用户名: 密码: 验证码:
桥梁自振频率温度效应分析及寒冷地区吊杆索力监测系统构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁结构自振频率是桥梁设计、检测、监测以及损伤识别工作中最为常用的参数之一。测试到的桥梁结构自振频率会因外界环境因素改变而发生一定的变异,有关研究资料表明,外界环境因素引起的自振频率变异值有时会淹没桥梁结构自身损伤引起的自振频率变化值。温度是导致桥梁结构自振频率发生变异的主要因素之一,目前国内外学者们在此方面的研究工作才刚刚起步,温度对桥梁结构自振频率的影响机理、影响规律以及剔除方法等方面还没有得到确定的研究结论。因此开展桥梁结构自振频率的温度效应分析,形成从测试到的自振频率中剔除温度影响的有效方法是十分必要的。
     对于混凝土桥梁结构,混凝土材料的力学性能直接决定着桥梁结构动力性能。因此混凝土材料力学性能在不同温度条件下体现的变异性可能是导致桥梁自振频率变化的一个重要原因。国内外科研工作者们在温度对混凝土力学性能影响方面开展了一些基础性的研究工作。研究成果主要集中在极高或极低温度条件下混凝土材料力学性能的变异性。但针对桥梁结构是室外环境温度导致野外桥梁混凝土力学性能的变化。另一方面,针对不同类型混凝土材料温度对其力学性能的影响规律不尽相同。
     在桥梁结构中,简支梁和连续梁是常见的两种结构形式,在非线性温度梯度作用下简支梁中会存在温度自应力,连续梁中会存在温度自应力和温度次应力,从而使结构的振动初始状态发生了一定的改变。这种结构振动初始状态的改变是如何导致自振频率改变的,还需要进一步的深入研究。
     吊杆拱桥的索力大小及分布情况对全桥的受力性能具有重要的影响,可以认为吊杆拱桥的索力状态将决定着该类桥梁结构的运营安全性和使用舒适性,因此准确的掌握索力状态是十分必要的。想要及时的掌握索力状态信息,最为有效的手段便是构建索力监测系统,对全桥索力进行实时监测。索力监测系统中数据传输模块可以采用有线或无线两种方式,无论采用何种传输方式,传输的数据都是海量的,这样容易大致系统瘫痪或难以从海量数据中获取有效信息。因此,需要对传输的数据进行甄别,对传输数据进行有效控制,只对有效数据进行传输,这正是需要解决的问题之一。索力状态评价模块需要从采集到的动力响应中分析出索力,进而对索力进行评价,评价一般分为单索索力状态评价和全桥索力状态评价两个层面。有关研究资料表明,外界环境温度对索力的测试值具有一定的影响,有时温度引起的索力变化都能够淹没索力的实际变化值。寒冷地区具有年平均温差大,且昼夜温度差别明显等特点,因此这种现象在寒冷地区的索力测试过程中尤其明显。因此无论哪个层面的索力状态评价,都需要考虑温度对索力的影响。
     在桥梁结构(尤其是大跨径柔性桥梁结构)自振频率的测试过程中,环境温度、湿度、通行车辆以及风载等都有可能导致测试到的自振频率发生变异。有关研究资料表明,不同的频率阶次(不同的振动形式)受到各因素影响的程度是不同的,并且各因素对自振频率的影响是一个复杂的非线性过程。要对测试频率的温度效应进行分析,必须在桥梁结构的多阶振动中找到那阶或那几阶自振频率主要受温度的影响。在确定了主要受温度影响的频率阶次后,更为重要的任务便是如何从依据实测数据建立环境温度与桥梁结构自振频率的关系。进而形成有效的环境温度影响的剔除算法,以便从测试到的自振频率中分析出温度的影响。由于各因素对自振频率的影响存在一定的耦合,因此从中找到主要受环境温度影响的频率阶次是十分困难的。温度对自振频率的影响是一个复杂的非线性过程,形成有效的剔除温度影响的方法也是一项十分艰巨的任务。
     本文依托863国家高科技研究发展计划项目“季节冻土区大范围道路灾害参数监测与辨识预警系统研究(2009AA11Z104)”和高等学校博士学科点专项科研基金项目“基于多元温度场的桥梁模态频率修正方法研究(20090061110036)”,针对桥梁自振频率温度效应分析及寒冷地区吊杆索力监测系统构建进行研究,主要开展了以下研究工作:
     1、测定了在-20℃-60℃条件下混凝土的立方体抗压强度、轴心抗压强度、弹性模量、劈裂抗拉强度以及泊松比等几项力学参数。采用广义最小二乘方法对测试数据进行了统计分析,归纳分析了温度对各项力学参数的影响规律。
     2、形成了日照温度场作用下简支梁自振频率的计算方法,提出了基于随机子空间方法的连续箱梁桥自振频率分析方法。
     3、采用灰色关联分析等理论,形成了对海量数据的甄别方法,对传输数据能够进行有效控制,进而构建了一套索力监测系统。采用神经网络方法对单索索力进行分析、评价。基于灰色关联分析和支持向量机算法等理论,形成了全桥索力分析、评价方法。单索索力状态评价方法和全桥索力状态评价方法度能够有效的剔除外界环境温度的影响。
     4、以一座三跨吊杆拱桥为工程依托,首先采用相关性分析来从多阶自振频率中找到主要受温度影响的频率阶次。接着采用粒子群优化神经网络算法对测试数据进行分析,建立温度与自振频率的关系,进而形成温度影响剔除方法。
The natural frequencies are the most common parameters in bridge design, detection,monitoring and damage identification. The bridge natural frequencies measured can alter asthe changes in external environmental factors. Related data show that the changes in naturalfrequencies aroused by external environmental factors can cover those caused by damage.Temperature is the main factor leading to the changes in the natural frequencies. At present,the scholars at home and abroad set about the researches in this respect, however, until nowthere is no conclusion about the mechanism, influencing laws and the excluding methods oftemperature affection on the bridge natural frequencies. Therefore, it’s necessary to form theeffective method in excluding temperature effects from the measured natural frequencies.
