用户名: 密码: 验证码:
功能化离子液体杂化介孔硅基材料的制备、表征及其催化作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能化离子液体以其优异的热力学稳定性、良好的溶解性以及阴、阳离子结构可设计性,作为溶剂和催化剂在精细化工和催化反应中显示出诱人的应用前景。针对均相催化反应中离子液体用量大且催化剂不易分离的缺点,本文利用介孔硅基材料具有可调节的纳米孔道和高比表面积等优点,将新型功能化离子液体结构引入介孔硅基材料孔道或骨架内,构建具有特殊结构和功能的催化活性中心,制备了一系列功能化离子液体杂化的新型介孔硅基材料。该类功能化离子液体杂化介孔硅基材料既保留了均相离子液体催化活性高的优点,又具有多相催化剂便于分离和可重复使用的特点。
     采用后嫁接法,将氯铁酸离子液体通过咪唑阳离子嫁接到MCM-41型介孔材料孔道表面,制备了Lewis酸离子液体杂化介孔硅基材料。采用XRD、N2吸附-脱附、FT-IR和TG-DTG等表征手段对其结构进行了确证。结果表明,Lewis酸性离子液体已成功嫁接于材料孔道表面,且未影响载体的孔道特征。在Friedel-Crafts(傅-克)烷基化反应中,该负载型氯铁酸离子液体表现出较均相氯铁酸离子液体更高的催化效率,催化剂用量仅为氯铁酸离子液体用量的1/50,且可简单分离并有效重复使用10次以上。此外,与MCM-41孔道内直接负载的FeCl3催化剂相比,重复使用性更好。
     设计并合成了含桥键型结构的咪唑离子液体硅氧烷前驱体,将其与正硅酸乙酯(TEOS)共水解-缩聚,制备了骨架中含离子液体结构的桥键嵌入型杂化SBA-15型介孔材料,加入氯化铟进行阴离子交换,制备了含氯铟酸离子液体结构单元的杂化介孔硅基材料。采用XRD、TEM、FT-IR、NMR、N2吸附-脱附等表征手段对其结构进行了确证。在Friedel-Crafts烷基化反应中,所得催化剂表现出优异的催化活性,且可简单分离并有效重复使用6次以上。与直接负载于纯硅介孔材料孔道内的InCl3催化剂相比,此固载型氯铟酸离子液体在重复使用过程中表现出更高的选择性,且In流失程度更低。此外,该催化剂对水不敏感,反应无需严格控制在无水条件下进行,具有较强的工业化应用价值。
     设计并合成了含胺基功能化碱性离子液体的有机硅氧烷前驱体,通过溶胶-凝胶法或后嫁接法,制备了三种碱性离子液体杂化介孔硅基材料。在以水为介质的Knoevenagel(克脑文盖尔)反应中,三种材料均表现出较相应均相离子液体催化剂更高的催化活性。其中,后嫁接法制备的材料催化性能更好,特别是采用后嫁接法以SBA-15型介孔材料为载体制备的催化剂具有高效催化和有效重复的特点。此外,与胺基功能化的杂化介孔硅基材料相比,该碱性离子液体杂化介孔硅基材料具有更高的重复使用性能。
     将咪唑离子液体嫁接到硅基SBA-15型介孔材料的孔道表面,用六甲基二硅氮烷气相屏蔽剩余硅羟基,再与磷钨酸进行阴离子交换,制备了磷钨酸离子液体杂化硅基SBA-15型介孔材料。离子液体的咪唑阳离子对金属中心的弱配位性及离子液体的极性均有利于稳定催化反应中间体,提高了催化剂的催化活性及稳定性。在以水为溶剂,双氧水(30%)为氧化剂的苯甲醇氧化反应中,该催化剂表现出较SBA-15直接负载磷钨酸催化剂更好的催化性能。在最佳反应条件下,苯甲醇转化率和苯甲醛选择性分别达97%和96%。由于硅羟基被屏蔽,磷钨酸仅以阴离子交换模式与离子液体单元作用,因此,催化剂表现出了较好的重复使用性能,在重复使用7次后,催化活性没有明显下降。
Ionic liquids with task-specific functionality have showed fascinating prospects in fine chemical and catalysis fields due to their unprecedented properties, such as high chemical and thermal stability, favorable solubility, tunable physical and chemical properties by the choice of organic cation and/or inorganic anion etc. However, such homogeneous species possess a number of inherent shortcomings, including high price, large consumption, and difficulties in separation and/or recovery. In order to overcome the above-mentioned problems, attempts have been, in this dissertation, made to combine mesoporous silicas having tunable nano-channel and rather high surface area with ionic liquids of task-specific functionality, aiming to fabricate the task-specific active sites on pore surface and/or in framework of mesostructure. As such, a series of novel mesoporous silica-supported functionalized ionic liquids were designed and prepared. The resultant immobilized functionalized ionic liquids not only remain high catalytic activity often observed for homogeneous functionalized ionic liquids, but also possess facility of separation. In relative reactions, such catalysts showed superior catalytic activities and reusabilities.
     Chloroferrate ionic liquid was grafted onto pore surface of MCM-41 via imidazolium cation by using a post-synthesis procedure. The obtained materials were well characterized by means of XRD, N2 adsorption-desorption, FT-IR, and TG-DTG. It was found that chloroferrate ionic liquid has been incorporated onto the support intactly and that the support remains its structural integrity during the grafting process. In comparison with pure chloroferrate ionic liquid, the immobilized ionic liquid showed much higher catalytic efficiency and more excellent reusability in Friedel-Crafts benzylation reactions. The consumption of ionic liquid in the immobilized chloroferrate ionic liquid was much lower than the pure ionic liquid (ca.1/50) and the solid catalyst could be reused for 10 times without significant loss of catalytic activity. Also, the immobilized chloroferrate ionic liquid possessed better reusability than siliceous MCM-41-supported FeCl3.
