用户名: 密码: 验证码:
有序介孔二氧化钛—碳复合材料的制备及其光电化学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要针对甲醇燃料电池(DMFC)催化剂二氧化钛材料导电性差、热稳定性弱以及禁带宽等问题,探索具有新型结构和优异性能的催化剂载体的制备方法。采用低聚合度高分子材料为碳源,三嵌段表面活性剂为结构导向剂,通过三元共组装法制备有序介孔二氧化钛-碳复合材料,并在其中复合碳纳米管、氧化石墨烯及氧化钨等组分,提高二氧化钛介孔有序结构的热稳定性、改善导电性能、降低禁带宽度,进一步增强负载催化剂后的光电化学活性。主要研究内容包括:
     1、提出在有序介孔二氧化钛上用脉冲电位阶跃法负载金属Pt,利用二氧化钛光催化与Pt电催化的协同作用,在紫外光照下研究甲醇的光电化学催化氧化行为,改善燃料电池催化剂载体的性能,为形成甲醇燃料电池/光电电池联合能量转换系统提供新思路。
     2、设计一种新颖结构的催化剂载体,是以钛酸四丁酯为前驱体,低聚合度的酚醛树脂为碳源,F127为结构导向剂,通过三元共组装法制备了介孔结构有序的二氧化钛-碳复合材料。研究发现这种复合材料在600℃仍能保持介孔结构的有序性,有序介孔结构的热稳定性得到明显提升。实验结果表明碳组分包覆在二氧化钛晶粒的外表,限制了热处理过程中晶粒的长大,又起到“粘结”晶粒的作用,从而阻碍了二氧化钛有序介孔结构的热收缩。
     3、为增强有序介孔二氧化钛的导电性,采用聚苯乙烯磺酸钠(PSS)活化修饰碳纳米管,制备有序介孔二氧化钛-碳-碳纳米管复合材料。研究表明随着碳纳米管的加入,有序介孔结构的热稳定性提高至700℃,复合材料的导电能力获得了进一步改善。且由于纳米碳管的良好导电性以及电子定向传输作用,使二氧化钛的导电能力增强,量子转化效率提高,光响应电流由0.4μA升高至7μA,光电化学催化电流峰值提高2倍。
     4、采用改进后的HUMMERS法制备氧化石墨,经超声剥离、高温热解还原,制备有序介孔二氧化钛-碳-氧化石墨烯复合材料。该复合材料有序介孔结构的热稳定性可达900℃,光吸收波长出现红移现象,当氧化石墨烯添加量为8%时,未沉积铂时的光响应电流为13.2μA,沉积铂后可达32.4μA。结果表明,氧化石墨烯的高导电能力促进了空穴/电子对的分离,有利于铂位点甲醇氧化反应的去极化,从而获得较高的光响应电流。
     5、以钛酸四丁酯为钛源、三嵌段共聚物F127为模板剂、低分子量的酚醛树脂为碳源、硅钨酸为钨源,经高温热解制备了具有较好光电催化活性的介孔二氧化钛-碳-氧化钨复合材料。研究表明,氧化钨的掺杂使材料的禁带宽度从3.2eV降低为2.7eV,提高了该复合材料在可见光区的转换率。电化学负载Pt后,复合材料的光电催化电流峰值达7μA。另外,氧化钨含量为8%时,经波长256nm紫外光50秒辐照后,在非光照状况下复合材料出现电流长时间缓慢下降现象,去除可能的电化学因素,推测认为这种现象是复合材料中氧化钨具有电子储存的能力所致。
     6、把n-型半导体有序介孔二氧化钛与p-型半导体氢氧化镍通过电沉积进行复合。在波长256nm紫外光的照射下,复合材料中空穴在两种半导体中扩散使Ni(II)氧化为Ni(III),从而实现光电效应的氧化能在氢氧化镍中存储。研究表明,光照充电后放电时间随沉积电流的增加而增加,。而2.0mA的试样放电时间反而较小,原因可能是过高的电流使氢氧化镍沉积过多、氢氧化镍颗粒太大,堵塞了二氧化钛的光电传输通道而影响储能效果。
TiO2materials are expected to play an important role in solving many serious challenges due toits good characteries of powerful oxidation strength, high chemical stability.But in the practicalapplication, there existed many problems such as poor electrical conductivity, weak thermal stabilityand wider band gap. In order to solve these issues, this work carried out the basic and applied researchto explore the preparation of the new structure of the catalyst support and resolve the mechanism ofthe how to improve the activity and the stability of the catalyst.In this work, we prepared orderedmesoporous titanium dioxide-carbon composites by organic-inorganic self-assembly method aspolymer materials as the carbon source, Trebloc surfactant as a structure directing agent. To enhancetheir photoelectrochemical activity, highly graphitized carbon material such as carbon nanotubes,Graphene oxide is introduced into the composites.Meanwhile, tungsten oxide is also added todecrease the band gap of the composite.The main contents include:
     At first, we have designed a novel catalyst with highly ordered mesoporous structure. A highlyordered mesoporous titanium oxide-carbon composite material is synthesized by organic-inorganicself-assembly with tetrabutyl titanate as precursor, phenolic resin as a polymer source, F127as thestructure directing agent. The introducing of the carbon as a "binder" to "bond" together prevented thetitanium oxide grain growth during the heat treatment. This combined the carbon with strong thermalstability and titanium oxide with the highly photocatalysic performance, preventing the collapse of themesoporous skeleton structure of Titania, effectively improving the oxidation of methanol.Meanwhile, combined the electro-catalytic performance of platinum and the photocatalytic activity oftitanium oxide, to research its behavior of methanol oxidation to joint the DMFC/photovoltaic cellssystem.Platinum is deposited on the surface of the electrode, which can improve the electricalconductivity, increase the active points of the electrodes and separate the electron and hole.
     In order to enhance the photoelectric-chemical performance, sodium polystyrene sulfonate (PSS)modified carbon nanotube was chosen to order mesoporous Titanium dioxide-carbon-carbonnanotube composite material. The experiments showed that with the content of carbon nanotubes andincrease of the temperature, existed the “mixed crystal effect”, enhance the thermal stability (700degree) and photocatalytic performance of the material due to higher crystallization degree, transmission of the electronic and sharper electron-hole separation, thereby increasing the overallphoto-response current from0.4μA to7μA..