     To the concrete bridge structure, the mechanical property of the concrete material directlydetermines the structural dynamic performance. So the variability of the concrete materialmechanical property under different temperatures may lead to the changes in the bridgenatural frequencies. The scholars at home and abroad conducted some basic researches onthe mechanical property changes caused by the temperature. Research results concentrate onthe changes in the concrete material mechanical property in the extreme high temperature orthe extreme low temperature. But the bridges are structures affected by the outdoorenvironment temperature. On the other hand, the influencing laws of different concretematerials on the mechanical properties are not the same.
     In bridge structures, simply-supported and continuous beams are the most commonstructure styles. Under the nonlinear temperature gradient, simply-supported beam may havethe thermal self-restraint stress, and continuous beams may have the thermal self-restraintstress and secondary temperature stress, which change the structure vibration initial state.And how the changes in vibration initial state lead to the changes in the natural frequenciesshould be researched further.
     The values and distribution of the cable forces of tied arch bridge has significant effects onthe mechanical property of the whole bridge. It’s believed that the cable force statedetermines the operational safety and the comfort in use of this kind of bridge. So it’snecessary to accurately master the cable force bridge. In order to timely grasp the cable forcestate, the most effective method is to build the monitoring system of cable force to conduct real-time monitoring of the whole cable forces. To the data transmission module, there aretwo kinds of transmission methods. They are wired and wireless methods. No matter whichmethod, the data transmitted are giant, which may easily lead to system breakdown and thedisability to acquire effective information from the giant data. Therefore, it’s necessary toeffectively screen and control the data transmitted, which is one of the problems with urgentneed to be solved. The cable force condition evaluation module analyzes the cable forcesfrom the collected dynamic responses, and then evaluates the cable forces. The evaluationsinclude the single cable force state evaluation and the whole bridge cable force stateevaluation. Related data show that the external environmental temperature has someinfluences on the cable forces measured. Sometimes, the changes caused by the temperaturecan drown the real changes of the cable forces. In chill regions, the temperature range greatlyin a year and in a single day. Therefore, the problem is especially obvious in the cable forcetests in the chill regions. So no matter which kind of cable force evaluation, the temperatureshould be taken into consideration.
