, Mruthyunjaya T S. A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator [J]. Mechanism and Machine Theory, 1998,33(8):1135-1152
    50 Dasgupta B. Mruthyunjaya T S. Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach [J]. Mechanism and Machine Theory,1998,33(7):993-1012
    51 Dasgupta B, Choudhury P. A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators [J]. Mechanism and Machine Theory,1999,34(6):801-824
    52 Li J F. Inverse Kinematic and Dynamic Analysis of 3-DOF Parallel Mechanism [J]. Chinese Journal of Mechanical Engineering,2003,16(1):54-58
    53 Liu K, Fitzgerald M, Dawson D W, et al. Modeling and control of a Stewart platform manipulator [J]. ASME DSC, Control of Systems with Inexact Dynamic
    Model,1991,33:121-126
    54白志富,韩先国,陈五一.基于Lagrange方程三自由度并联机构动力学研究[J].北京航空航天大学学报,2004,30(1):51-54
    55 Cheng H, Yiu Y K, Li Z X. Dynamics and control of redundantly actuated parallel manipulators [J]. IEEE/ASME Transaction on Mechatronics,2003,8(4):483-491
    56张国伟,宋伟刚.并联机器人动力学问题的Kane方法[J].系统仿真学报,2004,16(7):1386-1391
    57敖银辉,陈新,温兆麟.平面并联机构的动力学建模及控制[J].机械设计与制造,2005(8):9-11
    58 Wang J G, Gosselin C M. A new approach for the dynamic analysis of parallel manipulators [J]. Multibody System Dynamics,1998(2):317-334
    59 Tsai L W. Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work [J]. ASME Journal of Mechanical Design,2000(122):3-9
    60 Sokolov A, Xirouchakis P. Dynamics analysis of a 3-DOF parallel manipulator with R-P-S joint structure [J]. Mechanism and Machine Theory,2007,42,541-557
    61 Yiu Y K, Cheng H, Xiong Z H, et al. On the dynamics of parallel manipulators [C]. IEEE Int. Conf. Robotics and Automation (ICRA2001), Seoul, Korea,2001: 3766-3771
    62 Pillay P, Krishnan R. Control characteristics and speed controller design for a high performance permanent magnet synchronous motor drive [J]. IEEE transactions on power electronics,1990,5(2):151-159
    63 Chen Y J, Huang S H, Wan S M. Direct Torque Controller for Low Velocity and High Torque PMSM Based on TMS320F2812 DSP [C]. International Conference on Mechatronics and Automation, Harbin, China,2007:3662-3667
    64 Lin F J, Fung R F, Lin H H, et al. A supervisory fuzzy neural network controller for slider-crank mechanism [J]. Mechatronics,2001,11(2):227-250
    65 Wai R J, Duan R Y, Wang W H, et al. Implementation of artificial intelligent control in single-link flexible robot arm [C].2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation,2003,3:1270-1275
    66杨志永,黄田,梅江平,等.基于全域优化的高速并联机械手控制器参数整定[J]. 机械工程学报,2006,42(9):123-129
    67武建新,李强,张辉.6UPS并联机构机电耦合动力学仿真[J].系统仿真学报,2007,19(19):4599-4603
    68霍伟.机器人动力学与控制[M].北京:高等教育出版社,2005
    69董海鹰.智能控制原理及应用[M].北京:中国铁道出版社,2006
    70韦巍.智能控制技术的研究现状和展望[J].机电工程,2000,17(6):1-4
    71 Lee T H, Ge S S. Intelligent Control of Mechatronic Systems [C]. Proceedings of the 2003 IEEE International Symposium on Intelligent Control, Houston, Texas, 2003:646-660
    72李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨工业大学出版社,1998