     An organic bridged silsesquioxane precursor containing ionic liquid unit was synthesized and successively co-condensed with tetraethyl orthosilicate, leading to a periodic mesoporous organosilica (PMO) material of SBA-15 incorporating ionic liquid moieties. The combination of the resultant PMO material with InCl3 gave rise to a immobilized Lewis acidic chloroindate(III) ionic liquid catalyst. The obtained materials were well characterized by means of XRD, N2 adsorption-desorption, TEM, FT-IR, and NMR. The immobilized chloroindate(III) ionic liquid showed rather good catalytic performance in the Friedel-Crafts reaction between benzene and benzyl chloride and could be reused at least for 6 times. In comparison with siliceous SBA-15-supported InCl3, the immobilized ionic liquid revealed higher selectivity and lower leaching of active species during the reuse process. It should be noted that such immobilized chloroindate(Ⅲ) ionic liquids had low moisture sensitivity, showing the great potential for practical applications.
     Three organic-inorganic hybrid mesoporous silicas incorporated with NH2-functionalized ionic liquid moieties were prepared via either post-synthesis or sol-gel procedure by using a synthesized organotrialkoxysilane as organosilane source. The obtained immobilized ionic liquids showed higher catalytic efficiency than their homogeneous counterpart in Knoevenagel condensations with water as solvent. Among them, the catalysts prepared by post-synthesis procedure, particularly that using siliceous SBA-15 as support, revealed better catalytic performance than that prepared by sol-gel procedure. Moreover, in comparison with NH2-functionalized mesoporous silicas, the immobilized ionic liquids possessed much better reusability, for example, the catalyst using siliceous SBA-15 as support could be reused for 10 times without significant loss of catalytic activity.
     Imidazolium-based ionic liquid was grafted onto pore surface of siliceous SBA-15. Then, the silanols presented in the organic-inorganic hybrid mesoporous silica were eliminated by reacting with 1,1,1,3,3,3-hexamethyldisilazane. The combination of the material so-obtained with phosphotungstic acid led to a series of immobilized phosphotungstic acid ionic liquids. It was found that weak complexation between the imidazolium cations and meter centre of phosphotungstic acid and polarity of the ionic liquid moieties are conducive to stabilizing reaction inter-mediate. As such, the immobilized phosphotungstic acid ionic liquids showed higher catalytic performance than siliceous SBA-15-supported phosphotungstic acid did in the oxidation of benzyl alcohol with water as media in the presence of 30% H2O2. Under optimum conditions, the conversion of benzyl alcohol and the selectivity to benzaldehyde were as high as 97% and 96%, respectively. The elimination of silanols forced phosphotungstic acid to interact with the ionic liquid moieties incorporated in the mesostructure exclusively, therefore, the immobilized phosphotungstic acid ionic liquid showed good reusability. Indeed, the optimum catalyst could be reused for 7 times without significant loss of catalytic activity.
引文
[1]Suarez, P., Einloft, S., Dullius, J., et al. Synthesis and physical-chemical properties of ionic liquids based on 1-butyl-3-methylimidazolium cation [J]. J. Chim. Phys. Chim. Biol.,1998, 95(7):1626-1639.
    [2]Wasserscheid, P., Welton, T., Ionic Liquids in synthesis [M]. Wiley, 2002,1.
    [3]王军,离子液体的性能及应用[M].北京:中国纺织出版社,2007,12.
    [4]Hurley, F.H., US [P].4,446,331,1948; Wier, T. P. Jr., Hurley, F.H., US [P].4,446,349,1948; Wier, T. P. Jr., US [P].4,446,350,1948.
    [5]Masihul, H., Ivan, V. K., Rafiq, H.S., et al. Gold compounds as ionic liquids, systhesis, structures, and thermal properties of N,N-dialkylimidazolium tetrachloroaurate salts [J]. Inorg. Chem.,1999, 38(25):5637-5641.
    [6]Wilkes, J.S., Zaworotko, M.J., Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids [J]. Chem. Commun., 1992, (13):965-967.
    [7]Bonhote, P., Dias, A.P., Papageorgiou, N., et al. Hydrophobic, highly conductive ambient temperature molten salts [J]. Inorg. Chem.,1996, 35(5):1168-1178.
    [8]Fuller, J., Carlin, R.T., De Long, H.C., et al. Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate:model for room temperature molten salts [J]. Chem. Commun.,1994, (3):299-300.
    [9]Visser, A.E., Swatloski, R.P., Reichert, W.M., et al. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions [J]. Chem. Commun.,2001,(1):135-136.
    [10]Wikes, J.S., Levisky, L.A., Wilson, R.A., et al., Diakylimidazolium chloroaluminate melts:a new class of room temperature ionic liquids for electrochemistry [J]. Inorg. Chem.,1982,21(5):1263-1264.
    [11]Sanders, J.R., Ward, E.H., Hussey, C.L., Aluminium-bromide-1-methyl-3-ethylimidazolium bromide ionic liquids Ⅰ. Densities, viscosities, electrical conductivities, and phase transitions [J]. J. Electrochem. Soc.,1986,133(2):325-330.