     To further improve the electrical conductivity, we synthesis the highly orderly mesoporoustitanium dioxide-carbon-graphite oxide composite materials by organic-inorganic self-assemblymethods, with the graphite oxide as raw material.By appropriate methods to effectively improve thedispersion of graphite oxide to find the right TiO2modification process. Tests show that orderedmesoporous titanium-carbon-graphite oxide composite material better methanol oxidationperformance after the irradiation of ultraviolet light excitation, wherein, the doping amount of thegraphite oxide with8%and the calcining temperature with900℃is chosen as the best modifiedconditions, photocurrent increased to13.2μA.
     Silicotungstic acid is doped in the mesoporous titanium dioxide-carbon material to furtherimprove the photoelectrochemical properties of titanium dioxide material,. XRD and TEMcharacterization of the phase structure showed that the composite material has high orderedmesoporous structure.Current-time measures displayed that the materials has the optical and electricalproperties when WO3doping amount is8%.More important, in the Current-time measures process, itwas observed that the current value of the samples calcined under air atmosphere is no suddentransitions to the minimum value but after a period of decreased slowly when the removal of theultraviolet light irradiation, WO3electronic storage capacity is taken into account the energy storageconcept
     We deposited nickel hydroxide material by galvanostatic deposition in TiO2electrode materialsto research energy storage properties of TiO2-Ni (OH)2composite materials,. the charge and dischargecurves show that the explode with1.5mA current deposition of nickel hydroxide displayed the bestdioxide material storage performance, Charge and discharge curves proved that TiO2-Ni (OH)2composite materials has the energy storage performance, layed the foundation for further study of thetitanium dioxide material in the dark environment.
引文
[1]于如军,管状直接甲醇燃料电池的研制及其建模与控制[D],博士论文,上海交通大学,2006,09.
    [2] Kwon K.,Kim D.,Efficient water recirculation for portable direct methanol fuel cells usingelectroosmotic pumps[J], J.Power Sources,2012,221(23):172-176.
    [3] Huang S. Y., Ganesan P. and Park S.,Development of a titanium dioxide-supported platinumcatalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications[J], J.Am. Chem. Soc.,2009,131(39):13898-13899.
    [4] Yang L.L., Sun H., Wang S.L., Reversible and irreversible loss in performance in direct methanolfuel cells during freeze/thaw cycles [J], J.Power Sources2012,219(52):193-198.
    [5] Nakagawa, N., Tsujiguchi, T., Sakurai, S.,Performance of an active direct methanol fuel cell fedwith neat methanol[J], J.Power Sources,2012,219(14):325-332.
    [6] Ismail A.A., Robben L., Bahnemann D.W., Study of the efficiency of UV and visible-lightphotocatalytic oxidation of methanol on mesoporous RuO2-TiO2nanocomposites[J]. Chemphyschem.2011,12(5):982-991.
    [7] Tanner R.E.,LiangY.A.,Itman E.,Strueture and chemical reaetivity of adsorbed carboxylic acids onanatase TiO2(001)[J], SurfSci.,2002,506(3):251-271.
    [8] Baiju K.V., Shukla S., Sandhya K.S., et al., Photocatalytic activity of sol-gel-derived nanocrystalline titanic[J], J.Phys.Chem. C,2007,111:7612-7622.
    [9] Wu C., Yue Y., Deng X., et al., Investigation on the synergetic effect between anatase and rutilenanoparticles in gas-phase photocatalytic oxidations [J].Catal.Today.2004,93-95:863-869.
    [10] Li G., Chen L., Graharn M. E., et al., Comparison of mixed phase titanic photocatalysts preparedby physical and chemical methods: the importance of the solid-solid interface [J]. J.Mol.Catal A,2007,275:30-35.
    [11] Venkatachalam N.,Palaniehamy M.,Murugesan so1-gel preparation and charaeterization ofnanosize TiO2: its photocatalytic performance [J].Mater Chem.Phys.,2007,104(2-3):454-459.
    [12] Hou Q.Y., Jin Y.J., Ying C.,The effect of high N-doped anatase TiO2on the band gap narrowingand redshift by first-principles[J], Modern Physics Letters B,2012,26(27):125-179.
    [13] Burdett J.K., Electronic control of the geometry of rutile and related structures [J], Inorg.Chem.1985,24(14):2244-2245.
    [14] Gomez V., Balu A. Mariana S.R., et al.,Microwave-assisted mild-temperature preparation ofneodymium-doped titania for the improved photodegradation of water contaminants[J], AppliedCatalysis A-General,2012,441:47-53.
    [15] Bellardita M., Augugliaro V., Loddo V.,Selective oxidation of phenol and benzoic acid in watervia home-prepared TiO2photocatalysts: distribution of hydroxylation products[J], AppliedCatalysis A-General,2012,441:79-89.
    [16]高濂,郑珊,张青红,纳米二氧化钛光催化材料及应用[J],2002,27(9):40-44.
    [17] Niu M., Cheng D.J., Huo L.J.,First principles study on the p-type transparent conductingproperties of rutile TiO2[J],Journal of Alloys and Compounds,2012,539:221-225.
    [18] Dai G.T., Zhao L., Wang, S.M.,Double-layer composite film based on sponge-like TiO2and P25as photoelectrode for enhanced efficiency in dye-sensitized solar cells[J],, Journal of Alloys andCompounds,2012,539:264-270.
    [19] Liu S.L., Tao D.D., Bai H.Y., Cellulose-Nanowhisker-Templated synthesis of titaniumdioxide/cellulose nanomaterials with promising photocatalytic abilities[J],, Journal of AppliedPolymer Science,2012:126(1):E281-E289.
    [20] Androniki P., Lykakis, I. N., Stratakis M., Reaction of hydrosilanes with alkynes catalyzed bygold nanoparticles supported on TiO2[J], Tetrahedron,2012,68(42):8724-8731.
    [21] Zhang, T., Zou Q., Zeng, F., Improving the chemical compatibility of sealing glass for solidoxide fuel cells: blocking the reactive species by controlled crystallization[J], J.PowerSources,2012,216:1-4.
    [22] Park H., Yang C.D., Choi W.Y., organic and inorganic surface passivations of TiO2nanotubearrays for dye-sensitized photoelectrodes[j],J.Power Sources,2012,216:36-41.
    [23] Jaeger C.D., Bard A.J.,Spin trapping and electron spin resonance detection of radicalintermediates in the photodecomposition of water at titanium dioxide particulatesystems[J],J.Phys.Chem.,1979,83(20):3146-3151.