    73 Miller W T, Hewes R H, Glanz F H, et al. Real-time dynamic control of an industrial manipulator using a neural-network-based learning controller [J]. IEEE Trans Robot Automat,1990,6(1):1-9
    74 Kraft L G, Campagna D P. A Comparison between CMAC Neural Network Control and Two Traditional Adaptive Control Systems [J]. IEEE Control Systems Magazine,1990,10(3):36-43
    75 Commuri S, Lewis F L. Control of unknown nonlinear dynamical systems using CMAC neural networks:structures, stability and passivity [J]. Automatic,1997, 33(4):635-641
    76万亚民,王孙安,杜海峰.液压并联机器人的动态神经网络控制研究[J].西安交通大学学报,2004,38(9):954-958
    77顾伟军,彭亦功.智能控制技术及其应用[J].自动化仪表,2006,27(增):101-104
    78华清,焦宗夏.负载模拟器的DRNN神经网络控制[J].机械工程学报,2003,39(1):15-19
    79李世敬,王解法,冯祖仁.层叠CMAC补偿的并联机器人变结构控制研究[J].系统仿真学报,2002,14(8):1045-1072
    80方浩,周冰,冯祖仁.基于层迭CMAC网络的6-DOF机器人白适应控制[J].机器人,2001,23(4):294-299
    81 Ho H F, Wong Y K, Rad A B. Adaptive fuzzy sliding mode control with chattering elimination for nonlinear SISO systems [J]. Simulation modelling practice and
    theory,2009,17(7):1199-1210
    82 Bessa W M, Dutra Max S, Kreuzer E. An adaptive fuzzy sliding mode controller for remotely operated underwater vehicles [J]. Robotics and Autonomous Systems, 2010,58(1):16-26
    83 Wu L G, Ho D W C. Sliding mode control of singular stochastic hybrid systems [J]. Automatica,2010,46(4):779-783
    84张秀华,徐炳林,赵宇.有限时间收敛的Terminal滑模控制设计[J].控制工程,2008,15(6):637-639
    85刘刚,李彩凤.磁悬浮飞轮转子系统的快速Terminal滑模控制[J].航天控制,2008,26(3):92-96
    86牛玉刚,杨成梧,陈雪如.基于神经网络的不确定机器人自适应滑模控制器设计[J].控制与决策,2001,16(1):79-83
    87张宇,杨唐文,孙增圻.基于神经滑模的柔性连杆机械手末端位置控制[J].机器人,2008,30(5):404-415
    88 Merlet J P. Redundant Parallel Manipulators [J]. Laboratory Robotics and Automation,1998,8(1):17-24
    89刘欣.一种平面2自由度冗余并联机构的研究[D].西安电子科技大学,2006:31-35
    90 Kock S, Schumacher W. A Parallel x-y Manipulator with Actuation Redundancy for High-speed and Active-Stiffness Applications [C]. Proc. of the IEEE Internationa] Conference on Robotics and Automation, Belgium:IEEE,1998:2295-2300
    91张立杰,刘辛军.平面2自由度驱动冗余并联机器人的机构设计[J].机械工程学报,2002,38(12):49-53
    92 Zhang S H, Kong L F. Analysis on kinematics and dynamics performance indices for 6-PUS parallel robot mechanism [C]. Pro. of the IEEE International Conference on Networking, Sensing and Control, London,2007:501-506
    93 Liu X J, Wang J S, Pritschow G. On the optimal kinematic design of the PRRRP 2-DOF parallel mechanism [J]. Mechanism and Machine Theory,2006,41(9): 1111-1130
    94国家自然科学基金委员会工程与材料科学部.机械与制造科学[M].北京:科学 出版社,2006,2:29
    95张立杰,刘颖.一种平面冗余驱动并联机器人的优化设计[J].机械设计与研究,2007,23(4):35-38
    96刘善增.平面2自由度并联机器人的动力学设计[J].机械科学与技术,2008,27(2):231-240
    97 Hao X Q, Hu F S, Zhao G X. Analysis and simulation of kinematic characteristic to 3PSS parallel robot mechanism [C].7th International Conference on Computer-Aided Industrial Design and Conceptual Design,2006:1-6
    98 Huang Z. Modeling Formulation of 6-DOF Parallel Manipulators Part 2-Dynamic Modeling and Example. The 4th IFToMM Conference on Mechanisms and CAD [C]. Bucharest, Romania,1985
    99 Innocenti C, Castelli V P. Direct Position Analysis of the Stewart Platform Mechanism [J]. Mechanism and Machine Theory,1990,25(6):611-621
