用户名: 密码: 验证码:
二化螟抗药性监测及治理与高毒农药替代药剂筛选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二化螟[Chilo suppressalis(Walker)]是危害我国水稻的主要害虫之一,近10年来,二化螟的发生为害迅速回升,严重阻碍了水稻的稳产和高产。目前化学防治仍是防治水稻二化螟的主要手段。原先在水稻上大量使用的5种有机磷类高毒农药如甲胺磷、对硫磷和甲基对硫磷等已于2007年1月1日起被全面禁止使用,且我国许多稻区二化螟已对常用治螟药剂杀虫单(双)和三唑磷等杀虫剂产生了高水平的抗性,并且近几年已监测到浙东南地区的田间二化螟种群对新型高效杀虫剂氟虫腈产生了中等水平抗性。因此,在防治二化螟方面,现在迫切需要寻找理想的药剂品种,来替代被禁用的高毒药剂以及替换或轮换二化螟已具有抗性的常用药剂。
     本项研究旨在监测二化螟对常用药剂抗性的时空动态和研究田间二化螟种群抗药性进化机制,为二化螟抗性治理提供理论依据;测定田间二化螟对拟除虫菊酯类杀虫剂的敏感性和评估二化螟对菊酯类杀虫剂的抗性风险,为评估菊酯类杀虫剂是否可以在稻田中应用提供科学论据;针对目前高毒有机磷农药被禁用的政策,从现有杀虫剂中挑选出多种药剂,测定其对二化螟的室内毒力,以期选出理想的替代药剂作为推广部门进行大田药效示范试验的候选品种,再经天敌安全性及抗性风险评估,最终选出替代高毒农药的药剂品种。
     为了监测我国田间二化螟对常用药剂的抗性时空动态,在2003~2006年期间采用点滴法测定了苏、浙、沪、赣和桂等五省(市、自治区)共9个二化螟田间种群对三唑磷、杀虫单、氟虫腈和阿维菌素等常用药剂的抗性水平。结果表明,所测种群对阿维菌素均处于敏感阶段(RR<5)。除浙东南地区二化螟对氟虫腈具有中等水平抗性(2006年的RR为19.1~23.4倍)之外,其它种群对氟虫腈均敏感。不同地区二化螟对杀虫单和三唑磷产生了不同程度的抗性,浙东南地区种群对三唑磷和杀虫单分别产生了极高和高水平抗性;江苏高淳种群对三唑磷和杀虫单分别产生了高和极高水平抗性;江西南昌和广西桂林种群对三唑磷和杀虫单产生了中等至高水平抗性;上海青浦种群对三唑磷低抗和对杀虫单中抗;江苏常熟对三唑磷和杀虫单低抗;江苏连云港种群对杀虫单低抗和对三唑磷敏感。统计分析表明在2002~2006年的五年期间浙江瑞安种群对三唑磷和杀虫单抗性总体态势为上升趋势,对氟虫腈的抗性逐年上升。
     为了评估菊酯类杀虫剂是否可以在稻田中应用,我们测定了田间二化螟种群对菊酯类杀虫剂的敏感性和进行了二化螟对菊酯类杀虫剂的抗性风险评估。在2004~2005年期间采用点滴法测定了江苏连云港和常熟、浙江瑞安及广西桂林四个二化螟田间种群对10种菊酯类杀虫剂的敏感性。结果表明,七种对鱼高毒菊酯类杀虫剂(高效氟氯氰菊酯、高效氯氟氰菊酯、高效氯氰菊酯、溴氰菊酯、S-氰戊菊酯、顺式氯氰菊酯及甲氰菊酯)>三种对鱼低毒菊酯类杀虫剂(乙氰菊酯、醚菊酯和氟硅菊酯)>甲胺磷和杀虫单。同时我们发现有些二化螟田间种群对某些菊酯类杀虫剂的敏感性正在明显降低,特别是瑞安种群二化螟对高效氟氯氰菊酯、溴氰菊酯的敏感性年度间变化最大(抗性倍数分别从2004年的16.2、10.6倍上升到2005年的131.4、60.4倍),这是国内外首次检测到二化螟对菊酯类杀虫剂产生抗性的报道(He et al.,2007)。另外发现瑞安种群对菊酯类杀虫剂的抗性与结构似乎有相关性,即对含α-氰基和乙烯基的环丙烷羧酸菊酯类杀虫剂产生高水平抗性,而对菊酸部分为异戊酸的氰戊菊酯很敏感,结合抗药性生化机制研究结果推测这种相关性可能与细胞色素P-450酶系的解毒代谢有关。
     我们还进行了二化螟对乙氰菊酯和溴氰菊酯的抗性风险评估。乙氰菊酯筛选以2004年采自上海青浦地区二化螟(QP04)为起始种群,室内测定该种群对乙氰菊酯抗性水平很低(RR=5.6),筛选了8代后,抗性倍数上升到15.2倍,上升了1.72倍,估算所得的抗性现实遗传力h~2为0.1474,对其中的连续筛选4代(F_8~F_(11))进行估算所得h~2为0.2239。溴氰菊酯筛选以2005年采自江苏连云港地区二化螟(LYG05)为起始种群,室内测定该种群对溴氰菊酯很敏感(RR=2.2),筛选5代后,抗性倍数上升到5.8倍,上升了1.67倍,估算所得的抗性现实遗传力h~2为0.6618,对其中的连续筛选3代(F_0~F_2)进行估算所得h~2为1.4314。初步评估表明二化螟对乙氰菊酯的抗性风险明显低于对溴氰菊酯的抗性风险。
     为了探究田间抗性二化螟对常用药剂抗性机制的生化特性,于2007年采用田间多抗性瑞安二化螟种群(RA07)为测试种群(对三唑磷、杀虫单、溴氰菊酯和氟虫腈的抗性水平分别为204.8、164.8、42.9和6.5倍),分别研究了脱叶磷DEF、顺丁烯二酸二乙酯DEM及增效醚PBO等三种增效剂对上述四种杀虫剂的增效作用。结果表明,PBO对溴氰菊酯有显著增效作用(增效系数为4.93倍),DEF和DEM对溴氰菊酯的毒力几乎无影响;DEF对三唑磷有弱增效作用(增效系数为1.38倍),DEM和PBO对三唑磷的毒力没影响;DEF、DEM和PBO对杀虫单和氟虫腈的毒力都几乎无影响。进一步对该种群二化螟的可能与抗性相关的酯酶和多功能氧化酶的离体活力进行测定,以室内敏感品系LYG05为参照品系发现,以α-醋酸萘酯为底物测定的RA07种群二化螟体内全酯酶的比活力是LYG05敏感品系二化螟的1.37倍,且差异显著。以对硝基苯醚为底物测定的RA07种群二化螟体内多功能氧化酶的比活力是LYG05敏感品系二化螟的1.74倍,且差异显著。研究结果表明多功能氧化酶活性增强是该种群对溴氰菊酯抗性的重要机理,酯酶可能是对三唑磷抗性的一个原因,但三种解毒代谢酶与对杀虫单和氟虫腈的抗性无关。
     为了筛选出防治二化螟的高毒农药替代品种,我们于2005年采用点滴法测定了6类共22种供试药剂对江苏连云港、浙江瑞安、江西南昌和广西桂林四个具代表性的田间二化螟种群的毒力。发现不同类型的杀虫剂对四个种群的毒力次序大致类似,如阿维菌素类药剂和氟虫腈对二化螟的毒力最高,硫丹和杀虫单的触杀毒力最低,昆虫生长调节剂类杀虫剂(虫酰肼、呋喃虫酰肼、氟铃脲和氟啶脲)对二化螟具有较高的毒力,特别是对抗性二化螟仍表现出很高的杀虫活性。因此推荐氟虫腈、阿维菌素、甲氨基阿维菌素、虫酰肼、呋喃虫酰肼、氟铃脲、氟啶脲、哒嗪硫磷、喹硫磷、辛硫磷及毒死蜱等11种药剂作为候选品种供推广部门进行大田药效和示范试验的,结合天敌安全性及抗性风险评估,最终可选出替代5种高毒有机磷农药的药剂品种供推广应用。
The rice stem borer,Chilo suppressalis(Walker)(Lepidoptera:Pyralidae),is one of the economically important rice insects in China.In the last 10 years,population density and its damage intensity increased dramatically in China,which posed a serious threat to the trait of high and stable yield of the crop.Currently,control of C.suppressalis relies mainly on chemical insecticides.Five highly toxic organophosphates including methamidophos, parathion,methyl-parathion,monocrotophos,and phosphamidon will be banned in 2007 by the Ministry of Agriculture in China.In addition,populations of C.suppressalis in many rice regions of China have developed high levels of resistance to monosultap(bisultap) and triazophos,which are two additional conventional insecticides for the control of C. suppressalis.Resistance to a high efficacy novel insecticide fipronil has also been observed in some field populations in the last several years.Because of toxicity risk and increasing resistance development in C.suppressalis to conventional insecticides,it is urgent to screen available insecticides to find effective alternatives for replacing highly toxic OPs and other conventional insecticides.