    [12]Davis, J.H. Jr., Forrester, K.J., Thiazolium-ion based organic ionic liquids (OILs), Novel OILs which promote the benzoin condensation [J]. Tetrahedron Lett.,1999,40(9):1621-1622.
    [13]Yousef, R.M., Brendan, T., Jeanne, M.S., Syntheses of 1-alkyl-1,2,4-triazoles and the formation of quaternary 1-alkyl-4-polyfluoroalkyl-1,2,4-triazolium salts leading to ionic liquids [J]. J. Org. Chem.,2002,67(26):9340-9345.
    [14]Sun, J., MacFarlane, D.R., Forsyth, M., Anew family of ionic liquids based on the 1-alkyl-2-methyl pyrrolinium cation [J]. Electrochimica Acta.,2003,48(12):1707-1711.
    [15]Jocelyne, L., Guillaume, D., Isabelle, A., et al. Synthesis and properties of thiazoline based ionic liquids derived from the chiral pool [J]. Chem. Commun.,2003, (23):2914-2915.
    [16]Xie, H., Zhang, S., Dua, H., An ionic liquid based on a cyclic guanidinium cation is an efficient medium for the selective oxidation of benzyl alcohols [J]. Tetrahedron Lett.,2004,45(3):2013-2015.
    [17]Davis, J.H., Task-specific ionic liquid [J]. Chem. Lett.,2004,33(9): 1072-1077.
    [18]李雪辉,赵东滨,费兆福等,离子液体的功能化及其应用[J].中国科学B辑,2006,36(3):181-196.
    [19]Dai, L., Yu, S., Shan, Y., et al. Novel room temperature inorganic ionic liquids [J]. Eur. J. Inorg. Chem.,2004,2:237-241.
    [20]Earle, M.J., Mecmmac, P.B., Seddon, K.R., Diels-Alder reactions in ionic liquids. A safe recyclable alternative to lithium perchlorate diethyl ether mixtures [J]. Green Chem.,1999, (1):23-25.
    [21]Wasserscheid, P., Boesmann, A., Bolm, C., Synthesis and properties of ionic liquids derived from the "chiral pool" [J]. Chem. Commun.,2002, (3):200-201.
    [22]Brown, R.J.C., Dyson, P.J., Ellis, D.J., et al. 1-butyl-3-methylimidazolium cobalt tetracarbonyl [bmim][Co(CO)4]:a catalytically active organometallic ionic liquid [J]. Chem. Commun., 2001,1862-1863.
    [23]Dyson, P.J., McIndoe, J.S., Zhao, D., Direct analysis of catalysts immobilized in ionic liquids using electrospray ionisation ion trap mass spectrometry [J]. Chem. Commun.,2003,508-509.
    [24]Zhou, Z.B., Matsumoto, H., Tatsumi, K., Low-melting, low-viscous, hydrophobic ionic liquids:1-alkyl(alkyl ether)-3-methylimidazolium perfluoroalk [J]. Chem. Eur. J.,2004,10(24):6581-6591.
    [25]Zhou, Z.B., Matsumoto, H., Tatsumi, K., Low-melting, low-viscous, hydrophobic ionic liquids:Aliphatic quaternary ammonium salts with per-fluoroalkyltrifluoroborates [J]. Chem. Eur. J.,2005,11(2):752-766.
    [26]Zhao, D., Fei, Z., Ohlin, C.A., et al. Dual-functionalized ionic liquids: synthesis and characterization of imidazolium salts with a nitrile-functionalized anion [J]. Chem. Commun.,2004,2500-2501.
    [27]Van den Broeke, J., Winter, F., Deelman, B.J., et al. A highly fluorous room-temperature ionic liquid exhibiting fluorous bi-phasic behavior and its use in catalyst recycling [J]. Org. Lett.,2002,4(22): 3851-3854.
    [28]Wasserscheid, P., Drieben-Holscher, B., Hal, R.V., et al., New functionalized ionic liquids from Michael-type reactions-a chance for combinationrial ionic liquid development [J]. Chem. Commun.,2003, (16):2038-2039.
    [29]Koch, V.R., Miller L.L., Osteryoung, R.A., Electroinitiated Friedel-Crafts transalkylatiom in a room temperature molten salt medium [J]. J.Am.Chem.Soc.,1976,98(17):5277-5284.
    [30]Horton, B., Green chemistry puts down roots [J]. Nature,1999, 400(19):797-798.
    [31]Qiao, K., Deng, Y.Q., Alkylations of benzene in room temperature ionic liquids modified with HCl [J]. J. Mol. Catal. A:Chem.,2001, 171(1-2):81-84.
    [32]杨雅立,王晓化,寇元,离子液体的酸性测定及其催化的异丁烷/丁烯烷基化反应[J],催化学报,2004,25(1):60-64.
    [33]Yadav, J.S., Reddy, B.V.S., Reddy, M.S., et al. Lewis acidic chloroaluminate ionic liquids:novel reaction media for the synthesis of 4-chloropyrans [J]. Eur. J. Org. Chem.,2003, (9):1779-1783.
    [34]Huang, C.P., Liu, Z.C., et al., Effects of additives on the properties of chloroaluminate ionic liquids catalyst for alkylation of isobutene and butane [J]. Appl. Catal. A:General,2004,277(1-2):41-43.
    [35]Zhang, J., Huang, C.P., et al. Isobutane/2-butene alkylation catalyzed by choloaluminate ionic liquids in the presence of aromatic additives [J]. J. Catal.,2007,249:259-266.