    [24] Jaffrezic-Renault N., Pichat P., Foissy A.,et al,Study of the effect of deposited platinum particleson the surface charge of titania aqueous suspensions by potentiometry,electrophoresis,andlabeled-ion adsorption[J].,J.Phys.Chem.1986,90(16):2733-2738.
    [25] Vorontsov A.V., Stoyanova I.V., Kozlov D.V.,et al,Kinetics of thephotocatalytic oxidation ofgaseous acetone over platinized titanium dioxide[J] J.Catal.,2000,189(2):360-369.
    [26] Khedim H., Nonnet H., Mear, Francois O.,Development and characterization of glass-ceramicsealants in the (Al2O3-SiO2-B2O3) system for solid oxide electrolyzer cells [J],J.PowerSources,2012216:227-236.
    [27]沈伟韧,赵文宽,贺飞等,TiO2形态结构与光催化活性关系的研究[J],化学进展1998,10(4):349-361.
    [28] Zhou W. J.,Lee J. Y., Particle size effects in Pd-catalyzed electrooxide TiO2of formicacid[J],Journal of Physical Chemistry C,2008,112(10):3789-3793.
    [29] Ashahi R., Morikawa Ohwaki T., Aoki K., et al.,Visible-Light photocatalysis in Nitrogen-dopedtitanium oxides[J], Science,2001,293:269-275.
    [30] Diwald O., Thompson T.L., Zubkov T., et al.,Photochemical activity of nitrogen-doped rutileTiO2(110) in visible light[J], J.Phys.Chem.B.,2004,108:6004-6008.
    [31] Nassoko D., Li Y.-F., Wang H., Nitrogen-doped TiO2nanoparticles by using EDTA as nitrogensource and soft template: Simple preparation, mesoporous structure, and photocatalytic activityunder visible light [J],Journal of Alloys and Compounds,2012,540:228-235.
    [32] Khalid, N. R., Ahmed, E., Hong Z.L., Nitrogen doped TiO2nanoparticles decorated on graphenesheets for photocatalysis applications [J]Current Applied Physics,2012,12(6):1485-1492.
    [33] Kralchevska R., Milanova M.,Hristov D., Synthesis, characterization and photocatalytic activityof neodymium, nitrogen and neodymium-nitrogen doped TiO2[J], Materials ResearchBulletin,2012,47(9):2165-2177.
    [34] Selcuk M. Z., Boroglu M. S., Boz I., Hydrogen production by photocatalytic water-splittingusing nitrogen and metal Co-Doped TiO2powder photocatalyst [J],Reaction KineticsMechanisms and Catalysis2012,106(2):313-324.
    [35] Zhang J., Kan Y.H., Li H.B., How to Design Proper Pi-Spacer order of the D-Pi-A dyes fordsscsa density functional response[j],, Dyes and Pigments,2012,95(2):313-321.
    [36] Magyari K.B.,Park S. G., Lee H.D., First principles calculations of oxygen vacancy-orderingeffects in resistance change memory materials incorporating binary transition metal oxides[J],Journal of Materials Science,2012,47(21):7498-7514.
    [37] Prasai B., Cai B., Underwood M. K., properties of amorphous and crystalline titanium dioxidefrom first principles[J], Journal of Materials Science,2012,47(21):7515-7521.
    [38] Kamisaka H., Mizuguchi N., Yamashita, K., electron trapping at the lattice ti atoms adjacent tothe Nb dopant in Nb-doped rutile TiO2[J], Journal of Materials Science,2012,47(21):7522-7529.
    [39] Pilania G., Ramprasad R., Dielectric permittivity of ultrathin PbTiO3nanowires from firstprinciples [J], Journal of Materials Science,2012,47(21):7580-7586.
    [40] Jung S. W., Kim J.-H., Kim H.,ZnS overlayer on in situ chemical bath deposited cds quantumdot-assembled TiO2films for quantum dot-sensitized solar cells[J], Current AppliedPhysics,2012,12(6):1459-1464.
    [41] Bae S. J., Nahm K. S., Kim P.,Electroreduction of oxygen on Pd catalysts supported onTi-modified carbon[J],,Current Applied Physics,2012,12(6):1476-1480.
    [42] Shaban Y. A., Khan, Shahed U. M.,Efficient photoelectrochemical splitting of water to H2and O2at nanocrystalline carbon modified (CM)-n-TiO2and (CM)-n-Fe2O3thin films [J] InternationalJournal of Nanotechnology,2010,7(1):69-98.
    [43] Tachikawa, Takashi, Tetsuro M.,Photocatalytic oxidation surfaces on anataseTiO2crystals revealed by single-particle chemiluminescence imaging [J]ChemicalCommunications,2012,48(27):3300-3302.
    [44] Bian Z.F., Tachikawa, Takashi, Tetsuro M, Superstructure of TiO2crystalline nanoparticlesyields effective conduction pathways for photogenerated charges [J],Journal of PhysicalChemistry Letters,2012,3(11):1422-1427.
    [45] Zhao Y.X., Qiu X.F., Burda C.,The effects of sintering on the photocatalytic activity of N-dopedTiO2nanoparticles[J],. Chemistry of Materials2008,20(8):2629-2636.
    [46] Ohno T., Mitsui T., Matsumma M.,PhotocatalyticActivity of S-doped TiO2photocatalyst undervisible light [J], Chem Lett.2003,32:364-365.
    [47] Chen X.B., Burda C.,The electronic origin of the visible-light absorption properties of C-, N-andS-doped TiO2nanomaterials[J],Journal of The American Chemical Society,2008,130(15):5018-5021.
    [48] Clouser S, Samia A. C. S., Navok E., Visible-light photodegradation of higher molecularweight organics on N-doped TiO2nanostructured thin films[J], Topics inCatalysis,2008,47(1-2):42-48.
    [49] Hattori A, Tada H., High photocatalytic, activity of F-doped TiO2film on glass[J], Journal ofSol-Gel Science and Technology,2001,22:47-52.
    [50] Chen X.B., Glans P.A., Qiu X.F,X-ray spectroscopic study of the electronic structure ofvisible-light responsive N-,C-and S-doped TiO2[J], Journal of Electron Spectroscopy andRelated Phenomena,2008,162(2):67-73.
    [51] Qiu X.F., Zhao Y.X., Burda C., Synthesis and characterization of nitrogen-dopedgroup IVB visible-light-photoactive metal oxide nanoparticles [J], AdvancedMaterials2007,19(22):3995-4003.