     The aims of present study include:to provide a foundation for resistance management of C.suppressalis,the dynamics of resistance of C.suppressalis to long-history-use insecticides such as monosultap and triazophos and the newly introduced insecticides fipronil and abamectin are monitored,and the possible underlying mechanisms of resistance to the conventional insecticides in field populations of C.suppressalis are studied; to provide scientific evidence for assess the feasibility of pyrethroids for rice insect control, the susceptibilities to pyrethroids in field populations of C.suppressalis are examined and the risk to develop resistance to pyrethroids in C.suppressalis is estimated;under the ban policy for the highly toxic Ops,a mass of compounds are chosen from insecticides in being, and are evaluated for their activities against C.suppressalis,in order to searching for candidate alternatives for field tests and for selecting additiveness and synergism of insecticide mixtures.
     To monitor the dynamics of resistance of C.suppressalis,a total of eight populations were collected from 2003 to 2006 in five growing provinces in China and were used to examine their susceptibility levels to monosultap,triazophos,fipronil and abamectin using the topical application method.Results indicated that All 9 field populations collected in 2003~2006 were susceptible to abamectin(RR<5).Most field populations were susceptible to fipronil(RR<3),but the populations from Ruian and Cangnan,Zhejiang in 2006 showed moderate levels of resistance to fipronil(RR=19.1~23.4).Variable susceptibilities to triazophos and monosultap were detected in different populations.Those populations from the southeast Zhejiang province,had extremely high levels of resistance to triazophos and of high levels to monosultap;the population from Gaochun,Jiangsu had high levels of resistance to triazophos and of extremely high levels to monosultap;the two populations from Nanchang,Jiangxi and Guilin,Guangxi,evolved resistance of moderate or high levels to monosultap and triazophos;the population from Qingpu,Shanghai was low-level resistant to triazophos and moderate-level resistant to monosultap;the population from Changsu,Jiangsu had low levels of resistance to the two insecticides,and the population from Liangyungang,Jiangsu was low-level resistant to monosultap and susceptible to triazophos.The resistance levels in the RA population of rice stem borer exhibited an increasing trend(or with fluctuation) over a five-year period(2002~2006) for fipronil, monosultap and triazophos,and reached a maximal level in 2006 for all four insecticides.
     To assess the feasibility of pyrethroids for rice insect control,we examined susceptibilities of four field populations(LYG,CS,RA and GL) of C.suppressalis to ten pyrethroids using the topical application method in laboratory in 2004 and 2005.Our results showed that the seven pyrethroids with high fish-toxicity(i.e.beta-cyfluthrin, lambda-eyhalothrin,beta-cypermethrin,deltamethrin,S-fenvalerate,alpha-cypermethrin, and fenpropathrin) were more effective against C.suppressalis than the three compounds with low fish-toxicity(i.e.cycloprothrin,etofenprox,and silafluofen).The results also showed that all ten of the pyrethroids were much more effective than methamidophos and monosultap for C.suppressalis control.In addition,we found that susceptibilities of some field populations of C.suppressalis to some high fish-toxicity pyrethroids were significantly reduced,and our results indicated that a Ruian(RA) field population showed a year-to-year variation in susceptibility to most tested pyrethroids between 2004 and 2005. Our data indicated that the tolerance levels increased dramatically in RA population, especially to beta-cyfluthrin and deltamethrin(with the resistance ratios from 16.2-and 10.6-fold,respectively,in 2004,to 131.4-and 60.4-fold in 2005,respectively).In addition, a close correlation between resistance ratios to the 10 compounds and differences of the structures of these compounds seems being established in the RA05 population,which was resistant to cyclopropane carboxylate pyrethroids with ethenyl and a-cyano while it was still very susceptible to the isovalerate pyrethroid fenvalerate with no cross resistance.This correlation is probably due to the detoxification mediated by the cytochrome P450-dependent monooxygenases(P450s),according to the study on biochemical resistance mechanism to insecticides in C.suppressalis described in Chapter 6.
     Furthermore,the risk to develop resistance to pyrethroids in C.suppressalis is estimated.QP04 population was used to start cycloprithrin selection.It had resistance of a low level to triazophos before selection(RR=5.6).After 8 incontinuous selection cycles (generations),selected strain was 15.2-fold resistant to cycloprithrin,2.72 times higher than that pre-selection.Realized heritability(h~2)estimated from selection was 0.1474(0.2303 for F_8-F_(11),continuous selection).A similar deltamethrin selection experiment was initiated with LYG05 population,which was very susceptible to deltamethrin(RR=2.2).After 5 incontinuous selection cycles,deltamethrin resistance ratio of screened strain increased to 5.8-fold,2.67 times higher than that pre-selection,and the corresponding h~2 estimate was equal to 0.6618(1.4314 for F_0-F_2,continuous selection).It was preliminary indicated that this insect had a lower risk to evolve resistance to cycloprithrin than to develop resistance to deltamethrin.