    [36]Qiao, C.Z., Zhang, Y.F., et al., Activity and stability investigation of [BMIM][AlCl4] ionic liquid as catalyst for alkylation of benzene with 1-dodecene [J]. Appl. Catal. A:General,276(1-2):2004,61-66.
    [37]Yoo, K.S., Namboodiri, V.V., et al. Ionic liquid-catalyzed alkylation of isobutene with 2-butene [J]. J. Catal.,2004,222:511-519.
    [38]乔琨,邓友全,氯铝酸室温离子液体中缩醛和缩酮反应[J].化学学报,2002,60(3):528-531.
    [39]Yeung, K.S,, Farkas, M.E., Qiu, Z., et al., Friedel-Crafts acylation of indoles in acidic imidazolium chloroaluminate ionic liquid at room temperature [J]. Tetrahedron Lett.,2002,43(33):5793-5795.
    [40]Nara, S.J., Harjani, J.R., Salunkhe, M.M., Friedel-Crafts sulfonylation in 1-butyl-3-methylimidazoium chloroaluminate ionic liqulds [J]. J. Org. Chem.,2001,66(25):8616-8620.
    [41]Sitze, M.S., Schreiter, E.R., Patterson, E.V., et al. Ionic Liquids based on FeCl3 and FeCl2. Raman scattering and ab initio calculations [J]. Inorg. Chem.,2001,40(10):2298-2304.
    [42]Abbott, A.P., Capper, G, Davies, D.L., et al., Preparation of novel moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains [J]. Chem. Commun.,2001: 2010-2011.
    [43]Szilard, C., Hasan, M., et al., In situ spectroscopic studies related to the mechanism of the Friedel-Crafts aceylation of benzene in ionic liquids using AlCl3 and FeCl3 [J]. J. Chem. Soc., Dalton Trans.,2002:680-685.
    [44]Kim, Y.J., Varma, R.S., Microwave-assisted preparation of imidazolium-based tetrachloroindate(Ⅲ) and their application in the tetrahydropyranylation of alcohols [J]. Tetrahedron Lett.,2005,46(9): 1467-1469.
    [45]Yin, D.H., Li, C.Z., et. al., Synthesis of diphenylmethane derivatives in Lewis acidic ionic liquids [J]. J. Mol. Catal. A:Chemical,2006, 245(1-2):260-265.
    [46]Li, C.Z., Efficient synthesis of benzophenone derivatives in Lewis acid ionic liquids [J]. Catal. Commun.,2007,8(11):1834-1837.
    [47]Cole, A.C., Jensen, J.L.,Ntai, I., et al., Novel Bronsted acidic ionic liquids and their use as dual solvent-catalysts [J]. J. Am. Chem. Soc., 2002,124(21):5962-5963.
    [48]Zhu, H.P., Yang, F., He, M.Y., Br(?)nsted acidic ionic liquid 1-methylimidazolium tetrafluoroborate:A green catalyst and recyclable medium for esterification [J]. Green Chem.,2003,5(1):38-39.
    [49]Gu, Y.L., Shi, F., Deng, Y.Q., Esterication of aliphatic acids with olefin promoted by Br(?)nsted acidic ionic liquids [J]. J. Mol. Catal. A: Chem.,2004,212(1-2):71-75.
    [50]Li, D.M., Shi, F., Peng, J.J., et al. Application of functional ionic liquids possessing two adjacent acids sites for acetalization of aldehydes[J]. J. Org. Chem.,2004,69(10):3582.
    [51]Gui, J.Z., Deng, Y.Q., Hua, Z.D., et al. A novel task-specific ionic liquid for Beckmann rearrangement:a simple and effective way for product separation [J]. Tetrahedron Lett.,2004,45(12):2681-2683.
    [52]Joseph, T., Sahoo, S., Halligudi, S.B., Bronsted acidic ionic liquids: A green, efficient and reusable catalyst system and reaction medium for Fischer esterification [J]. J. Mol. Catal. A:Chem.,2005,234(1-2): 107-110.
    [53]Gui, J.Z., Cong, X.H., Liu, D., et al. Novel Br(?)sted acidic ionic liquid as efficient and reusable catalyst system for esterication [J]. Catal. Commun.,2004,5(9):473-477.
    [54]Gui, J.Z., Ban, H., Cong, X., et al., Selective alkylation of Phenol with tert-butyl alcohol catalyzed Br(?)nsted acidic imidazolium salts [J]. J. Mol. Catal. A:Chemical,2005,225(1):27-31.
    [55]Qiao, K., Yokoyama, C., Novel acidic ionic liquids catalytic systems for friedel-crafts alkylation of aromatic compounds with alkenes [J]. Chem. Lett.,2004,33(4):472-473.
    [56]Gu, D.G., Li, S.J., Jiang, Z.Q., et al. An efficient synthesis of bis(indolyl)methanes catalyzed by recycled acidic ionic liquid [J]. Syn. Lett.,2005,6:959-962.
    [57]Wang, Y.Y., Li, W., Xu, C.D., et al. Preparation and characterization of benzimidazolium novel Br(?)nsted acid ionic liquid and its application in the synthesis of arylic esters [J]. Chinese J. Chem.,2007,25:68-71.
    [58]Abello, S., Medina, F., Rodriguez, X., et al. Supported choline hydroxide (ionic liquid) as heterogeneous catalyst for aldol condensation reactions [J]. Chem. Commun.,2004:1096-1097.
    [59]Ranu, B.C., Banetjee, S., Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmIm]OH, in Michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles [J]. Org. Lett.,2005,7: 3049-3052.