    [52] Yu J.C.,.Hu W, Jiang Z.and Zhang L.,Effects of F-doping on the photocatalyti activity andmicrostructures of nanocrystalline TiO2powders[J] Chem.Mater.,2002,14:3808-3813.
    [53] Qiu X.F., Burda C., Chemically synthesized nitrogen-doped metal oxide nanoparticles[J],Chemical Physics2007,339(1-3):1-10.
    [54] Zhao Y.X., Qiu X.F.; Burda C.,286-Sintering effect on N-doped TiO2nanoparticles forphotocatalytic applications[C], Abstracts of Papers of The American Chemical Society,2007,234:286-289.
    [55] Liu Y., Li, J., Qiu X,F.,Bactericidal activity of Nitrogen-doped metal oxide nanocatalysts and theinfluence of bacterial extracellular polymeric substances (EPS)[J], Journal of Photochemistryand Photobiology A-Chemistry,2007,190(1):94-100.
    [56] Honda K., Fujishima A., Electrochemical Photolysis of Water at a Semiconductor Electrode[J],Nature,1972,238:37-39.
    [57] Otsuka M, Takahashi H, Fujisima T, New serum markers to monitor treatment of acuteexacerbation of interstitial lung disease[J], the journal of the Japanese Respiratory Society,2001,39(4):298-302.
    [58] Kim D.H., Anderson M.A.,Photoelectrocatalytic degradation of formic acid usin a poroustitanium dioxide thin-film electrode[J],Environ Sci Technol,1994,28:479-483.
    [59] Gray K., Stafford U, Dieckmann M.,Mechanistic Studies in TiO2Systems-PhotocatalyticDegradation of Chlorophenols and Nitrophenols[C], Photocatalytic Purification and Treatment ofWater and Air, Trace Metals in The Environment,1993,3:455-472.
    [60] Stafford U., Kvinodgopal K., Grayetal A., Electrochemically Assisted Photocatalysis.:.The roleof oxygen and reaction intermediates in the degradation of4-chlorophenol on immobilized TiO2particulate films [J], J.Phys.Chem.1994,98:6797-6803.
    [61] Ying C.L., Zulkarnain Z., Hussein M. Z.;Effect of electrolyte composition inelectrochemical synthesis of self-organized TiO2Nanotubes: nanomaterials: synthesis andcharacterization[C],International Conference for Nanomaterials Synthesis and Characterization,2012,364:298-302.
    [62] Matsubara K., Danno M., Inoue M.,Characterization of nitrogen-doped TiO2powderprepared by newly developed plasma-treatment system[J],Chemical EngineeringJournal,2012,181:754-760.
    [63] Park Y., Kim, W., Park, Hyun W.,Carbon-doped TiO2photocatalyst synthesized without usingan external carbon precursor and the visible light activity[J], Applied CatalysisB-Environmental,2009:91(1-2):355-361.
    [64] Zhan W.,Ma W.H., Zhao J.C., et al., Efficient degradation of toxic organic pollutants withNi2O3/TiO2-xBx under visible irradiation [J], J.Am.Chem.Soc.2004,126:4782-4783.
    [65] Yu J. C., Wang X. C., Fu X. Z., Pore-wall chemistry and phtocatalytic activity of mesoporoustitania molecular sieve films[J]. Chem. Mater.,2004,16(8):1523-1530.
    [66] Li Z.H., Su X.J., Hou G.L.,Enhanced performance for dye-sensitized solar cells based onspherical TiO2nanorod-aggregate light-scattering layer[J], J.Power Sources,2012,218:280-285.
    [67] Li H.Q.,Martha S. K.,Unocic R. R, High Cyclability of ionic liquid-produced TiO2nanotubearrays as an anode material for lithium-ion batteries[j], J.Power Sources2012,218:88-92.
    [68] Yang S., Yue C., Cheng Y.W.M. Co-Aerogels of Carbon/Titanium Dioxide as three dimensionalnanostructured electrodes for energy storage[J], J.Power Sources,2012:218:140-147.
    [69] Yu.J.C.,Zhang L.S.,Yu J.G.,Rapid synthesis of mesoporous TiO2with high photocatalyticaetivity bultrasound-indueed aggomeration[J].New J.Chem,2002,2(4):416-420.
    [70] Wang G.F., He X.P., Zhou F., Application of gold nanoparticles/TiO2modified electrode for theelectrooxidative determination of catechol in tea samples [J]. Food chemistry,2012,135:446-451.
    [71] Zhan S., Chen D., and Jiao X., Long TiO2hollow fibers with mesoporous walls: sol-gelcombined electrospun fabrieation and photocatal ytie properties [J]. The Journal of Phsicalchemistry B2006,110(23):11199-11204.
    [72] Yu Y.,Yu J.C.,Yu J.G., et al.,Enhancement of photocatalytic activity of mesoporous TiO2by usingcarbonnanotube lied catalysis[J] A:General,2005,28(2),186-191.
    [73] Yue W.B., Randorn C., Attidekou P.S., et al.,Synthesis insertion and photoactivity of mesoporouscrystalline TiO2[J]. Adv Funct. R,2009,19(1):2826-2833.
    [74]李英品;周晓荃;陈铁红,N掺杂介孔TiO2的合成.南开大学学报[J],2008,4:4.
    [75] Huo Q., Margolese D., Ciesla U., et al., Organization of organic moleeules with inorganicmoleeulars peeiesin to nanocomposite phase arrays [J].ChemMater1994,20(8):1176-1191.
    [76] Peng T., Zha D., Dai K., et al.,Synthesis of titanium dioxide nanoparticles with meso porousanatase and high photocatalytic activity[J].The Journal of Phsical chemistry B2005,109(11):4947-4952.
    [77] Nakata K., Fujishima A.,TiO2photocatalysis: design and applications[J], Journal ofPhotochemistry and Photobiology C-Photochemistry Reviews,2012,13(3):169-189.
    [78] Tatsuma T., Saitoh S., Ngaotrakanwiwat P., Energy storage of TiO2-WO3photocatalysis systemsin the gas phase [J]. Langmuir,2002,18(21):7777-7779.
    [79] Higashimoto S., Shishido T., Ohno Y., et al.,Photocharge-discharge behaviors of hybridWO3/TiO2film electrodes [J], J. Electrochem. Soc.2007,154(2):F48-F54.