     To investigate the biochemical resistance mechanism to conventional insecticides in field population of C.suppressalis,synergism studies and detoxicating enzyme assays were conducted in 2007 on a field population of RA07,which was detected to be multi-resistant to triazophos(RR=204.8),monosultap(RR=164.8),pyrethroids(with 42.9-fold RR to deltamethrin),fipronil(RR=6.5) and etc.Synergism studies showed that piperonyl butoxide (PBO) had significant synergistic effect(4.93-fold) to deltamethrin,while S,S,S-tributyl phosphorotrithioate(DEF) and maleic acid diethyl ester(DEM) had no synergistic effect to deltamethrin;DEF had weak synergistic effect(1.38-fold) to triazophos,while DEM and PBO had no synergistic effect to triazophos;DEM,PBO and DEF had no synergistic effect to monosultap and fipronil.In vitro activity of esterase detected usingα-NA as a substrate and microsomal-O-demethylase using p-NA as a substrate showed significant differences between resistant(RA07) and susceptible(LYG05) strains with the increase ratios of 1.32-. and 1.74-fold,respectively.These results suggested that in this multi-resistance population, elevation in microsomal-O-demethylase metabolic activity was an importance mechanism of resistance to deltamethrin,esterase mediated detoxification might be a factor for resistance to triazophos,resistance to monosultap and fipronil had no close relations with three main metabolic enzymes(P450s,esterases and GSTs).
     To provide alternative insecticides for the control of C.suppressalis,the topical application method was used to evaluate 22 insecticides which represented 6 different insecticide classes for their activities against four field populations of C.suppressalis with different resistance levels to conventional insecticides in 2005.Insecticides of different classes had the similar toxicity sequences in four populations.The rice stem borer was most sensitive to avermectins and fipronil,while C.suppressalis exhibited the least sensitivity to endosulfan and monosultap.Insect growth regulators(tebufenozide,JS118,hexaflumuron and chlorfluazuron) showed great efficacy against C.suppressalis,especially against the populations which have developed resistance to conventional insecticides.Efficacy data showed that seven novel insecticides(abamectin,emamectin bezoate,fipronil,tebufenozide, JS118,hexaflumuron and chlorfluazuron) and a few organophosphates(such as phoxim, chlorpyrifos,quinaphos and pyridaphenthion) were potential alternatives for replacing highly toxic pesticides for field trials.
引文
1.蔡道基,龚瑞忠,陈锐,等.溴氰菊酯混配农药——大地西对稻田.鱼塘水生生态系的安全评价研究[J].环境科学学报,1989,9(2):176-182.
    2.蔡慧娟,林仁魁,陈佩仙,等.仙游县晚稻二化螟发生特点、成灾原因与治理技术[J].中国农村小康科技,2006(3):40-41.
    3.蔡之华,洪要文,曹炳宏,等.沿淮稻区二化螟重发原因与综防对策[J].安徽农学通报,2002,8(4):52,61.
    4.曹兵伟.高毒农药替代项目正式启动[J].中国植保导刊,2005,25(7):42.
    5.曹明章,沈晋良,张金振,等.二化螟抗药性监测和对三唑磷抗性的遗传分析[J].中国水稻科学,2004,18(1):73-79.
    6.曹明章,沈晋良,张绍明,等.2002年江苏省二化螟抗药性检测及治理[J].植物保护,2003,29(5):34-37.
    7.曹明章,沈晋良.双酰肼类蜕皮促进剂对水稻二化螟的触杀与内吸作用比较[J].农药,2003,42(11):35-36.
    8.曹明章.二化螟抗药性监测、对三唑磷和杀虫单抗性遗传分析及对氟虫腈抗性风险评估[D].南京:南京农业大学博士学位论文,2004.
    9.曹喜玲,李松杰,王小惠.二化螟的发生规律及防治对策[J].垦殖与稻作,2003(1):24-25.
    10.陈辉珍,董香芝,黄样玉,等.2001.年苍南县水稻二化螟大发生原因分析及治理对策[J].温州农业科枝,2002(1):12-14.
    11.陈景芬.农业部农药检定所将组织开展菊酯类农药在水稻上应用可行性研究[J].农药科学与管理,2004,25(3):9.
    12.陈克松,方学县,汪恩国,等.单双季稻混栽区二化螟种群演变规律与成因分析[J].浙江农业科学,2007,(04):465-467,475.
    13.陈时健.5%氟虫腈悬浮剂防治水稻二化螟示范试验研究[J].上海农业科技,2007(2):104.
    14.陈小龙,郑裕国,沈寅初.农用抗生素刺糖菌素的研究进展[J].农药,2002,41(1):4-7.
    15.陈之浩.水稻二化螟抗药性研究初报[J].西南农业学报,1990,3(2):100-102.
    16.程银姑.80%氟虫腈水分散粒剂防治水稻二化螟田间药效试验[J].现代农业科技,2007(4):46.
    17.褚柏.扬州地区水稻二化螟抗药性研究[J].南京农业大学学报,1987,4(增刊):56-64.
    18.大连瑞泽农药股份有限公司.新颖杀虫剂—丁烯氟虫腈[J].世界农药,2005,27(5):49.
    19.单正军,朱忠林,蔡道基,等.菊酯类农药在稻田使用初探(二)——拟除虫菊酯类农药在稻田使用的环境安全性研究[J].农药科学与管理,2000,21(6):9-11.
    20.刁春友,王茂涛,朱叶芹,等.苏南稻区二化螟上升原因及对策探讨[J].植保技术与推广,2001,21(1):7-9.
    21.丁锦华,苏建亚.农业昆虫学[M].3版.北京:中国农业出版社,2001:150.
    22.董本春,李晓光,高德宇,等.螟黄赤眼蜂防治水稻二化螟的研究[J].植物保护,2001,27(4): 43-40.
    23.段湘生,曾文平,聂萍.高效杀虫剂吡蚜酮的合成[J].湖南化工,2000(5):25-26.
    24.范仰东,莫小平.Bt与锐劲特混用防治水稻二化螟的效果评价[J].昆虫知识,2001,38(4):273-275.
    25.范岳荣.从拟除虫菊酯在菲律宾水稻上使用的现状看在我国水稻上开发的可能性[J].农药译丛,1993,15(6):8-11.
    26.方继朝,杜正文,程遐年,等.水稻螟害上升态势与控害减灾对策分析[J].昆虫知识,1998,35(4):193-197.
    27.冯希锦,谭家壮,邹文杰.锐劲特及其混剂防治稻纵卷叶螟药效试验[J].广东农业科学,2002(6):32-33.
    28.符明龙,王云仙.浙江省苍南县二化螟重发原因及防治对策[J]I浙江农业科学,1998(5):234-237.
    29.甘剑英,陈子元.速灭菊酯在水稻-水-鱼系统中的动态[J].环境科学学报,1986,6(3):263-272.
    30.高希武,彭丽年,梁帝允.对2005年水稻褐飞虱大发生的思考[J].植物保护,2006,32(2):23-25.
    31.龚道新,杨仁斌,郭正元,等.三种不同剂型的醚菊酯在稻田中的残留降解研究[J].农业环境保护,2002,21(2):146-149.
    32.龚林根,张念环,张景飞,等.抗性二化螟综合治理研究初报[J].南京农业大学学报,2001,24(3):35-38.
    33.顾品强,汪祖国.上海稻区二化螟发生规律及预测方法研究[J].上海农业学报,2003,19(2):62-66.
    34.顾中言.菊酯农药防治水稻螟虫的技术探讨[J].现代农药,2004,3(5):23-25.
    35.郭春燕,张慧远,吕峰顺,等.锐劲特5%悬浮液剂防治水稻三化螟白穗试验[J].农药,1999,38(6):31.