    [60]Ranu, B.C., Banetjee, S., Jana, R., Ionic liquid as catalyst and solvent:the remarkable effect of a basic ionic liquid, [bmIm]OH on Michael addition and alkylation of active methylene compounds [J]. Tetrahedron,2007,63(3):776.
    [61]Ranu, B.C., Jana, R., Ionic liquid as catalyst and reaction medium-A simple, efficient and green procedure for Knoevenagel condensation of aliphatic and aromatic carbonyl compounds using a task-specific basic ionic liquid [J]. Eur. J. Org. Chem.,2006:3767-3770.
    [62]Ranu, B.C., Jana, R., Sowmia, S., [Bmim]OH, a basic ionic liquid, efficiently promotes a one-pot condensation of aldehydes, malononitrile, and thiophenols to produce highly substituted pyridines in high yields. The ionic liquid can be recovered and recycled [J]. J. Org. Chem.,2007, 72:3152-3154.
    [63]Yang, L., Xu, L.W., Zhou, W., et al. Highly efficient aza-Michael reactions of aromatic amines and N-heterocycles catalyzed by a basic ionic liquid under solvent-free conditions [J]. Tetrahedron Lett.,2006, 47(44):7723-7726.
    [64]Xu, J.M., Liu, B.K., Wu, W.B., et al. Basic ionic liquid as catalysis and reaction medium:A novel and green protocol for the markovnikov addition of n-heterocycles to vinyl esters, using a task-specific ionic liquid, [bmIm]OH [J]. J. Org. Chem.,2006,71(10):3991-3993.
    [65]Cai, Y.Q., Peng, Y.Q., and Song, G.H., Amino-functionalized ionic liquid as an efficient and recyclable catalyst for Knoevenagel reactions in water [J]. Catal. Lett.,2006,109 (1-2):61-64.
    [66]Gao, G.H., Lu, L., Zou, T., et al. Basic ionic liquid:A reusable catalyst for Knoevenagel condensation in aqueous media [J]. Chem. Res. Chin. U.,2007,23(2):169-172.
    [67]Chhikara, B.S., Tehlan, S., Kumar, A., 1-Methyl-3-butylimidazolium decatungstate in ionic liquid:An efficient catalyst for the oxidation of alcohols [J]. Syn. lett.,2005, (1):63-66.
    [68]Wu, X.E., Ma, L., Ding, M.X., et al. TEMPO-derived task-specific ionic liquids for oxidation of alcohols, Syn. lett.,2005, (4):607-610.
    [69]Howarth, J., Hanlon, K., Fayne, D., et al. Moisture stable dialkylimidazolium salts as heterogeneous and homogeneous Lewis acids in the Diels-Alder reaction [J]. Tetrahedron Lett.,1997,38(17): 3097-3100.
    [70]Luo, S.Z., Mi, X.L., Zhang, L., et al. Functionalized chiral ionic liquids as highly efficient asymmetric organocatalysts for Michael addition to nitroolefins [J]. Angew. Chem. Int. Ed.,2006,45(19): 3093-3097.
    [71]Luo, S.Z., Mi, X.L., Zhang, L., et al. Functionalized ionic liquids catalyzed direct aldol reactions [J]. Tetrahedron,2007,63(9):1923-1930.
    [72]Miao, W., Chan, T.H., Ionic-liquid-supported organocatalyst: efficient and recyclable ionic-liquid-anchored proline for asymmetric Aldol reaction [J]. Adv. Synth. Catal.,2006,348(12):1711-1718.
    [73]Lyubimov, S.E., Davankov, V.A., Gavrilov, K.N., The use of an ionic liquid in asymmetric catalytic allylic amination [J]. Tetrahedron Lett. 2006,47(16):2721-2723.
    [74]Yang, S.D., Shi, Y., Sun, Z.H., et al. Asymmetric borane reduction of prochiral ketones using imidazolium-tagged sulfonamide catalyst [J]. Tetrahedron:Asymmetry,2006,17(12):1895-1900.
    [75]Doherty, S., Goodrich, P., Hardacre, C., et al. Recyclable copper catalysts based on imidazolium-tagged bis(oxazolines):A marked enhancement in rate and enantioselectivity for Diels-Alder reactions in ionic liquid [J]. Adv. Synth. Catal.,2007,349(6):951-963.
    [76]Xiao, J.C., Shreeve, J.M., Synthesis of 2,2'-biimidazolium-based ionic liquids:Use as a new reaction medium and ligand for palladium-catalyzed Suzuki cross-coupling reactions [J]. J.Org. Chem., 2005,70(8):3072-3078.
    [77]Zhao, D., Fei, Z., Geldbach, T.J., et al. Nitrile-functionalized pyridinium ionic liquids:synthesis, characterization, and their application in carbon-carbon coupling reactions [J]. J. Am. Chem. Soc.,2004,126: 15876-15882.
    [78]Sasaki, K., Matsumura, S., Toshima, K., A novel glycosidation of glyco-syl fluoride using a designed ionic liquid and its effect on the stereo-selectivity [J]. Tetrahedron Lett,2004,45(38):7043-7047.
    [79]Tan, R., Yin, D.H., Yu, N.Y., et al. Ionic liquid-functionalized salen Mn(Ⅲ) complexes as tunable separation catalysts for enantioselective epoxidation of styrene [J]. J. Catal.,2008,255 (2):287-295.
    [80]Tan, R., Yin, D.H., Yu, N.Y., et al. Easily recyclable polymeric ionic liquid-functionalized chiral salen Mn(Ⅲ) complex for enantioselective epoxidation of styrene [J]. J. Catal.,2009,263(2):284-291.