     In the testing process of the natural frequencies of the bridge, especially the large-spanflexible bridge, the environmental temperature, moisture, traffic and the wind load maycause the changes in the natural frequencies. Related data show that each factor influencedifferent frequency modes and vibration styles in different extent. And each factor influencesthe natural frequencies in a non-linear process. In order to analyze the measured thermaleffect, the natural frequency modes of the bridge which are mainly affected by thetemperature should be picked out from the multiple frequency modes. After determining thefrequency mode mainly affected by the temperature, the next assignment more important isto establish the relationship between the environmental temperature and the bridge naturalfrequencies based on the measured data. Then form the excluding algorithm of the effectiveenvironmental temperature, so as to analyze the temperature effects from the naturalfrequencies measured. Because different factors have a coupling effects on the naturalfrequencies, it’s difficult to find out the frequency mode mainly affected by the temperature.The effects of temperature on natural frequencies are a complex nonlinear process, it’s achallenge to establish the method excluding temperature effects.
     Relying on the National High Technology Research and Development Program ofChina(863Program)“Research on the System for Monitoring, Identification andEarly-warning of Wide Range Road Hazards in Seasonal Frozen Soil” and the SpecializedResearch Fund for the Doctoral Program of Higher Education Project “Study on the Bridge Modal Frequency Updating Technique Based on the Multiple Temperature Fields(20090061110036)”,and this paper conducts the following researches to analyze thetemperature effects on bridge natural frequency and monitoring system construction offorces in hangers in chill region:
     1. The cube compressive strength, axial compressive strength, modulus of elasticity, tensilesplitting strength and Poisson's ratio are measured under the temperature of-20℃-60℃. Thegeneralized least squares method is applied to conduct statistical analysis on the measureddata and conclude the influencing law of temperature on each mechanical parameter.
     2. The natural frequency calculation method of simply-supported beam is formed underthe solar radiation, and the natural frequency analysis method for continuous box girderbridge is present based on the SSI.
     3. Grey relational analysis theory is used to form the screening method for the massivedata and effectively control the data transmission, then establish a cable force monitoringsystem. Neural network method is applied to analyze and assess the single cable force. Andthe analysis and assessment for all the cable forces are formed based on the grey relationaltheory and the support vector machine arithmetic. Both the single cable bridge stateassessment method and the whole bridge cable force assessment method can effectively getrid of the effects of external environment.
     4. Based on the project of a three-span tied arch bridge, reduction of dimensionality isconducted to the influencing factors by means of nonlinear principal component analyticalmethod, and the frequency mode mainly affected by the temperature is picked out from themultiple natural frequencies combined correlation analysis. Then the measured data areanalyzed by means of the grey particle swarm optimization neural network algorithm toestablish the relationship between temperature and the natural frequencies, and then form themethod to get rid of the temperature.
引文
[1]Fu-Ping Cheng, V.K.R. Kodur, Tien-Chih Wang. Stress-strain curves for high strengthconcrete at elevated temperatures[J]. Journal of Materials in Civil Engineering,2004,16(1):84-90.
    [2]Quentin B. Travis, Barzin Mobasher. Correlation of Elastic Modulus and Permeability inConcrete Subjected to Elevated Temperatures[J]. Journal of Materials in Civil Engineering,2010,22(7):735-740.
    [3]Shoukry Samir N, William Gergis W, Downie Brian, Riad Mourad Y. Effect of Moistureand Temperature on the Mechanical Properties of Concrete[J]. Construction and BuildingMaterials,2011,25(2):688-696.
    [4]Kim Jin-Keun, Han Sang Hun, Song, Young Chu. Effect of Temperature and Aging on theMechanical Properties of Concrete: Part I. Experimental Results[J]. Cement and ConcreteResearch,2002,32(7):1087-1094.
    [5]Kim Jin-Keun, Hun Han Sang, Kyun Park Seok. Effect of Temperature and Aging on theMechanical Properties of Concrete: Part II. Prediction Model[J]. Cement and ConcreteResearch,2002,32(7):1095-1100.
    [6]Naus D.J, Graves III H.L. A Review of the Effects of Elevated Temperature on ConcreteMaterials and Structures[C]. International Conference on Nuclear Engineering, Proceedings,ICONE,2006.