    36.郭慧芳,方继朝,刘成社,等.虫酰肼对水稻二化螟的拒食、致死作用及田间效果[J].农药学学报,2001,3(4):41-47.
    37.郭慧芳,方继朝,束兆林,等.氟虫腈对水稻害虫的作用特点及应用[J].植物保护学报,2001,28(3):259-264.
    38.郭平仲.数量遗传分析[M].北京:首都师范大学出版社.1993:75.
    39.韩启发,庄佩君,唐振华.二化螟对杀螟硫磷产生抗性的机理[J].昆虫学报,1995a,38(3):266-270.
    40.韩启发,庄佩君,唐振华.抗杀螟硫磷二化螟的抗性遗传力研究[J].昆虫学报,1995b,38(4):402-405.
    41.韩熹莱.拟除虫菊酯类杀虫剂的抗药性问题[J].植物保护,1981(3):23.
    42.韩招久,韩召军,陈长琨,等.二化螟对杀虫单和甲胺磷抗性监测及田间抗性动态[J].植物保护学报,2002,29(1):93-94.
    43.韩召军,王荫长,丁伯楠,等.溴氰菊酯抗性棉蚜对其它杀虫剂交互抗性的研究[J].植物保护学报,1990,17(3):214,222.
    44.何林.甲氰菊酯与阿维菌素单用、轮用和混用对朱砂叶螨抗性进化的影响[J].蛛形学报,2002,11(1):54-57.
    45.何月平,沈晋良.害虫抗药性进化的遗传本质与分子机制[J].昆虫知识,2008,45(3):188-194.
    46.洪海林,余安安.咸宁市水稻二化螟与稻飞虱发生特点及原因分析[J].湖北植保,2005(2):12-13.
    47.胡仕孟,谢士杰,徐善刚,等.浙江慈溪水稻二化螟抗药性研究初报[J].浙江农业学报,2001,13(1):38-41.
    48.胡志强,许良忠,任雪景,等.拟除虫菊酯类杀虫剂的研究进展[J].青岛化工学院学报,2002,23(1):48-51.
    49.黄诚华,姚洪渭,叶恭银,等.浙江省二化螟不同种群和大螟对三唑磷的敏感性研究[J].农药学学报,2005,7(4):323-328.
    50.姜卫华,韩召军,郝鸣丽.二化螟对氟虫腈抗性初探[J].中国水稻科学,2005,19(6):577-579.
    51.蒋学辉,章强华,胡仕孟,等.浙江省水稻二化螟抗药性现状与治理对策[J].植保技术与推广,2001,21(3):27-29.
    52.蒋学辉,章强华.浙江省二化螟种群回升原因浅析及治理对策[J].植保技术与推广,1997,17(6):15-17.
    53.蒋耀培,郭玉人,谭秀芳,等.上海地区水稻螟虫暴发原因和综合治理措施植保技术与推广[J],2003,23(2):6-7.
    54.阚李斌,周勇,陈迎春,等.拟除虫菊酯农药在稻田的应用技术研究[J].现代农药,2004,3(5):27-29.
    55.赖学连.水稻螟虫综合防治层次分析[J].福建农学院学报,1990,19(4):433-437.
    56.黎贤伟.水稻二化螟持续大发生的原因及综合治理对策[J].湖北植保,2005(1):12-14.
    57.李安祥,李慈厚.二化螟及其防治[M].北京:中国农业科技出版社,1996:1-276.
    58.李飞,黄水金,韩召军.害虫抗药性分子检测技术[J].生命化学,2003,23(5):392-395.
    59.李凤良,程罗根,韩招久,等小菜蛾对杀虫双的抗性遗传研究[J].植物保护学报,1998,25(4):345-350.
    60.李富新,胡顺良,张立征.喹硫磷合成研究[J].农药,1999(11):15-17.
    61.李国敬,王振华,胡鹏,等.2003年水稻螟虫发生特点及原因分析[J].湖北植保,2004(1):9-10.
    62.李明波,刘金南,章方海,等.太湖县水稻螟虫发生的历史演变和现阶段特点分析[J].安徽农学通报,2006,12(5):183-184.
    63.李权生,徐进才,汪朋春,等.沿江地区水稻二化螟的抗药性测定[J].安徽农业科学,2002,30(6):928.
    64.李松岗,张宗炳,杨俭美.昆虫抗药性的治理策略:一个数学模型的推出[J].昆虫学报,1990,33(1):21-27.
    65.李熙英,黄世臣,权成武,等.延边地区水稻二化螟发生危害及化学防治[J].植物保护,2001,27(6):17-19.
    66.李馨宇,沈晋良,曹明章,等.连云港市水稻二化螟抗药性监测[J].江苏农业学报,2005,21(3):234-237.
    67.李秀峰,韩召军,陈长琨,等.二化螟对杀虫单4种杀虫剂的抗药性[J].南京农业大学学报,2001,24(1):43-46.
    68.李仲惺.温州市第三代二化螟大发生原因分析[J].昆虫知识,2000,37(5):260-262.
    69.林抗美,何玉仙.醚菊酯防治稻飞虱药效试验[J].农药,1993,32(6):55-56.
    70.林友伟.两种水稻飞虱对吡虫啉和噻嗪酮的抗性及治理研究[D].南京:南京农业大学硕士学位论文,2004.
    71.刘达修,王文哲,王玉沙.台中地区二化螟虫多发生地区猖獗因子研究[J].中华昆虫,1991,11:300-308.
    72.刘刚.丁烯氟虫腈产品获准农药临时登记[J].农药市场信息,2008(3):32-33.
    73.刘光华,曾玲,梁广文,等.广东稻区螟虫种类组成与发生为害新态势[J].华南农业大学学报,2006,27(1):41-43.
    74.刘光杰,黄和平,谢秀芳,等.早稻品种对二化螟的抗性及其生化基础研究[J].西南农业大学学报,1998,20(5):512-515.
    75.刘光杰,沈君辉,钱兰华,等.防治水稻二化螟高效、低蚕毒药剂的筛选[J].植物保护,1999,25(4):17-19.
    76.刘华林,刘梦泽,李星洲,等.孝感市水稻二化螟抗药性治理对策研究[J].湖北植保,2005(4):32-34.
    77.刘尚钟,王敏,陈馥衡,等.拟除虫菊酯类农药的研究和展望[J].农药,2004,43(7):289-293.
    78.陆锡康,陈德章,龚才根,等.多来宝Trebon防治稻象甲的研究[J].昆虫知识,1995,32(2):120-122.
    79.陆玉荣,徐广和,苏建坤,等.扬州地区二化螟抗药性监测[J].安徽农业科学,2003,31(1):123-124.
    80.吕旭健,夏万青,方勇军,等.0.3%锐劲特颗粒剂防治稻水象甲及兼治螟虫试验[J].农药,1999,38(8):15-16.
    81.罗学义,谢炜,肖青,等.二化螟的发生特点与螟害变重原因分析[J].湖南农业科学,2004,(1):35-37.
    82.毛伟强,黄海明,仇智灵,等.锐劲特与三唑磷混用防治稻纵卷叶螟和稻飞虱试验[J].浙江农业科学,2001(5):268-270.
    83.孟香清,赵建周,魏岑.研究害虫抗药性遗传力的几种方法[J].农药科学与管理,1999,20(2):20-24.