    [81]Song, C.E., Yoon, M.Y., Choi, D.S, Significant improvement of catalytic efficiencies in ionic liquids [J]. Bull. Korean Chem. Soc.,2005, 26(9):1321-1330.
    [82]Valkenberg, M.H., De Castro, C., Holderich, W.F., Friedel-crafts acylation of aromatics catalysed by supported ionic liquids [J]. Appl. Catal. A:General,2001,215(1-2):185-190.
    [83]De Castro, C., Sauvage, E., Valkenberg, M.H., et al., Immobilised ionic liquids as lewis acid catalysts for the alkylation of aromatic compounds with dodecene [J]. J.Catal.,2000,196(1):86-94.
    [84]Valkenberg, M.H., De Castro, C., Holderich, W.F., Immobilisation of ionic liquids on solid supports [J]. Green Chem.,2002, (4):88-93.
    [85]Valkenberg, M.H., De Castro, C., Holderich, W.F., Immobilisation of chloroaluminate ionic liquids on solid materials [J]. Top. Catal.,2001, 14(1-4):139-144.
    [86]Mehnert, C.P., Cook, R.A., Dispenziere, N.C., et al. Supported ionic liquid catalysis --- a new concept for homogeneous hydroformylation catalysis [J]. J. Am. Chem. Soc.,2002,124(44):12932-12933.
    [87]Mehnert, C.P., Supported ionic liquid catalysis [J]. Chem. Eur. J., 2005,11(1):50-56.
    [88]Li, D.M., Shi, F., Guo, S., et al. One-pot synthesis of silica gel confined functional ionic liquids:effective catalysts for deoximation under mild conditions [J]. Tetrahedron Lett.,2004,45 (2):265-268.
    [89]Li, D.M., Shi,F., Deng, Y.Q., One-pot C=N, C=O bonds cleavage and C=O, C=N bonds formation over supported ionic liquid in water [J]. Tetrahedron Lett.,2004,45(36):6791-6794.
    [90]Shi, F., Deng, Y.Q., Abnormal FT-IR and FTRaman spectra of ionic liquids confined in nano-porous silica gel [J]. Spectrochim. Acta. Part A, 2005,62(1-3):239-244.
    [91]Qiao, K., Hagiwara, H., Yokoyama, C., Acidic ionic liquid modified silica gel novel solid catalysts for esterification and nitration reactions [J]. J. Mol. Catal. A:Chemical,2006,246(1-2):65-69.
    [92]Bao, Q.X., Qiao, K., Tomida, D., et al. Preparation of 5-hydromethylfurfural by dehydration of fructose in the presence of acidic ionic liquid [J]. Catal. Commun.,2008,9(6):1383-1388.
    [93]Anderson, J.L., Armstrong, D.W., Immobilized ionic liquids as high-selectivity/high-temperature/high-stability gas chromatography stationary phases [J]. Anal. Chem.,2005,77(19):6453-6462.
    [94]Sugimura, R., Qiao, K., Tomida, D., et al. Immobilization of acidic ionic liquids by copolymerization with styrene and their catalytic use for acetal formation [J]. Catal. Commun.,2007,8(5):770-772.
    [95]Wan, Y., Zhao, D., On the controllable soft-templating approach to mesoporous silicates [J]. Chem. Rev.,2007,107(7):2821-3361.
    [96]Burkett, S.L., Sims, S.D., Mann, S., Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors [J]. Chem. Commun.,1996, (11):1367-1368.
    [97]Yu, N., Gong, Y, Wu, D., et al. One-pot synthesis of mesoporous organosilicas using sodium silicate as a substitute for tetraalkoxysilane [J]. Microporous Mesoporous Mater.,2004,72(1-3):25-32.
    [98]Asefa, T., MacLachlan, M.J., Coombs, N., et al. Periodic mesoporous organosilicas with organic groups inside the channel walls [J]. Nature, 1999,402(6764):867-871.
    [99]Inagaki, S., Guan, S., Fukushima, Y, et al.Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks [J]. J. Am. Chem. Soc.,1999,121(41): 9611-9614.
    [100]Melde, B.J., Holland, B.T., Blanford, C.F., et al. Mesoporous sieves with unified hybrid inorganic/organic frameworks [J]. Chem. Mater. 1999,11(11):3302-3308.
    [101]Stein, A., Melde, B.J., Schroden, R.C., Hybrid inorganic-organic mesoporous silicates:Nanoscopic reactors coming of age [J]. Adv. Mater., 2000,12(19):1403-1409.
    [102]Li, C., Zhang, H., Jiang, D., et al. Chiral catalysis in nanopores of mesoporous materials [J]. Chem. Comun.,2007:547-558.
    [103]Wight, A.P., Davis, M.E., Design and preparation of organic-inorganic hybrid catalysts [J]. Chem. Rev.,2002,102(10): 3589-3614.
    [104]Melero, J.A., Van Grieken, R., Morales, G, Advances in the synthesis and catalytic applications of organosulfonic-functionalized mesostructured materials [J]. Chem. Rev.,2006,106(9):3790-3812.
    [105]De Vos, D.E., Dams, M., Sels, B.F., et al. Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations [J]. Chem. Rev.,2002,102(10):3615-3640.
    [106]Sayari, A., Hamoudi, S., Periodic mesoporous silica-based organic-inorganic nanocomposite materials [J]. Chem. Mater.,2001,13: 3151-3168.