    [80] Kostecki R., Richardson T. and McLarnon F., Photochemical and photoelectrochemical behaviorof a novel TiO2/Ni (OH)2electrode [J], J. Electrochem. Soc.1998,145(7):2380-2385.
    [81] Takahashi M. M., Sendoh M. M., Kobayashi K. K., et al.,Preparation of TiO2thin films usingoctadecylamine langmuir-blodgett films and evaluation of their photocatalyticactivity[D],Transactions of the IRE Professional PMID,2011,60(1):25-90.
    [82] Zhang L.Y., Xu L., Wang J.M., et al.,UV-Induced oxidative energy storage behavior of a novelnanostructured TiO2-Ni(OH)2bilayer system[J], The journal of physical chemistry,2011,115(36):18027-18034.
    [83] Chen H., Wang J. M., ZhaoY. L., Eleetrochemieal performance of Zn-substittted Ni (OH)2foralkaline rechargeable batteries [J].JSolid state Electrochen,2005,9(6):421-428.
    [84] Delnourgues-Guerlou L., Delmas C., Effect of iron on the electrochemical properties oftheNickel hydroxide[J].JElecto.chem,,soc,1994,141(3):713-717.
    [85] Takahashi Y., Tatsuma T., Oxidative energy storage ability of a TiO2-Ni(OH)2bilayerphotocatalyst[J],Langmuir,2005,21:12357-12361.
    [86]曹铃林,袁坚,陈铭夏等,热处理温度对TiO2-WO3复合光催化材料储能特性的影响[J].无机材料学报,2009,24(3):448-452.
    [87] Huang S. Y., Ganesan P., Park S., Development of a titanium dioxide-supported platinumcatalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications [J].,J.Am. Chem. Soc.,2009,131(39):13898-13899.
    [88] Li L., Wei Z. D., Zhang Y., et al., DFT study of difference caused by catalyst supports in Pt andPd catalysis of oxygen reduction reaction [J]. Sci China Ser B-Chem,2009,52(5):571-578.
    [89] Cassiers K., Linssen T., Meynen V., A new strategy towards ultra stable mesoporous Titania withnanosized anatase walls [J].Chem.Commun.2003,10:1178-1179.
    [90] Cassiers K., Linssen T., Mathieu M., et al., Surfactant-directed synthesis of mesoporous Titaniawith nanocrystalline anatase walls and remarkable thermal stability [J], JPhys.Chem.B,2004,108:3713-3721.
    [91] Baccile N., Grosso D., Sanchez C., Aerosol generated mesoporous silica particles.[J].Mater.Chem.2003,13:3011-3016.
    [92] Choi S.Y., Mamak M., Coombs N., et al., Thermally stable two-dimensional hexagonalmesoporous nanocrystalline anatase, and meso-nc-TiO2: bulk and crack-free thin filmmorphologies [J], Adv.Funct.Mater,2004,14:335-344.
    [93] Tang J., Wu Y.L., McFarland Eric W., et al.,Synthesis and photocatalytic properties of highlycrystalline and ordered mesoporous TiO2thin films[J], Chem. Commun.,2004,1670-1671.
    [94] Stuck B.A, Hülse R., Barth T.J.,Intraoperative cone beam computed tomography in themanagement of facial fractures [J]. International journal of oral and maxillofacial surgery,2012,41:1171-1175.
    [95] Lin J., Zong R., Zhou M., Photoelectric catalytic degradation of methylene blue by C60-modified TiO2nanotube array [J], Appl Catal B: Envir,2009,89(3-4):425-431.
    [96] Peng Z, Que W.X., zhao Y.L., Improved performance in dye-sensitized solar cells byrationally tailoring anodic TiO2nanotube length[J], Journal of Alloys andCompounds,2012,540:159-164.
    [97] Nassoko D., Li Y.F.; Wang H. Nitrogen-doped TiO2nanoparticles by using EDTA as Nitrogensource and soft template: simple preparation, mesoporous structure, and photocatalytic activityunder visible light [J], Journal of Alloys and Compounds,2012,540:228-235.
    [98] Wang X.Y., Li H.B., Liu Y.,Hydrothermal synthesis of well-aligned hierarchical TiO2tubularmacrochannel arrays with large surface area for high performance dye-sensitized solar cells[J],Applied Energy,2012,99:198-205.
    [99] Dai G.T., Zhao L., Wang S.M.,Double-Layer composite film based on sponge-like TiO2and P25as photoelectrode for enhanced efficiency in dye-sensitized solar cells[J], Journal of Alloys andCompounds,2012,539:264-270.
    [100] Yuan X.L, Zhang M., Chen X.D.,Transesterification of dimethyl oxalate withphenol over Nitrogen-doped nanoporous carbon materials[J], Applied CatalysisA-General,2012,439:149-155.
    [101] Sauvage F., Davoisne C., Philippe L.,Structural and Optical Characterization ofElectrodeposited Cdse in Mesoporous Anatase TiO2for Regenerative Quantum-Dot-SensitizedSolar Cells[J],Nanotechnology,2012,23(39):395-401.
    [102] Dou J., Zeng H. C.,Targeted synthesis of silicomolybdic acid (keggin acid) inside mesoporoussilica hollow spheres for friedel-crafts alkylation[J],Journal of The American ChemicalSociety,2012,134(39):16235-16246.
    [103] Canesi E.V.,Binda M.,Abate A.,The effect of selective interactions at the interface ofpolymer-oxide hybrid solar cells[J], Energy&Environmental Science,2012,5(10):9068-9076.
    [104] Park E., Le H., Chin S.M.,Synthesis and enhanced photocatalytic activity of Mn/TiO2mesoporous materials using the impregnation method through CVC process[J], Journal ofPorous Materials,2012,19(5):877-881.
    [105] Yu C.L., Shu Q., Zhang C.X., A sonochemical route to fabricate the novel porous F,Ce-Codoped TiO2photocatalyst with efficient photocatalytic performance[J], Journal of PorousMaterials,2012,19(5):903-911.
    [106] Dwivedi C., Raje N.N., Kumar M., Application of synthesized mesoporous Titaniamicrospheres for Arsenic [(III) and (V)] uptake studies [J], Journal of Radioanalytical andNuclear Chemistry,2012,294(1):131-136.
    [107] Jang W., Nursanto E. B.,Kim J.,Liquid carbon dioxide coating of Cds quantum-dots onmesoporous TiO2film for sensitized solar cell applications[J], Journal of SupercriticalFluids,2012,70:40-47.