    100 Innocenti C, Castelli V P. Closed-Form Direct Position Analysis of a 5-5 Parallel Mechanism [J]. ASME Journal of Mechanical Design,1993,115:515-521
    101 Wen F A, Liang C G. Displacement Analysis of the 6-6 Stewart Platform Mechanisms [J]. Mechanism and Machine Theory,1994,29(4):547-557
    102 Zhao Y J, Gao F. Dynamic formulation and performance evaluation of the redundant parallel manipulator [J]. Robotics and Computer-Integrated Manufacturing,2009, 25(4-5):770-781
    103 Pusey J, Fattah A, Agrawal S, et al. Design and Workspace Analysis of a 6-6 Cable-suspended Parallel Robot [J]. Mechanism and Machine Theory,2004,39: 761-778
    104 Wu J, Wang J S, Wang L P. Optimal Kinematic Design and Application of a Redundantly Actuated 3DOF Planar Parallel Manipulator [J]. ASME J. Mech. Des., 2008,130(5):054503-1~054503-5
    105李艳文.几类空间并联机器人的奇异研究[D].燕山大学,2005:18
    106沈辉,吴学忠,刘冠峰.并联机构中奇异位形的分类与判定[J].机械工程学报,2004,40(4):26-31
    107刘欣,仇原鹰,陈光达.平面冗余与非冗余并联机构的奇异性比较研究[J].中国
    机械工程,2006,17(17):1769-1774
    108 Gosselin C M, Angeles J. Singularity analysis of closed-loop kinematic chains [J]. IEEE Trans. Robotics & Auto.,1990,6(3):281-290
    109黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006
    110侯少毅,秦伟,郭兴辉.基于影响系数法的变胞机构运动分析[J].机床与液压,2008,36(4):296-374
    111李仕华,黄真.一种特殊的3-UPU并联角台机构的运动分析[J].机械设计,2005,22(7):16-19
    112 Guo X J, Chang F Q, Zhu S J. Acceleration and Dexterity Performance Indices for 6-DOF and Lower-mobility Parallel Mechanism [C]. Proc. of the ASME Design Engineering Technical Conferences, Salt Lake, USA,2004:251-255
    113郭希娟,黄真.并联机器人机构加速度的性能指标分析[J].中国机械工程,2002,13(24):2087-2091
    114 Staicu S. Inverse dynamics of the 3-PRR planar parallel robot [J]. Robotics and Autonomous Systems,2009,57(5):556-563
    115 Kamalzadeh LNA. Inverse dynamics of wire-actuated parallel manipulators with a constraining linkage [J]. Mechanism and Machine Theory,2007,42(9):1103-1118
    116尚伟伟,丛爽.平面2自由度冗余驱动并联机构最优控制[J].机械设计,2006,23(8):16-19
    117应舜安,林桐.平面二自由度冗余驱动并联机器人的鲁棒控制[J].福州大学学报(自然科学版),2005,33(4):487-490
    118 Ghorbel F H, Chetelat O, Gunawardana R, et al. Modeling and Set Point Control of Closed-Chain Mechanisms:Theory and Experiment [J]. IEEE Transactions on Control Systems Technology,2000,8(5):801-815
    119 Greenwood D T. Classical Dynamics [M]. NJ:Prentice-Hall,1977
    120申铁龙.机器人鲁棒控制基础[M].北京:清华大学出版社,2000
    121郭庆鼎,王成元.交流伺服系统[M].北京:机械工业出版社,1997
    122王宏,于泳,徐殿国.永磁同步电动机位置伺服系统[J].中国电机工程学报,2004,24(7):151-155
    123钟掘,陈先霖.复杂机电系统耦合与解耦设计—现代机电系统设计理论的探讨 [J].中国机械工程,1999,9(9):1051-1055
    124陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2003
    125熊有伦.机器人学[M].北京:机械工程出版社[M].1993:163-164
    126王杨.二自由度并联机器人的自适应控制[D].中国科学技术大学,2007:39
    127刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003
    128 Ku C C, Lee K W. Diagonal recurrent neural networks for dynamic system control [J]. IEEE Transactions on neural networks,1995,6(1):144-156
    129韩京清.非线性PID控制器[J].自动化学报,1994,20(4):487-490