    [7]Bahr O, Schaumann P, Bollen B, Bracke J. Young's Modulus and Poisson's Ratio ofConcrete at High Temperatures: Experimental Investigations[J]. Materials and Design,2013,(45):421-429.
    [8]Jaesung Lee, Yunping Xi, Kaspar Willam, Younghan Jung. A Multistage Model forModulus of Elasticity of Concrete at High Temperatures[J]. Cement and Concrete Research2009,(39):754-762.
    [9]G.J.verbeck, R.Ahelmuth. Strutures and Physical Properties of Cement Paste[J].Chemistryof Cement,1968,(3):1-32.
    [10]W. H. price. Factors Influencing Concrete Properties[J]. Concrete Institution,1951,(47):402-417.
    [11]G. G. carette, K. E. painter, V. M. malhotra. Sustained High Temperature Effect onConcretes Made with Normal Portland Cement, Normal Portland Cement and Slag, orNormal Portland Cement and Fly Ash[J]. Concrete International,1982,4(7):41-51.
    [12]Leyla Tanacan, Halit Yasa Ersoy, Umit Arpacioglu. Effect of High Temperature andCooling Conditions on Aerated Concrete Properties[J]. Construction and Building Materials,2009,23,1240-1248.
    [13]Anand. N Prince, Arulraj.G, The Effect of Elevated Temperature on ConcreteMaterials-A Literature Review[J]. International Journal of Civil and Structural Engineering,2011,1(4):4376-4399.
    [14]Bo njak Josipa, Ozbolt Jo ko, Sharma Akanshu, Peri kic Goran. Permeability ofConcrete at High Temperatures and Modelling of Explosive Spalling[C]. Proceedings of the8th International Conference on Fracture Mechanics of Concrete and Concrete Structures,2013,1893-1900.
    [15]陈丽红.不同温度作用后混凝土强度变化规律的研究[J].四川建筑科学研究,2007,33(5):118-121.
    [16]宿晓萍,隋艳娥,赵万里.高温后混凝土力学性能的对比分析[J].长春工程学院学报(自然科学版),2001,2(3):23-28.
    [17]陈磊,李彬,滕桃居,陈太林.混凝土高温力学性能分析[J].混凝土,2003,165(7):26-28.
    [18]阎继红,林志伸,胡云昌.高温作用后混凝土抗压强度的试验研究[J].土木工程学报,2002,35(5):17-19.
    [19]过镇海.常温和高温下混凝土材料和构件的力学性能[M].清华大学出版社,2006.
    [20]邵伟,陈有亮,周有成.不同温度及不同加热时间作用后混凝土力学性能试验研究[J].防灾减灾工程学报,2012,32(2):248-252.
    [21]王传星,谢剑,李会杰.低温环境下混凝土性能的试验研究[J].工程力学,2011,28(sup2):182-186.
    [22]王传星,谢剑,杨建江.超低温环境下混凝土的性能[J].低温建筑技术,2009,135(9):8-10.
    [23]张楠,李景芳,张志明,谢利红,等.超低温环境混凝土研究与应用综述[J].混凝土,2012,278(12):27-29.
    [24]方立志.计算钢筋混凝土桥梁日照温度应力时弹性模量取值问题的试验研究[J].桥梁建设,1986,(1):57-63.
    [25]颜家露,雷昌聚,王玉梅.浅谈温度对混凝土性能的影响及温度控制[J].施工技术,2002,31(4):30-31.
    [26]张子明,周红军,赵吉坤.温度对混凝土强度的影响[J].河海大学学报(自然科学版),2004,32(6):674-679.
    [27]Emerson M. Bridge Temperatures and Movement in the British Isles[R]. BridgesSection-Road Research laboratory, Ministry of Transport,1968.
    [28]Emerson M. Extreme Values of Bridges for Design Purposes[R]. Transport and ResearchBoard Laboratory Report, Beckshire,England,1976.
    [29]Lanigan A G. The Temperature Response of Concrete Box Girder Bridges[M]. NewZealand: University of Auekland,1973.
    [30]Berwanger C, Symko Y. Thermal Stresses in Steel-Concrete Composite Bridge[J]..Canadian Journal of Civil Engineering,1975,2(l):66-84.