    84.孟香清等.棉铃虫对三氟氯氰菊酯的抗性狭义遗传力及其与体重的相关性[J].昆虫学报,2001,44(2):187-191.
    85.莫建初,唐振华.数量遗传学在害虫种群抗性进化研究中的应用[J].昆虫知识,1997,34(3):183-186.
    86.慕卫,吴孔明,张文吉,等.抗高效氯氟氰菊酯甜菜夜蛾近等基因系的交互抗性和种群适合度[J].中国农业科学,2005,38(10):2007-2013.
    87.倪珏萍,侯华民,曾霞,等.甲氨基阿维菌素苯甲酸盐与阿维菌素生物活性比较[J].现代农药,2003,2(3):38-40.
    88.倪寿坤,顾中言.1995.试论菊酯类农药在水稻上使用之可能性[J].江苏农业科学,1995(6):31-32.
    89.牛洪涛,闫磊,宗建平,等.氟虫腈和丁烯氟虫腈对小菜蛾幼虫的室内毒力比较[J].农药研究与应用,2007(1):28-30.
    90.潘兴葆.浙北稻区二、三化螟1996-1997年大发生原因及综合治理对策[J].昆虫知识,2000,37:134-136.
    91.裴海英,于洪春,赵奎军,等.黑龙江二化螟发生规律调查[J].植物保护,2002,28(5):27-28.
    92.彭宇,陈长琨,韩召军,等.二化螟对3种杀虫剂的抗性测定及增效作用研究[J].湖北大学学报(自然科学版),2001b,23(3):265-268.
    93.彭宇,陈长琨,韩召军,等.江苏省水稻二化螟的抗药性测定及对甲胺磷的抗性机制[J].植物保护学报,2001a,28(2):173-177.
    94.钱冬兰.稻螟发生演变及防治对策探讨[J].植保技术与推广,1999,19(5):12-14.
    95.秦厚国,罗任华,叶正襄,等.二化螟大发生原因及控制对策[J].华东昆虫学报,2005,14(1):91-93.
    96.秦玉金,鞠国钢.阿维菌素在水稻螟虫无害化治理中的应用[J].安徽农业科学,2004,32(5):916.
    97.邱立红,王成菊,邱星辉,等.基因组学与昆虫抗药性研究[J].昆虫知识,2000,41(5):392-397.
    98.曲明静,韩召军,许新军,等.二化螟对三唑磷的抗性发生动态与风险评估[J].南京农业大学学报,2005,28(3):38-42.
    99.曲明静,韩召军,许新军,等.二化螟对三唑磷的抗性发生动态与风险评估[J].南京农业大学学报,2005,28(3):38-42.
    100.饶汉宗,陈立荣,朱宗和.山区单季稻主要病虫害发生趋势及无害化治理技术探讨[J].浙江农业科学,2006(3):318-321.
    101.茹李军,芮昌辉,范贤林,等.菜缢管蚜、棉铃虫对杀虫混剂及其单剂的抗性遗传力分析[J].昆虫学报,1998,41(3):243-249.
    102.尚金燕,唐振华,张传溪.靶标抗性点突变基因型检测技术[J].农药学学报,2005,7(3):193-200.
    103.尚稚珍,王银淑,邹永华.二化螟饲养方法的研究[J].昆虫学报,1979,22(2):164-168.
    104.沈福英,张树发,陈素馨,等.小菜蛾对阿维菌素的敏感度及抗性现实遗传力的分析[J].中国植保导刊,2006,26(2):5-8.
    105.沈晋良,吴益东.棉铃虫抗药性及其治理[[)].中国农业出版社.北京.1995.
    106.沈永山.水稻品种粳稻化对病虫发生影响研究[J].垦殖与稻作,2002(2):24-25.
    107.盛承发,王红托,盛世余.我国稻螟灾害的现状及损失估计[J].昆虫知识,2003,40(4):289-293.
    108.盛承发,王文铎,焦晓国,等.应用性信息素诱杀水稻二化螟效果的初步研究[J].吉林农业大学学报,2002b,24(5):58-61.
    109.盛承发,宣维健,焦晓国,等.我国稻螟暴发成灾的原因、趋势及对策[J].自然灾害学报,2002a,11(3):103-108.
    110.束兆林,方继朝,盛生兰,等.水稻品种(系)对二化螟抗性的初步研究[J].华东昆虫学报,2003,12(1):14-18.
    111.宋会鸣,冯克强,钱元谦,等.2001.锐劲特对水稻主要害虫总体防治策略和应用技术[J].浙江农业科学,200l(3):145-147.
    112.苏建坤,褚柏.扬州地区水稻二化螟对杀虫单的抗药性研究[J].扬州大学学报(农业与生命科学版),2004,25(1):76-78.
    113.苏建坤,刘怀阿,徐健,等.江苏里下河地区水稻二化螟抗药性监测[J].南京农业大学学报,1996,19(增刊):28-33.
    114.苏建伟,宣维健,王红托,等.应用二化螟性诱剂大面积诱捕越冬代雄蛾[J].植物保护,1999,25(2):1-3.
    115.苏文伟.泉州市近年水稻二化螟偏重发生的原因及防治对策[J].福建稻麦科技,2006,24(4):15-16.
    116.孙秀芳.水稻二化螟的发生规律与防治措施[J].中国农技推广,2007,23(5):41.
    117.谭福杰.农业害虫抗药性测定方法[J].南京农业大学学报,1987,4(增):107-122
    118.谭荫初,邹剑明,林美嫦.杂交水稻中二化螟的发生情况[J].昆虫学报,1983,26(1):114-116.
    119.唐小平,桂南方.东安县二化螟为害加重的原因及其防治措施[J].湖南农业科学,2002(3):41-42.
    120.唐振华,毕强著.杀虫剂作用的分子行为[M].上海:上海远东出版社.,2003:593.
    121.田春晖,孙富余,王疏.辽宁省水稻二化螟发生为害新格局[J].辽宁农业科学,1998(1):51-52.
    122.田文学,张桂玺,李西东,等.毒死蜱的研究进展[J].山东农药信息,2006(8):18-20.
    123.田学志,高保宗,石家胜,等.安庆地区水稻二化螟抗药性研究[J],安徽农业科学,1991(1):61-66.
    124.万积秋,李建强,张雄,等.喹硫磷生产新工艺[J].四川化工与腐蚀控制,2001(6):4-5.
    125.汪恩国.二化螟种群数量变动规律研究[J].植物保护,1999,25(1):14-17.
    126.王成菊,张文吉.拟除虫菊酯及有机磷的交互抗性研究[J].农药,1993,32(5):7.
    127.王传全,王翔.贵池市水稻二化螟发生动态分析[J].安徽农业大学学报,1997,24(4):336-339
    128.王玲,余周苹,齐立,等.荆州市几种主要害虫抗性状及抗性治理用药方案[J].湖北植保,2004(2):13-15.
    129.王鸣华.拟除虫菊酯化学[M].北京:中国农业科技出版社,2004:1-23.
    130.王平远.中国经济昆虫志,第二十一册,鳞翅目:螟蛾科[M].北京:科学出版社,1980:1-17,38-40.
    131.王强.二化螟对六类杀虫剂的耐药性及增效剂的增效研究[J].南京农业大学学报,1987,4(增刊):44-55.