    130 Huang C Q, Peng X F, Wang J P. Robust Nonlinear PID Controllers for Anti-windup Design of Robot Manipulators with an Uncertain Jacobian Matrix [J]. Acta Automatica Sinica,2008,34(9):1113-1121
    131 Gu J J, Zhang Y J, Gao D M. Application of Nonlinear PID Controller in Main Steam Temperature Control [C]. Asia-Pacific Power and Energy Engineering Conference,2009:1-5
    132 Tong J P, Yu T. Nonlinear PID control design for improving stability of micro-turbine systems [C]. Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies,2008:2515-2518
    133 Sun D, Hu S Y, Shao X Y, et al. Global Stability of a Saturated Nonlinear PID Controller for Robot Manipulators [J]. IEEE Transactions on Control Systems Technology,2009,17(4):892-899
    134 Talebi H A, Khorasani K, Patel R V. Experimental evaluation of neural network based controller for tracking the tip position of a flexible-link manipulator [C]. Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico,1997:3300-3305
    135王丰尧.滑模变结构控制[M].北京:机械工业出版社,1995
    136刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005
    137高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1998
    138 Slotine J J, Sastry S S. Tracking control of nonlinear systems using sliding surfaces with application to robot manipulator [J]. International Journal of Control,1983, 38(2):465-492
    139李志军,邓子辰.建筑结构的准滑模控制研究[J].西北工业大学学报,2007,25(1):61-64
    140 Morioka H, Wada K, Sabanovic A, et al. Neural network based chattering free sliding mode control [C]. Proc. of the 34th SICE Annual Conference,1995, 1303-1308
    141 Ertugrul M, Kaynak O. Neuro sliding mode control of robotic manipulators [J]. Mechatronics,2000,10(1,2):239-263
    142 Huang S J, Huang K S, Chiou K C. Development and application of a novel radial basis function sliding mode controller [J]. Mechatronics,2003,13:313-329
    143 Man Z H, Paplinski A P, Wu H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators [J]. IEEE Transactions on Automatic Control, 1994,39:2464-2469
    144 Park K B, Teruo T. Terminal sliding mode control of second-order nonlinear uncertain systems [J]. International Journal of Robust and Nonlinear Control,1999, 9:769-780
    145庄开宇,张克勤,苏宏业,等.高阶非线性系统的Terminal滑模控制[J].浙江大学学报(工学版),2002,36(5):482-485
    146 Mihoub M, Nouri A S, Abdennour R B. Real-time application of discrete second order sliding mode control to a chemical reactor [J]. Control Engineering Practice, 2009,17(9):1089-1095
    147 Garcia-Gabin W, Zambrano D, Camacho E F. Sliding mode predictive control of a solar air conditioning plant [J]. Control Engineering Practice,2009,17(6):652-663
    148 Kang M S, Lyou J, Lee J K. Sliding mode control for an active magnetic bearing system subject to base motion [J]. Mechatronics,2010,20(1):171-178
    149 Sadati N, Ghadami R. Adaptive multi-model sliding mode control of robotic manipulators using soft computing [J]. Neurocomputing,2008,71(13-15): 2702-2710
    150 Zhang Y, Yang T W, Sun Z Q. Neuro-Sliding-Mode Control of Flexible-Link Manipulators Based on Singularly Perturbed Model [J]. Tsinghua Science & Technology,2009,14(4):444-451

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700