    [31]Berwanger C. Transient Thermal Behavior of Composite Bridges[J]..Journal of theStructural Engineering,1983,109(10):2325-2339.
    [32]Priestley M J N. Design of Concrete Bridges for Thermal Gradients[J]. ACI Journal,1978,75(5):209-217.
    [33]T hurston S J, Pr iestley M J N, Cooke N. Thermal Analysis o f Thick ConcreteSections[J]. ACI Journal,1980(9/10):347-357.
    [34]Dilger W H, Ghali A, Chan M. Temperature Stresses in Composite Box GirderBridges[J]. Journal of Bridge Engineering ASCE,1983,109(6):1460-1478.
    [35]Wang M L. Load and Environmental Effects of a Damaged PC Box Birder Bridge[C].The4th International Workshop on Advanced Smart Materials and Smart StructuresTechnologies.2008,24-25.
    [36]Moorty S, Roeder C W. Temperature Dependent Bridge Movements[J]. Journal ofStructural Engineering,1991,118(4):1090-1105.
    [37]Tong M, Au F T K, Tham L G, et al. A Study of Temperature Measurement in Long SpanSteel Bridge[C]. Workshop on Research and Monitoring of Long Span Bridges.2000,188-195.
    [38] Hunt B, Cooke N. Thermal Calculation for Bridge Design[J]..Journal of the StructuralDivision,1975,101(9):1763-178.
    [39]Liao JenShou, Cheng FuPing, Chen, ChengChih. Punching Shear Capacity and Behaviorof Reinforced Concrete Slabs After Elevated Temperatures[J]. Journal of the ChineseInstitute of Civil and Hydraulic Engineering,2013,25(1):33-42.
    [40]彭友松.混凝土桥梁结构日照温度效应理论及应用研究[D].成都:西南交通大学,2007.
    [41]陈波,郑瑾,王建平.桥梁结构温度效应研究进展[J].武汉理工大学学报,2010,32(24):79-83.
    [42]向学建,董军,刘昊苏,张劲泉,李万恒.高原冬季环境下桥梁温度场各参数的确定[J].公路交通科技,2012,29(3):58-63+85.
    [43]杨佐,赵勇,苏小卒.国内外规范的混凝土桥梁截面竖向温度梯度模式比较[J].结构工程师,2010,26(1):37-43.
    [44]徐庆军.连续刚构桥梁的温度场测试和分析[J].黑龙江交通科技,2009,187(9):134-135.
    [45]林迟,欧进萍.桥梁结构空心构件梯度温度参数研究[J].铁道学报,2011,33(1):94-100.
    [46]孙长荣.太阳辐射热作用下混凝土箱形截面桥梁温度场的计算与研究[J].哈尔滨建筑工程学院学报,1988(1):92-102.
    [47]潘志炎,吴重男,乔仲发.浙江省公路桥梁混凝土箱梁温度梯度分布模式研究[J].公路,2009,(12):30-34.
    [48]何翔,方诗圣,方飞,张鲲,王伟.不同梯度温度作用下曲线桥梁的温度效应分析[J].合肥工业大学学报(自然科学版),2012,35(8):1088-1092.
    [49]彭友松,强士中.混凝土桥梁结构温度自应力计算方法探讨[J].西南交通大学学报,2006,41(4):452-455.
    [50]盛洪飞.混凝土箱形截面桥梁日照温度应力简化计算[J].哈尔滨建筑工程学院学报,1992,25(1):78-84.
    [51]杨坚,刘夏平,杨红,孙卓,蔡卡宏.桥梁结构变形中温度效应提取的一种新方法[J].广州大学学报(自然科学版),2013,12(3):38-44.
    [52]张元海,李乔.桥梁结构日照温差二次力及温度应力计算方法研究[J].中国公路学报,2004,17(1):49-52.
    [53]田谷,续若楠,缪长青,孙传智.基于BP神经网络的大跨桥梁结构混凝土温度预测[J].水利与建筑工程学报,2010,8(5):107-109+123.
    [54]刘逸平,李英华,汤立群,刘泽佳.基于长期温度监测的华南地区混凝土连续刚构桥梁温度变化规律研究[J].公路,2013,(2):118-121.