    132.王秋芽,廖标龙.耒阳市水稻二化螟发生、演变及其防治措施[J].湖南农业科学,2000(3):36-38.
    133.王山,刘年喜,王金辉.湖南水稻二化螟无害化治理研究进展[J].中国植保导刊,2006,26(7):12-15.
    134.王胜得,曾文平,段湘生,等.高效杀虫剂毗蚜酮的合成研究及应用[J].农药研究与应用,2007,11(6):23-24.
    135.王晓光,李海屏.我国高毒有机磷农药替代品种开发进展[J].农药,2001,40(2):10-13.
    136.王雅君,杜景元.醚菊酯、氯醚菊酯药效试验初报[J].农药,1991,30(6):42-45.
    137.王志钢,海秀平,许永红,等.家蝇对氯氰菊酯抗性的风险评估与预报[J].中国公共卫生,2004,20(3):363-364.
    138.王忠华,舒庆尧,崔海瑞,等.Bt转基因水稻“克螟稻”杂交后代二化螟抗性研究初报[J].作物学报,2000,26(3):310-314.
    139.韦永保,施守华,刘明熙.水稻二化螟灾变规律与栽培因素之关系分析[J].昆虫知识,2005,42(6):700-704.
    140.韦永保,王新翠,黄正请.皖南单季稻区近年二化螟回升原因分析及治理对策[J].安徽农学通报,2002,8(2):48-50.
    141.吴青君,朱国仁,赵建周,等.小菜蛾对定虫隆的抗性生化机制初探[J].昆虫学报,1998,41(增):42-48.
    142.吴世雄.一种防治地下与叶面害虫的新型广谱杀虫剂fipronil[J].农药,1994,33(2):35-36.
    143.吴涛,谌鑫,姜卫红,等.二化螟持续偏重发生的原因和综合治理措施[J].湖北植保,2004(5):24-26.
    144.吴益东,沈晋良,尤子平.棉铃虫对氰戊菊酯抗性和敏感品系的选育[J].昆虫学报,1994,37(2):129-136.
    145.夏声广,李平良,胡志平.晚稻机割对二化螟越冬虫量的影响及其对策[J].植保技术与推广,2001,21(8):10,15.
    146.夏声广,杨一峰,李本良,等.2000.永康市近年二化螟加重发生原因及防治[J].中国稻米,2000(2):29-30.
    147.向清如,徐增祥,巫庆,等.双流县水稻二化螟发生新规律及治理新对策[J].四川农业科技,2007(3):45-46.
    148.肖晓华.秀山县农作物病虫害发生特点及原因分析[J].南方农业,2007,1(4):94-96
    149.谢宝玉,汪恩国.水稻二化螟再猖獗发生原因及综合治理.植物保护[J],2000,26(6):45-47.
    150.谢应强,周梅香,竺锡武,等.锐劲特及其组配防治两系法杂交稻稻纵卷叶螟的效果[J].湖南 农业科学,2001(3):55-56.
    151.新农药编辑部.拟除虫菊酯类杀虫剂在水稻田中的应用[J].新农药,2005,43(5):18.
    152.熊件妹,黄向阳,朱杏芬,等.江西省部分地区水稻二化螟抗药性测定[J].江西植保,2006,29(4):175-177.
    153.熊件妹,朱杏芬,程丽霞.南昌地区二化螟抗药性现状与治理对策[J].江西植保,2004,27(1):3-5.
    154.徐善海.二化螟在绥化市的生活史[J].垦殖与稻作,2006(6):55-57.
    155.徐心植,邓小强.江西省二化螟抗药性及其防治对策[J].江西农业学报,1992,4(1):42-50
    156.许红.湖北水稻螟虫与水稻结构调整的关系初探[J].湖北植保,2001(3):5-7,9.
    157.许小龙,顾中言,陈明亮,等.丁烯氟虫腈对水稻和蔬菜主要害虫的田间防效[J],江苏农业科学[J],2007(4):80-81.
    158.许阳光.拟除虫菊酯类农药对鱼类的安全性评价研究[D].北京:中国农业大学硕士学位论文,2004.
    159.许云飞,杨应桂,张可钱,等.2003年安义县乔乐乡二化螟暴发为害的原因分析[J].江西植保,2004,27(1):48.
    160.杨春龙,龚国玑,康芝仙.醚菊酯对几种农业害虫的毒力测定及药效试验[J].农药,1990,29(6):9-11.
    161.杨荣明,方继朝,朱叶芹,等.江苏省水稻螟虫发生的新特点及治理措施[J].江苏农业科学,2004(1):52-54.
    162.杨亦桦.棉铃虫对拟除虫菊酯氧化代谢抗性的生化与分子机理[D].南京:南京农业大学博士学位论文,2005.
    163.杨玉文.江淮单季稻区二化螟防治对策[J].安徽农业,2004(4):18.
    164.于成宝,沈言根.5%氟虫腈悬浮剂防治水稻主要害虫应用技术研究[J].现代农业科技(上半月刊),2006(8):60.
    165.詹文莲.泾县二化螟发生变化原因及防治策略探讨[J].中国植保导刊,2007(12):18-19.
    166.张海飞,李坤,周桂东,等.拟除虫菊酯开发新热点[J].中华卫生杀虫药械,2004,10(5):280-282.
    167.张红英,赤国彤,张金林.昆虫解毒酶系与抗药性研究进展[J].河北农业大学学报,2002,25(增):193-195.
    168.张洪文,王哲,李茂生。哈尔滨地区二化螟发生规律及防治对策[J].黑龙江农业科学,2005(3):22-23.
    169.张维军,郑平,毕妍,等.二化螟重发原因及防治措施[J].现代农业科技,2007(22):85.
    170.张文吉,韩熹莱.拟除虫菊酯结构与害虫抗药性关系[J].昆虫学报,1992,35(1):22-27.
    171.张夕林,李晓霞,周玉,等.氟铃脲、氟啶脲防治水稻一、二代二化螟的药效试验[J].现代农药,2005,4(5):45-47.
    172.张夕林,张谷丰,张建明,等.应用锐劲特防治水稻中后期害虫[J].植物保护,1999,25(2): 49.
    173.张翼翾,张一宾.试论拟除虫菊酯类杀虫剂在水稻田中的应用[J].现代农药,2003,2(6):9-13.
    174.章玉苹,黄炳球.吡虫啉的研究现状与进展[J].世界农药,2000,22(6):23-28.
    175.赵学平,王强,吴长兴,等.二化螟对杀虫剂的敏感性及抗药性研究[J].浙江农业学报,2000,12(6):382-386.
    176.郑雪生.水稻二化螟发生为害特点与综合防治技术[J].中国农村小康科技,2007(8):58-59.
    177.钟宝玉,邹寿发,张扬,等.广东省水稻螟虫种群结构及其主要影响因素[J].广东农业科学,2007(6):51-53.
    178.钟决龙.国内毒死蜱应用现状及前景展望[J].农药市场信息,2006(19):11-12.
    179.周圻.1988.水稻品种和稻螟种群消长的关系[J].昆虫知识,25(4):201-203.
    180.周圻.防治稻螟四十年[J].昆虫知识,1990,27(3):178-181.