    [107]Yoshina-Ishii, C., Asefa, T., Coombs, N., et. al., Periodic mesoporous organosilicas, PMOs:fusion of organic and inorganic chemistry'inside'the channel wails of hexagonal mesoporous sillca [J]. Chem. Commun.,1999:2539-2540.
    [108]Corriu, R.J.P., Ceramics and nanostructures from molecular precursors [J]. Angew. Chem. Int. Ed.,2000,39:1376-1398.
    [109]Sayari, A., Hamoudi, S., Yang, Y., et al., New insights into the Synthesis, morphology, and growth of periodic mesoporous organosilicas [J]. Chem. Mater.,2000,12:3857-3863.
    [110]Gadenne, B., Hesemann, P., Moreau, J.E., Supported ionic liquids: ordered mesoporous silicas containing covalently linked ionic species [J], Chem. Commun.,2004, (15):1768-1769.
    [111]Choudhary, V.R., Jana, S.K., Benzylation of benzene and substituted benzenes by benzyl chloride over InCl3, GaCl3, FeCl3 and ZnCl2 supported on clays and Si-MCM-41 [J]. J. Mol. Catal. A,2002, 180(1-2):267-276.
    [112]Mercier, L., Pinnavaia, T.J., Access in mesoporous materials: Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation [J]. Adv. Mater.,1997,9(6): 500-503.
    [113]Lim, M.H., Stein, A., Comparative Studies of Grafting and Direct Syntheses of Inorganic-Organic Hybrid Mesoporous Materials [J]. Chem. Mater.,1999,11(11):3285-3295.
    [114]Csihony, S., Mehdi, H., Horvath, I.T., In situ infrared spectroscopic studies of the Friedel-Crafts acetylation of benzene in ionic liquids using AICl3 and FeCl3 [J]. Green Chem.,2001,3 (6):307-309.
    [115]Sun, X.W., Zhao, S.Q., [Bmim]Cl/[FeCl3] Ionic liquid as catalyst for alkylation of benzene with 1-octadecene [J]. Chinese J. Chem. Eng., 2006,14(3):289-293.
    [116]Sebti, S., Tahir, R., Nazih, R., et al. Comparsion of different Lewis acid supported on hydroxyapatite as new catalysts of Friedel-Crafts alkylation [J]. Appl. Catal. A,2001,218(1-2):25-30.
    [117]Lee, B., Im, H.J., Luo, H., et al. Synthesis and characterization of periodic mesoporous organosilicas as anion exchange resins for perrhenate adsorption [J], Langmuir,2005,21(12):5372-5376.
    [118]Shylesh, S., Jha, R.K., Singh, A.P., Assembly of hydrothermally stable ethane-bridged periodic mesoporous organosilicas with spherical and wormlike structures [J]. Micropor. Mesopor. Mater.,2006,94(1-3): 364.
    [119]Liu, J., Yang, J., Yang, Q., et al. Hydrothermally stable thioether-bridged mesoporous materials with void defects in the pore walls [J]. Adv.Funct. Mater.,2005,15(8):1297-1302.
    [120]Muth, O., Schellbach, C., FrSba, M., Triblock copolymer assisted synthesis of periodic mesoporous organosilicas(PMOs) with large pores [J]. Chem. Commun.,2001,19:2032-2033.
    [121]Margolese, D., Melero, J.A., Christiansen, S.C., et al. Direct syntheses of ordered SBA-15 sesoporous silica containing sulfonic acid groups [J]. Chem. Mater.,2000,12(8):2448-2459.
    [122]彭林,介孔材料有机官能化及其应用研究[D],湖南师范大学,2008,5.
    [123]Earle, M.J., Hakala, U., Hardacre, C., et al. Thompson, J.M., Wahala, K., Chloroindate(III) ionic liquids:recyclable media for Friedel-Crafts acylation reactions [J]. Chem. Commun.,2005,903-905.
    [124]Yang, J.Z., Tian, P., He, L.L., et al. Studies on room temperature ionic liquid InCl3-EMIC [J]. Fluid Phase Equilibr,2003,204(2):295-302.
    [125]Yang, J.Z., Tian, P., Xu, W.G., et al. Studies on an ionic liquid prepared from InC13 and 1-methyl-3-butylimidazolium chloride [J]. Thermochimica Acta,2004,412(1-2):1-5.
    [126]Choudhary, V.R., Jana, S.K., Mamman, A.S., Benzylation of benzene by benzyl chloride over Fe-modified ZSM-5 and H-(3 zeolites and Fe2O3 or FeCl3 deposited on micro-, meso-and macro-porous supports [J]. Micropor. Mesopor. Mat.,2002,56(1):65-71.
    [127]Zhao, D.Y., Wu, M., Kou, Y, et al. Ionic liquids:applications in catalysis [J]. Catal. Today,2002,74(1-2):157-189.
    [128]Bates, E.D., Mayton, R.D., Ntai, I., et al. CO2 capture by a task-specific ionic liquid [J]. J. Am. Chem. Soc.,2002,124(6):926-927.
    [129]Zhao, D.Y., Huo, Q., Feng, J., et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc.,1998,120(24):6024-6036.
    [130]Kresge, C.T., Leonowicz, M.E., Roth, W.J., et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992,359:710-712.
    [131]Macquarrie, D.J., Jackson, D.B., Aminopropylated MCMs as base catalysts:a comparison with aminopropylated silica [J]. Chem. Commun., 1997,18:1781-1782.
    [132]Su, K.M., Pan, T.Y., Zhang, Y.L., The Analytic Method of Spectrum (M). East China University of Science & Technology Press, Shanghai, 2002,100.