    [55]Salawu OS. Detection of Structural Damage Through Changes in Frequency[J]. EngStruct,1997,19(9):718-723.
    [56]Kim JT, Park JH, Lee BJ. Vibration-based Damage Monitoring in Model Plate GirderBridges under Uncertain Temperature Conditions[J]. Eng Struct,2007,29(7):1354-1365.
    [57]Cornwell P, Farrar CR, Doebling SW, Sohn H. Environmental Variability of ModalProperties. Exp Tech1999,23(6):45-48.
    [58]Alampallis. Influence of in-service Environment on Modal Parameters[C]. Proceeding ofthe16th International Modal Analysis Conference (IMAC). Santa Barbara: IMAC,1998.111-116.
    [59]Peeters B, De Roeck G. One-year Monitoring of the Z24-bridge: EnvironmentalInfluences Versus Damage Events[C]. In: Proc. of the18th IMAC,2000,1570-1576.
    [60]BartPeeters, JohanMaeck, GuidoDeRoeck. Vibration-based Damage Detection in CivilEngineering:Excitation Sources and Temperature Effects[J]. Smart Materials andStructures,2001,(10):518-527.
    [61]Liu CY, DeWolf JT. Effect of Temperature on Modal Variability of a Curved ConcreteBridge under Ambient Loads[J]. J Struct Eng ASCE2007,133(12):1742-1751.
    [62]Macdonald JHG, Daniell WE. Variation of Modal Parameters of a Cable-stayed BridgeIdentified from Ambient Vibration Measurements and FE Modelling[J]. Eng Struct2005,27(13):1916-1930.
    [63]Nayeri RD, Masri SF, Ghanem RG, Nigbor RL. A Novel Approach for the StructuralIdentification and Monitoring of a Full-scale17-story Building Based on Ambient VibrationMeasurements[J]. Smart Mater Struct2008,17(2):1-19.
    [64]Xia Y, Hao H, Zanardo G, Deeks A. Long Term Vibration Monitoring of an RC Slab:Temperature and Humidity Effect[J]. Eng Struct2006,28(3):441-452.
    [65]Y ong Xia,You-Lin Xu, Ze-Long Wei, Hong-Ping Zhu,Xiao-Qing Zhou. Variation ofStructural Vibration Characteristics Versus Non-uniform Temperature Distribution[J].Engineering Structures,2011,(33):146-153
    [66]Kim JT, Park JH, Kim WJ. Vibration-based Structural Health Monitoring underUncertain Temperature Conditions[C]. Safety and Reliability of Engineering Systems andStructures, ICOSSAR Rome (Italy),2005,19-23.
    [67]Ni YQ, Hua XG, Fan KQ, Ko JM. Correlating Modal Properties with Temperature usingLong-term Monitoring Data and Support Vector Machine Technique[J]. EngineeringMechanics,2005,27:1762–1773.
    [68]E. Balmes, M. Corus, D. Siegert. Modeling Thermal Effects on Bridge DynamicResponses[C]. Proceedings of the International Modal Analysis Conference (IMAC), St.Louis, USA,2006.
    [69]Jeong-Tae Kim, Jae-Hyung Park, Byung-Jun Lee. Vibration-based Damage Monitoringin Model Plate-girder Bridges under Uncertain Temperature Conditions[J]. EngineeringStructures,2007,29(7):1354-1365.
    [70]许永吉,朱三凡,宗周红.环境温度对桥梁结构动力特性影响的试验研究[J].地震工程与工程振动,2007,27(6):119-123.
    [71]李红万,邹振祝,苏木标,章凯.温度对结构模态参数的影响研究[J].国防交通工程与技术,2007,(1):62-65.
    [72]余印根,宗周红,夏樟华.基于数理统计的环境温湿度对两跨连续梁动力特性影响研究[C].第十八届全国桥梁学术会议,天津,2008,914-921.
    [73]张启伟.斜拉桥正常运营条件下振动特性的变异性[J].同济大学学报,2002,30(6):661-666
    [74]李爱群,丁幼亮,费庆国,等.润扬大桥斜拉桥模态频率识别的环境变异性.[J]华东交通大学学报.2008,25(2):25-28
    [75]李顺龙,李宏伟等.考虑温湿度影响的桥梁结构模态频率分析[J].市政公用建设.2008,(3):51-55
    [76]宗周红,赖苍林,夏樟华.预应力混凝土连续梁桥振动特性变异及舒适度评价[J].地震工程与工程振动,2006,26(1):71-77.