    181.周群芳.安徽省水稻二化螟抗性现状及对策[J].安徽农学通报,2005,11(7):72-73.
    182.周社文,肖一龙.二化螟种群突增机制及控制对策研究[J].植保技术与推广,2000,20(3):5-7.
    183.朱文达,万中义,郭嗣斌.氟虫腈(锐劲特)对水稻害虫防治效果及增产效应[J].植物保护学报,2002,29(3):265-271.
    184.祝智辉,黄文坤,李忠彩.汉寿县二化螟大发生原因及防治对策探讨[J].湖南农业科学,1999(6):42-43.
    185.Ahmad M,McCaffery A R.Elucidation of detoxication mechanisms involved in resistance to insecticides in the third instar larvae of a field-selected strain of Helicoverpa armigera with the use of synergists[J].Pesticide Biochemistry and Physiology,1991,41:41-52.
    186.Al-Deeb M A,Wilde G E,Zhu K Y.Effect of Insecticides Used in Corn,Sorghum,and Alfalfa on the Predator Orius insidiosus(Hemiptera:Anthocoridae)[J].Journal of Economic Entomology,2001,94:1353-1360.
    187.Berg H.Pesticide use in rice and dee-fish farms in the Mekong Delta,Vietnam[J].Crop Protection.2001,20:897-905.
    188.Bradford,M.M.1976.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,72:248-252
    189.Brown T M,Brogdon W G.Improved detection of insecticide resistance through conventional and molecular techniques[J].Annual Review of Entomology,1987,32:145-162.
    190.Cao M,Shen J,Liu X,et al.The insecticide resistance in striped stem borer,Chilo suppressalis (WAker)[J].CRRN(中国水稻研究通报),2001,9:6-7.
    191.Casido J E.Mixed-function oxidase involvement in the biochemistry of insecticide synergists[J].Agric Food Chem,1970,18:753-772.
    192.Chang H K.Resistance to organophosphorus insecticide in the dee stem borer,Chilo suppressalis Walker,in Korea[J].Japanese Journal of Applied Entomology and Zoology,1970,14:149-152.
    193.Chaton P F,Ravanel P,Tissut M,et al.To.deity and bioaccumulation of fipronil in the nontarget arthropodan fauna associated with subalpine mosquito breeding sites[J]. Ecotoxicology and Environmental Safety, 2002, 52: 8-12.
    194. Childers C C, Villanueva R, Aguilar H, et al. Comparative residual toxicities of pesticides to the predator Agistemus industani (Acari: Stigmaeidae) on citrus in Florida[J]. Experimental & Applied Acarology, 2001,25: 461-474.
    195. Clark A G, Wang L, Hulleberg T. Spontaneous mutation rate of modifiers of metabolism in Drosophila[J]. Genetics, 1995,139: 767-779.
    196. Colliot F, Kukorowski K A, Hawkins D W, et al. Fipronil: a new soil and foliar broad-spectrum insecticide. In: Proc Brighton Crop Prot Conf-Pests and Diseases[C], BCPC, Farnham, Surrey, UK, 1992: 29-34.
    197. Daborn P J, Yen J L, Bogwitz M R, et al. A single P450 allele associated with insecticide resistance in Drosophila[J]. Science, 2002, 297: 2253-2256.
    198. Devonshire A L, Devine G J, Morres G D. Comparison of microplate esterase assays and immunoassay for identifying insecticide resistant variants of Myzus persicae[J]. Bulletin of Entomological Research, 1992, 82:459.
    199. Devonshire A L, Field L M. Gene amplification and insecticide resistance[J]. Annual Review of Entomology, 1991, 36:1-23.
    200. Devonshire A L, Moores G D, ffrench-Constant R H. Detection of insecticide resistance by immunological estimation of carboxylesterase activity in Myzus persicae (Sulzer) and cross reaction of the antiserum with Phorodon humuli (Schrank) (Hemiptera: Aphididae)[J]. Bulletin of Entomological Research, 1986, 76:97-107.
    201. Dhadialla T S, Carlson G R, Le D P. New insecticides with ecdysteroidal and juvenile hormone activity[J]. Annual Review of Entomology, 1998,43: 545-69.
    202. Dong K. A single amino acid change in the para sodium channel protein is associated with knockdown-resistance(kdr) to pyrethroid insecticides in German cockroach[J]. Insect Biochemistry and Molecular Biology, 1997,27: 93-100.
    203. Elliot M, Janes N F, Potter C. The future of pyrethroids in insect control[J]. Annual Review of Entomology, 1978, 23: 443-469.
    204. Falconer D S. Introduction to quantitative genetics[M]. London : Longman, 1981: 184-185.
    205. FAO. Method for larvae of the rice stem borer (Chilo suppressalis Walker), FAO Method NO. 3., In: Pest Resistance to Pesticides and Crop Loss Assessment-2 [2][M], FAO. Rome, 1980:25-28.
    206. Feely W F, Crouch L S, Arison B H, et al. Photo-degradation of 4"-(epimethylamino)-4"-deoxyavermectin B1a thin films on glass[J]. Journal of Agricultural and Food Chemistry, 1992, 40: 691-696.
    207. ffrench-Constant R H, Roush R T. Resistance detection and documentation: the relative roles of pesticidal and biochemical assays. In: Roush R T, Tabashnik B E. Pesticide Resistance in Arthropods[M]. New York: Chapman & Hall, 1990:4-38.
    208. ffrench-Constant R H. The molecular and population genetics of cyclodiene insecticide resistance[J]. Insect Biochemistry and Molecular Biology, 1994,24: 335-45.
    209. Firko M J, Hayes J L. Quantitative genetic tools for insecticide resistance risk assessment: estimating the heritability of resistance[J]. Journal of Economic Entomology, 1990, 83: 647-654.
    210. Forgash A J, Cook B J, Riley R C. Mechanisms of resistance in diazinon-selected multi-resistant Musca domestica[J]. Journal of Economic Entomology, 1962,55:544-551.
    211. Forrester N, Cahill M, Bird L, et al. Management of pyrethroid and endosulfan resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) in Australia[J]. Bulletin of entomological research, 1993, Supplement Series, No.1: 1-132.
    212. Fournier D, Bride J M, Hoffmann F, et al. Acetylcholinesterase: two types of modifications confer resistance to insecticides[J]. The Journal of Biological Chemistry, 1992, 267:14270-14274.
    213. Francino M P. An adaptive radiation model for the origin of new gene functions[J]. Nature Genetics, 2005,37:573-577.
    214. Georghiou G P, Taylor C E. Operational influences in the evolution of insecticide resistance[J]. Journal of Economic Entomology, 1977,70:653-65 8.
    215. Georghiou G P. Management of resistance in anthropods. In: Georghiou G P, Saito T. Pest Resistance to Pesticide[M]. New York & London: Plenum Press, 1983: 769-792.
    216. Grant D F, Hammock B D. Genetic and molecular evidence for a trans-acting regulatory locus controlling glutathione S-transferase-2 expression in Aedes aegypti[S]. Molecular & General Genetics, 1992,234:169-176.
    217. Gunning R, Easton C, Balfe M, et al. Pyrethroid resistance mechanisms in Australian Helicoverpa armigera[J]. Pesticide Science, 1991,33:473-490.