    [133]Nakashima, T., Kimizuka, N., Interfacial synthesis of hollow TiO2 microspheres in ionic liquids [J]. J. Am. Chem. Soc.,2003,125(21): 6386-6387.
    [134]McKittrick, M.W., Jones, C.W., Toward single-site functional materials-Preparation of amine-functionalized surfaces exhibiting site-isolated behavior [J]. Chem. Mater.,2003,15(5):1132-1139.
    [135]Formentin, P., Garcia, H., Leyva, A., Assessment of the suitability of imidazolium ionic liquids as reaction medium for base-catalysed reactions:Case of Knoevenagel and Claisen-Schmidt reactions [J]. J. Mol. Catal. A,2004,214(1):137-142.
    [136]Bass, J.D., Solovyov, A., Pascall, A.J., et al. Acid-base bifunctional and dielectric outer-sphere effects in heterogeneous catalysis:a comparative investigation of model primary amine catalysts [J]. J. Am. Chem. Soc.,2006,128(11):3737-3747.
    [137]Hruby, S.L., Shanks, B.H., Acid-base cooperativity in condensation reactions with functionalized mesoporous silica catalysts [J]. J. Catal., 2009,263(1):181-188.
    [138]Morrison, D.W., Forbes, D.C., Davis, J.H., Base-promoted reactions in ionic liquid solvents. The Knoevenagel and robinson annulation reactions [J]. Tetrahedron Lett.,2001,42(35):6053-6055.
    [139]Forbes, D.C., Law, A.M., Morrison, D.W., The Knoevenagel reaction:analysis and recycling of the ionic liquid medium [J]. Tetrahedron Lett.,2006,47(11):1699-1703.
    [140]Etienne, M., Walcarius, A., Analytical investigation of the chemical reactivity and stability of aminopropyl-grafted silica in aqueous medium [J]. Talanta,2003,59(6):1173-1188.
    [141]Brunel, D., Functionalized micelle-templated silicas (MTS) and their use as catalysts for fine chemicals [J]. Micropor. Mesopor. Mater., 1999,27(2-3):329-344.
    [142:]Yadav, G.D., Mistry, C.K., Oxidation of benzyl alcohol under a synergism of phase transfer catalysis and heteropolyacids [J]. J. Mol. Catal. A:Chemical,2001,172(1-2):135-139.
    [143]Misono, M., A view on the future of mixed oxide catalysts. The case of heteropolyacids (polyoxometalates) and perovskites [J]. Catalysis Today,2005,100(1-2):95-100.
    [144]Jermy, B.R., Pandurangan, A., H3PW12O40 supported on MCM-41 molecular sieves:An effective catalyst for acetal formation [J]. Appl. Catal. A:Gen.,2005,295(2):185-192.
    [145]Ghanbari-Siahkali, A., Philippou, A., Dwyer, J., et al. The acidity and catalytic activity of heteropoly acid on MCM-41 investigated by MAS NMR, FTIR and catalytic tests [J]. Appl. Catal. A:Gen.,2000,192 (1):57-69.
    [146]Jalil, P.A., Al-Daous, M.A., Al-Arfaj, A.R.A., et al. Characterization of tungstophosphoric acid supported on MCM-41 mesoporous silica using n-hexane cracking, benzene adsorption, and X-ray diffraction [J]. Appl. Catal. A:Gen.,2001,207 (1-2):159-171.
    [147]Wang, G.J., Liu, G.Q., Xu, M.X., et al. Ti-MCM-41 supported phosphotungstic acid An effective and environmentally [J]. Applied Surface Science,2008,255(5):2632-2640.
    [149]Marme, F., Coudrier, G, Vedrine, J.C., Acid-type catalytic properties of heterpolyacid H3PW12O40 supported on various porous silica-based materials [J]. Microporous Misoporous Mater.,1998,22(1-3): 151-163.
    [149]Blasco, T., Corma, A., Martnez, A., et al. Supported heteropolyacid (HPW) catalysts for the continuous alkylation of isobutane with 2-butene: The benefit of using MCM-41 with larger pore diameters [J]. J. Catal., 1998,177 (2):306-313.
    [150]Moffat, J.B., Kasztelan, S., The oxidation of methane on heteropolyoxometalates Ⅱ. Nature and stability of the supported species [J]. J. Catal.,1988,109 (1):206-211.
    [151]Chiang, M.H., Dzielawa, J.A., Dietz, M.L., et al. Redox chemistry of the Keggin heteropolyoxotungstate anion in ionic liquids [J]. J. Electroanalytical Chem.,2004,567(1):77-84.
    [152]Li, Z.Y., Zhang, Q., Liu, H.T., et al. Organic-inorganic composites based on room temperature ionic liquid [J]. Journal of Power Sources, 2006,158(1):103-109.
    [153]Rajkumar, T., Ranga Rao, G., Characterization of hybrid molecular material prepared by 1-butyl 3-methyl imidazolium bromide and phosphotungstic acid [J]. Materials Letters,2008,62(25):4134-4136.
    [154]Ranga Rao, G., Rajkumar, T., Babu Varghese, Synthesis and characterization of 1-butyl 3-methyl imidazolium phosphomolybdate molecular salt [J]. Solid State Sciences,2009,11(1):36-42.
    [155]施介华,潘高,1-丁基-3-甲基咪唑磷钨酸盐的制备及其对酯化反应的催化性能[J].Chinese Journal of Catalysis,2008,29(7):629-632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700