    [77]樊可清,倪一清,高赞明.大跨度桥梁模态频率识别中的温度影响研究[J].中国公路学报,2006,19(2):85-91.
    [78]李清禄,陈伟年.面内温度载荷作用下简支梁的振动和稳定[J].甘肃联合大学学报(自然科学版).2007,21(3):30-31.
    [79]李苗,任伟新,胡异丁,王宁波.基于解析模态分解法的桥梁动态应变监测数据温度影响的分离[J].振动与冲击,2012,31(21):6-10+29.
    [80]李顺龙,李惠,欧进萍,李宏伟.考虑温度和风速影响的桥梁结构模态参数分析[J].土木工程学报,2009,42(4):100-106.
    [81]侯立群,李宏伟,冷志鹏,林长春,曾国良.桥梁实测频率的温度影响分析[J].公路工程,2011,36(4):4-7.
    [82]张通.温度对大型桥梁模态频率的影响研究[J].武汉理工大学学报,2011,33(7):94-100.
    [83]焦志钦,胡利平,韩大建.温度对桥梁动力特性的影响研究[J].科学技术与工程,2010,10(31):7685-7689.
    [84]李小年,陈艾荣,马如进.温度对桥梁模态参数的影响[J].华南理工大学学报(自然科学版),2012,40(4):138-143.
    [85]Yi, Yunkun,Xiao, Rucheng. Practical Calculation of Beam-arch Association Bridgeunder Uniform Load[J]. Journal of Tongji University,2008,36(6):728-732.
    [86]项贻强,李新生,申永刚,等.空间梁拱组合式桥梁的分析理论及试验研究[J].中国公路学报,2002,15(1):68-71.
    [87]Hiroshi Zui, Tohru Shinke, Yoshio Namita. Practical Formulas for Estimation of CableTension by Vibration Method[J]. Journal of Structure Engineering,1996,122(6):651-656.
    [88]Byeong Hwa Kim, Taehyo Park. Estimation of Cable Tension Force Using theFrequency-based System Identification Method[J]. Journal of Sound and Vibration,2007,304(3):660-676.
    [89]韦立林,谢开仲,秦荣.钢管混凝土拱桥吊杆索力测试与有限元分析[J].中外公路,2007,27(2):66-68.
    [90]任伟新,陈刚.由基频计算拉索拉力的实用公式[J].土木工程学报,2005,38(11):26-31.
    [91]Yongjun Ma, Haipeng Bi, Ping Liu. Test Method of Suspender Tensioning Force ofSuspender Arch Bridges Based on Vibrtion Test.2011International Conference on RemoteSensing, Environment and Transportation Engineering,2011,(4):3628-3631.
    [92]陈强,黎永索.短吊杆频率法索力系数修正的研究[J].公路工程,2007,32(5):98-100.
    [93]徐宏,黄平明,韩万水.刚性短索索力计算及边界条件分析[J].长安大学学报(自然科学版),2008,28(2):58-62.
    [94]陈强,孟阳君.简化模式的不同对频率法测定吊杆力的影响[J].中南公路工程,2006,31(6):81-84.
    [95]尚鑫,徐岳.基于灰色理论的斜拉桥拉索安全性评价[J].长安大学学报(自然科学版),2004,24(1):52-55.
    [96]兰海,史家钧.灰色关联分析与变权综合法在桥梁评估中的应用[J].同济大学学报,2001,29(1):50-54.
    [97]侯俊明,彭晓彬,叶方才.斜拉索索力的温度敏感性[J].长安大学学报(自然科学版),2002,22(4):34-36.
    [98]刘东霞.基于随机子空间法的梁桥模态参数识别[D].成都:西南交通大学,硕士学位论文,2008.
    [99]常军,张启伟,孙利民.稳定图方法在随机子空间识别模态参数中的应用[J].工程力学,2007,24(2):39-44.
    [100]王勖成,邵敏.有限单元法基本原理和数值方法[M].清华大学出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700