    [108] Liu, G., Su, Z., Sarfraz, S., General synthesis and electrochemical performance of TiO2-basedmicrospheres with core-shell structure [J], Materials Letters,2012,84:143-146.
    [109] Mazinani B., Beitollahi A., Masrom A. K.,Characterization and evaluation of the photocatalyticproperties of wormhole-like mesoporous silica incorporating TiO2preparedusing different hydrothermal and calcination temperatures[J], Research on ChemicalIntermediates,2012,38(8):1733-1742.
    [110]王俊刚,李新军,郑少建,铂非均匀掺杂二氧化钛薄膜的光催化性能[J].化学学报,2005,63(7):592-596.
    [111] Li Y. T., Sun X. G., Li H. W., Preparation of anatase TiO2nanoparticles with high thermalstability and specific surface area by alco-hothermal method [J], Powder Technology,2009,194:149-152.
    [112] Minero C., Vione D., A Quantitative evalution of the photocatalytic performance of TiO2slurries [J]. Appl Catal B: Envir,2006,67:257-269.
    [113]朱永法,张利,姚文清.溶胶-凝胶法制备薄膜型TiO2光催化剂[J].催化学报,1999,20(3):362-364.
    [114] Afanador L., Ortega S., Gomez R.,titanyl sulfate extracted from the mineral ilmenite asmesoporous catalyst for the oleic acid esterification[J],Fuel,2012,100:43-47.
    [115] Arturo M.N., Ivan P.L., Cecilia S.L., Effect of Titania grafting on behavior of nimohydrodesulfurization catalysts supported on different types of silica [J], Fuel,2012,100:100-109.
    [116] Chu S.,Luo L.L.,Yang J.C.,Low-temperature synthesis of mesoporous TiO2photocatalyst withself-cleaning strategy to remove organic templates[J], Applied SurfaceScience,2012,258(24):9664-9667.
    [117] Taguchi Y., Tsuji E., Aoki Y.,Photo-induced properties of non-annealed anatase TiO2mesoporous film prepared by anodizing in the hot phosphate/glycerol electrolyte [J],,AppliedSurface Science,2012,258(24):9810-9815.
    [118] He Z.L., Que W.X.L, He Y.C.,Nanosphere assembled mesoporous titanium dioxide withadvanced photocatalystic activity using absorbent cotton as template[J], Journal of MaterialsScience,2012,47(20):7210-7216.
    [119] Pirovano C., Schoenborn E., Wohlrab S., On the performance of porous silica supported voxcatalysts in the partial oxidation of methane [J], Catalysis Today,2012,192(1):20-27.
    [120] Shang G.L., Wu J., Huang M.L.,Facile synthesis of mesoporous Tin oxide spheres and theirapplications in dye-sensitized solar cells[J], Journal of Physical ChemistryC,2012,116(38):20140-20145.
    [121] Evers S., Yim T., Nazar L. F.,Understanding the nature of absorption/adsorption in nanoporouspolysulfide sorbents for the Li-S battery[J],Journal of Physical Chemistry C,2012,116(37):19653-19658.
    [122] Lim C. K., Huang H., Chow C., L.,Enhanced charge transport properties of dye-sensitizedsolar cells using tinxoy nanostructure composite photoanode[J],Journal of Physical ChemistryC,2012,,116(37):19659-19664.
    [123] He H., Liu C., Dubois K. D.,Enhanced charge separation in nanostructured TiO2materials forphotocatalytic and photovoltaic applications[J], Industrial&Engineering ChemistryResearch,2012,51(37):11841-11849.
    [124] Chen W.C., Chen C.Y., Wu C.G., Effect of structural compatibility of dye and hole transportmaterial on performance of solid-state dye-sensitized solar cells [J], J.Power Sources,2012,214:113-118.
    [125] Jiang Y.M., Wang K.X, Guo X.X., Mesoporous titania rods as an anode material for highperformance lithium-ion batteries[J],J.Power Sources,2012,214:298-302.
    [126] Wei C. C., Chia Y. C., Wu C.G.,,Effect of structural compatibility of dye and hole transportmaterial on performance of solid-state dye-sensitized solar cells[J], J.Power Sources,2012,214:113-118.
    [127] Tian J.J., Gao R., Zhang Q.F., Enhanced performance of Cds/Cdse quantum dot cosensitizedsolar cells via homogeneous distribution of quantum dots in TiO2film[J], Journal of PhysicalChemistry C,2012,116(35):18655-18662.
    [128] Shi J.W., Cui H.J., Zong X.,Facile one-pot synthesis of Eu, N-Codoped mesoporous titaniamicrospheres with yolk-shell structure and high visible-light induced photocatalyticperformance[J], Applied Catalysis A-General,2012,435:86-92.
    [129] Mcmaster W. A., Wang X.J., Caruso R. A., Collagen-templated bioactive titanium dioxideporous networks for drug delivery [J] Acs Applied Materials&Interfaces,2012,4(9):4717-4725.
    [130] Patra A. K., Dutta A., Bhaumik A.,Highly Ordered Mesoporous TiO2-Fe2O3mixed oxidesynthesized by sol-gel pathway: an efficient and reusable heterogeneous catalyst fordehalogenation reaction [J],Acs Applied Materials&Interfaces,2012,4(9):5022-5028
    [131] Briceno K., Iulianelli A., Montane D.,Carbon molecular sieve membranes supported onnon-modified ceramic tubes for hydrogen separation in membrane reactors[J], InternationalJournal of Hydrogen Energy,2012,37(18):13536-13544.
    [132] Anilkumar, M.; Hoelderich, W. F., New non-zeolitic nb-based catalysts for the gas-phaseBeckmann rearrangement of cyclohexanone oxime to caprolactam [J], Journal of Catalysis,2012,293:76-84.
    [133] Liu C.H., Wang X., Mesoporous titanium dioxide nanobelts: synthesis, morphology evolution,and photocatalytic properties [J], Journal of Materials Research,2012,27(17):2265-2270.
    [134] Nakata K., Fujishima A., TiO2photocatalysis: design and applications [J], Journal ofPhotochemistry and Photobiology C-Photochemistry Reviews,2012,13(3):169-189.
    [135] Huo Q.,Margolese D.I.,Ciesla U., et al.,Generalized syntheses of periodic surfactant/inorganiccomposite materials[J].Nature1994,368:317-321.
    [136] Huo Q., Margolese D. I., Ciesla U., Organization of organic molecules with inorganicmolecular species into nanocomposite biphase arrays [J].Chem.Mater.1994,6:1176-1191.
    [137] Lamy C., Belgsir E. M., Leger J. M., Electrocatalytic oxidation of aliphatic alcohols:Application to the direct alcohol fuel cell (DAFC)[J]. J Appli Electrochem,2001,31(7):799~809.
    [138] Zhou J., He J., Zhao G., Ordered mesoporous carbon decorated with rare earth oxide aselectrocatalyst support for Pt nanoparticles [J]. Electrochemistry Communications.2008,10:76-79.
    [139]王福兵. PEM燃料电池PtC电催化剂制备和性能研究[D].天津:天津大学,2003.
    [140] Takai A., Yamauchi Y., Kuroda K., Tailored electrochemical synthesis of2D-hexagonal,lamellar, and cage-type mesosructured Pt thin films with extralarge periodicity [J]. J. Am.Chem. Soc.,2009,132(1):208-214.
    [141] McNicol B. D., Rand D. A. J., Williams K. R., Direct methanol-air fuel cells for roadtransportation[J]. J Power Sources,1999,83(1-2):15-31.
    [142] Sung C.C., Fung K.Z., Synthesis of highly ordered and worm-like mesoporous TiO2assistedby tri-block copolymer[J]. Solid State Ionics,2008,179:1300-1304.
    [143] Ismail A. A., Bahnemann D. W., Robben L., Palladium doped porous Titania photocatalysts:impact of mesoporous order and crystallinity [J]. Chem. Mater.,2009,22(1):108-116.
    [144] Bannat I., Wessels K., Oekermann T., Improving the photocatalytic performance of mesoporousTitania films by modification with gold nanostructures [J]. Chem. Mater.,2009,21(8):1645-1653.
    [145] Yang R Z, Xiu X P, Zhang H R, Monodispersed hard carbon spherules as a catalyst support forthe electrooxidation of methanol [J]. Carbon,2005,43(1):11-16.
    [146] Xie Y., Ding K. L., Liu Z. M., In situ controllable loading of ultrafine noble metal particles onTitania [J]. J. AM. CHEM. SOC.,2009,131(19):6648-6649.
    [147] Ajayan P., Zhou O., Applications of carbon nanotubes [J].Carbon nanotubes,2001,391-425.
    [148] Akhavan O.,Abdolahad M.,Abdi Y., et al.,Synthesis of titania/carbon nanotube hetero junctionarrays for Photo in activation of ecoli in visible lightirradiation[J].Carbon,2009a,47(14):3280-3287.
    [149] Shimizu K., Kashiwagi K., Nishiyama H., Impedancemetric gas sensor based on Pt and WO3co-loaded TiO2and ZrO2as total NOxsensing materials [J]. Sensors and Actuators B,2008,130(2):707-712.
    [150] Silva C. G., Faria J. L., Photocatalytic oxidation of benzene derivatives in aqueous suspensions:Synergic effect induced by the introduction of carbon nanotubes in a TiO2matrix[J] AppliedCatalysis B-Environmental,2010,101(12):81-89.
    [151] Sakthivel M., Schlange A., Kunz U., et al., Microwave assisted synthesis of surfactant stabilizedplatinum/carbon nanotube electrocatalysts for direct methanol fuel cell applications [J]. J.Power Sources,2010,195:7083-7089.
    [152] Yu J., Tonpheng B., Grobner G., Thermal properties and transition studies of multi-wallcarbon nanotube/nylon-6composites,[J] Carbon,2011,49(12):4858-4866.
    [153] Furube A, Asahi T, Masuhara H,Direct observation of a picosecond charge separation processin photoexcited platinum-loaded TiO2particles by femtosecond diffuse reflectancespectroscopy,Chemical Physics Letters,2001,336(5-6):424-430.
    [154] Furube A, Asahi T, Masuhara H, Direct observation of interfacial hole transfer from aphotoexcited TiO2particle to an adsorbed molecule SCN-by femtosecond diffuse reflectancespectroscopy,Research on Chemical Intermediates,2001,27(1-2):177-187.
    [155] Nishikiori H., Takuma O., Yohei U., Influence of adding carbon nanotubes onphotoelectric conversion properties of dye-doped titania [J],Research on ChemicalIntermediates,2012,38:1857-1869.
    [156] Hoffmann M. R., Martin S. T., Choi W. Y., Environmental applications of semiconductorphotocatalysis [J]. Chem. Rev.,1995,95(1):69-96.
    [157] Lozano P., Berge, Nicole D., Single-walled carbon nanotube behavior in representative matureleachate[J], Waste Management,2012,32:1699-1711.
    [158] Rodriguez A. M., Jimenez P. S. V., Some new aspeets of grahite oxidation at0℃in a liquidmedium: a mechanism Proposal for oxidation to graphite oxide [J].Carbon,1986,24(2):163-167.
    [159] Hummers W., Offeman R., Preparation of graphiteoxide [J]. J. Am. Chem. Soc,1958,80:1339-1342.
    [160] Wang H. L., Pang L.,Jiang W. F.,Preparation and characterization of thermosensitivepoly(NIPAM-co-MAH-beta-CD)/(TiO2-MWCNTs) composites by UV light photoinitiatingmethod,Chinese Chemical Letters,2012,23:1071-1074.
    [161] Rabin B., Liu P. K. Y., Scully S. F., Intercalation of polypyrrole into graphite oxide [J].Synthetic Metals,2006,156:1023-1027.
    [162] Ngaotrakanwiwat P., Tatsuma T., Optimization of energy storage TiO2–WO3photocatalysts andfurther modification with phosphotungstic acid [J]. Journal of Electroanalytical Chemistry,2004,573(2):263-269.
    [163] Shamokia J. R. C., Quintana J. J., Carbon monoxide and methanol oxidation at platinumcatalysts supported on ordered mesoporous carbon: the influence of functionalization of thesupport [J]. Phys. Chem. Chem. Phys.,2008,10:6796-6806.
    [164] Fuertes A. B., Centeno T. A., Mesoporous carbons with graphitic structures fabricated by usingporous silica materials as templates and iron-impregnated polypyrrole as precursor[J]. J. Mater.Chem.,2005,15:1079-1083.
    [165] Su F., Li X., Lv L., et al., Ordered mesoporous carbon particles covered with carbon nanotubes[J]. Carbon,2006,44:799-823.
    [166] Michael Y., Watanabe K., Fukuysuka T., Characterization of n-hexadecy-lakylamine–intercalated graphite oxide as sorbents [J]. Carbon,2003,41(8):1545-1550.
    [167] Kim C. H., Lee D. K., Pinnavaia T. J., Graphitic Mesostructured Carbon Prepared fromAromatic Precursors[J]. Langmuir,2004,20:5157-5159.
    [168] Yu K. F., Sakai, Nobuyuki, Tatsuma, Tetsu, Plasmon resonance-based solid-state photovoltaicdevices [J], Electrochemistry,2008,76:161-164.
    [169]李勇辉,孙红娟,彭同江,石墨烯的氧化还原法制备及结构表征[J].无机化学学报,2010,26(11):2083-2090.
    [170] Wang D. W., Li F., Liu M.,3D aperiodic hierarchical porous graphitic carbon material forhigh-rate electrochemical capacitive energy storage [J]. Angew Chem. Int. Ed.,2008,47(2):373376.
    [171] Jayaraman S., Jaramillo T. F., Baeck S. H., Synthesis and characterization of Pt-WO3asmethanol oxidation catalysts for fuel cells [J]. J. Phys. Chem.B,2005,109(48):22958-22963.
    [172] Zhu Z. F., He X. M., Zhao Y., Influence of WO3Additive on Crystallite StructuralTransformation of TiO2Powders [J]. Rare Metal Materials and Engineering,2010,39(5):771-774.
    [173] Pan J. H., Lee W. I., Preparation of highly ordered cubic mesoporous WO3/TiO2films and theirphotocatalytic properties [J]. Chem. Mater.,2006,18(3):847-853.
    [174]黄佳木,蔡小平,赵培,非晶态TiO2/WO3光催化复合薄膜的失活与再生[J].化工进展,2009,28(6):967-974.
    [175] Zhao D., Chen C. C., Yu C. L., Photoinduced electron storage in WO3/TiO2nanohybridmaterial in the presence of oxygen and postirradiated reduction of heavy metal ions[J]. J. Phys.Chem. C,2009,113(30):13160-13165.
    [176] Cao L. L., Yuan J., Chen M. X., Photocatalytic energy storage ability of TiO2-WO3compositeprepared by wet-chemical technique [J]. Journal of Environmental Sciences,2010,22(3):454-459.
    [177] Friesen D. A., Headley J. V., Langford C., The photooxidative degradation of N–methylpyrrolidinone in the presence of Cs3PW12O40and TiO2colloid photocatalysts[J]. Environ. Sci.Technol.,1999,33:3193-3198.
    [178] Kobayashi M., Morita A., Ikeda M., The support effect in oxidizing atmosphere on propanecombustion over platinum supported on TiO2, TiO2-SiO2and TiO2-SiO2-WO3[J]. AppliedCatalysis B: Environmental,2007,71(2):94-100.
    [179] Yang H. Y., Yu S. F., Lau S. P., Direct growth of ZnO nanocrystals onto the surface of porousTiO2nanotube arrays for highly efficient and recyclable photocatalysts [J]. Small,2009,5(20):2260-2264.
    [180] Qamar M., Gondal M. A., Yamani Z. H., Removal of rhodamine induced by laser and catalyzedby Pt/WO3nanocompostie [J]. Catalysis Communications,2010,11(8):768-772.
    [181] Chen H., Wang J.M., Pan T., The strueture and eleetroehemieal performance of spherical Ai-substituted a-Ni (OH)2for alkaline reehargeable barteries [J]. J.Power. source,2005,143(1-2):243-255.
    [182] Kamath P. V.,Dixit M., Stabilized Ni(OH)2eleetrode material for alkaline secondary cells[J],Electrochem.Soc,1994,141(11):2956-2959.
    [183] Yang L. J.,Gao X. P.,Wu Q. D.,Phase Distribution and Eleetroehemical properties of Ai-Substituted Niekel Hydroxides [J],J. Phsy.Chem. C,2007,111(12):4614-4619.
    [184] Gratzel M., Photoelectrochemical cells [J]. Nature,2001,414:338-344.
    [185] Takahashi Y., Tatsuma T., Remote energy storage in Ni (OH)2with TiO2photocatalyst [J]Physical Chemistry Chemical Physics,2006,8:2716-2719.
    [186] Zhang L.Y., Xu L., Wang J.M., UV-Induced Oxidative Energy Storage Behavior of a NovelNanostructured TiO2-Ni (OH)2Bilayer System [J], Journal of Physical Chemistry C,2011,115:18027-18034.
    [187] Demourgues G. L.,Delmas C.,New manganese-substituted nickel hydroxide Crystal chemistryand Physical charaeterization [J],.J Power Source,1994,52(3):269-274.
    [188] Yu J.G., Hai Y., Cheng B., Enhanced Photocatalytic H-2-Production Activity of TiO2by Ni(OH)2Cluster Modification [J], Journal of Physical Chemistry C,2011,115:4953-4958.
    [189] Kostecki R., Richardson T., McLarnon D., Photochemical and photoelectrochemicalbehavior of a novel TiO2/Ni (OH)2electrode, Journal of the Electrochemical Society,1998,145:2380-2385.
    [190] Yang F., Takahashi Yu., Sakai N., Visible light driven photocatalysts with oxidative energystorage abilities [J], Journal of Materials Chemistry,2011,21:2288-2293.
    [191] Jayalakshini M., Venugo P., Optimum conditions to Prepare high yield Phase Pure a-Ni (OH)2nanopartieles by urea hydrolysis and electrochemical ageing in alkali solutions [J]. J PowerSource,2005,150(3):272-275.
    [192] Demourgues-Guerlou L., Delmas C., Strueture and Properties of Precipitated nickel hydroxides[J].J.Power.Sources,1993,45(3):281-289.
    [193] Kim, K.D., Nam J.W., Seo H.O., Oxidation of Toluene on Bare and TiO2-Covered NiO-Ni(OH)2Nanoparticles [J] Journal of Physical Chemistry C,2011,115:22954-22959.
    [194] Lei Z., Bai D., Zhao X. S., Improving the electrocapacitive properties of mesoporous CMK-5carbon with carbon nanotubes and nitrogen doping[J]. Micro. Meso. Mater.2011,147:86-93.115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700