    218. Han Z, Moores G, Devonshire A, et al. Association between biochemical marks and insecticide resistance in the cotton aphid, Aphis gossypii[J]. Pesticide Biochemistry and Physiology, 1998, 62: 164-171.
    219. Hardstone M C, Leichter C, Harrington L C, et al. Cytochrome P450 monooxygenase-mediated permethrin resistance confers limited and larval specific cross-resistance in the southern house mosquito, Culex pipiens quinquefasciatus Cheryl[J]. Pesticide Biochemistry and Physiology, 2007, 89: 175-184.
    220. He Y P, Chen W M, Shen J L, et al. Differential Susceptibilities to Pyrethroids in Field Populations of Chilo suppressalis (Lepidoptera: Pyralidae)[J]. Pesticide Biochemistry Physiology, 2007, 89: 12-19.
    221. Hemingway J, Hawkes N J, McCarroll L, et al. The molecular basis of insecticide resistance in mosquitoes[J]. Insect Biochemistry and Molecular Biology, 2004, 34: 653-665.
    222. Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease[J]. Annual Review of Entomology, 2000, 45: 371-391.
    223. Hemingway J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance[J]. Insect Biochemistry and Molecular Biology, 2000,30:1009-1015
    224. Holt R A, Subramanian G M, Halpern A, et al. The genome sequence of the malaria mosquito Anopheles gambiae[J]. Science, 2002, 298(5591): 129-149.
    225. Horowitz A R, Ishaaya I. Biorational insecticides - mechanisms, selectivity and importance in pest management. In: Horowitz A R, Ishaaya I. Insect Pest Management: Field and Protected Crops[M]. Springer, Berlin Heidelberg, Germany, 2004:1-28.
    226. Ishaaya I, Casida J E. Dietary TH 6040 alters composition and enzyme activity of housefly larval cuticle[J]. Pesticide Biochemistry and Physiology, 1974,4:484-490.
    227. Kirihara S, Sakurai Y. 1988. Cycloprothrin, a new insecticide[J]. Japan pesticide information, 53: 22-26.
    228. Kondrashov F A, Kondrashov A S. Role of selection in fixation of gene duplications[J]. Journal of Theoretical Biology, 2006,239:141-151.
    229. Konno Y, Shishido T, Tanaka F. Structure-resistance Relationship in the Organophosphrus- resistant Rice Stem Borer, Chilo suppressalis[J]. Journal of Pesticide Science, 1986,11:393-399.
    230. Konno Y, Shishido T. Binding protein, a factor of fenitroxon detoxification in OP-resistant rice stem borers[J]. Journal of Pesticide Science, 1988,14: 359-362.
    231. Konno Y, Shishido T. Inheritance of resistance to fenitrothion and pirimiphos-methyl in rice stem borer, Chilo suppressalis (Lepidoptera: Pyralidae)[J]. Japanese Journal of Applied Entomology and Zoology, 1991,26:535-541.
    232. Konno Y, Shishido T. Metabolism of fenitrothion in the organophosphorus-resistant and -susceptible strains of Rice Stem Borers, Chilo suppressalis[J]. Journal of Pesticide Science, 1987, 12: 469-476.
    233. Konno Y, Shishido T. Metabolism of fenitrothion in the organophosphorus-resistant and -susceptible strains of Rice Stem Borers, Chilo suppressalis[J]. Journal of Pesticide Science, 1987, 12: 469-476.
    234. Konno Y, Shishido T. Resistance mechamism of the Rice Stem Borer to Organophosphrus insecticides[J]. Journal of Pesticide Science, 1985,10:285-287.
    235. Konno Y, Tanaka F. Aliesterase Isozymes and Insecticide Susceptibility in Rice-Feeding and Water-Oat-Feeding Strains of the Rice Stem Borer, Chilo Suppressalis Walker (Lepidoptera: Pyralidae)[J]. Applied Entomology and Zoology, 1996, 31: 326-329.
    236. Konno Y. Studies on resistance mechanism and synergism in the OP-resistant rice stem borer, Chilo suppressalis Walker[J]. Journal of Pesticide Science, 1989, 14: 373-381.
    237. Kranthi K R, Jadhav D, Wanjari R, et al. Pyrethroid resistance and mechanisms of resistance in field strains of Helicoverpa armigera (HubnerXLepidoptera: Noctuidae) [J]. Journal of Economic Entomology, 2001,94:253-263.
    238. Lasota J A. Dybas R A.Avermectins, a novel class of compound: implication for use in arthropod pest control[J]. Annual Review of Entomology, 1991,36:96-117.
    239. LeOra Software. PoloPlus: probit and logit analysis. LeOra Software. Berkeley, CA. 2002.
    240. Li X, Huang Q, Yuan J, et al. Fipronil resistance mechanisms in the rice stem borer, Chilo suppressalis Walker[J]. Pesticide Biochemistry and Physiology, 2007, 89:169-174.
    241. Liu Z, Williamson M S, Lansdell S J, et al. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper)[J]. Proc. Natl. Acad. Sci. (USA), 2005,102: 8420-8425.
    242. Lynch M, Conery J S. The evolutionary fate and consequences duplicate genes[J]. Science, 2000, 290:1151-1155.
    243. MacConnel J G, Demchak R J, Presier F A, et al. Relative stability, toxicity and penetrability of abamectin and its 8,9-oxide[J]. Journal of Agricultural and Food Chemistry, 1989,37:1498-1501.
    244. Markwick N P. Detecting variability and selecting for pesticide resistance in two species of phytoseiid mites[J]. Biocontrol, 1986, 31:225-236.
    245. Matsumura F. Toxicology of insecticides[M]. 2nd edition. New York: Plenum Press, 1985:598.
    246. Mattioda H, Jousseaume C. Proceedings of the Fifth International Conference on Pests in Agriculture[M], Part 3, Montpellier, France, 1999: 827-834.
    247. Mckenzie J A. Pesticide Resistance. In: Fox C W, Roff D A, Fairbairn D J. Evolutionary Ecology: Concepts and Case Studies[M]. US: Oxford University Press, 2001:347-360.
    248. McKenzie J A. The character or the variation: the genetic analysis of the insecticide-resistance phenotype[J]. Bulletin of Entomological Research, 2000, 90:3-7.
    249. Melander. Can insects become resistant to sprays? [J]. Journal of Economic Entomology 1914, 7: 167-173.
    250. Misra S, Crosby M A, Mungall C J, et al. Annotation of the Drosophila melanogaster euchromatic genome: a systematic review[J]. Genome Biology, 2002,3: research0083.1-0083.22.
    251. Mohan M, Gujar G T. Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes[J]. Crop Protection, 2003, 22: 495-504.
    252. Mulder R, Gijswijt M J. The laboratory evaluation of two promising new insecticides which interfere with cuticle deposition[J]. Pesticide Science, 1973,4:737-745.
    253. Nation Academy of Sciences. Pesticide resistance: Strategies and tactics for management[M]. Washington D C: National Academy Press, 1986: 11-13.
    254. Newcomb R D, Campbell P M, Ollis D L, et al. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly[J]. Proc. Natl. Acad. Sci. (USA), 1997, 94: 7464-7468.
    255. Nikou D, Ranson H, Hemingway J. An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae[J]. Gene, 2003, 318: 91-102.
    256. Ozaki K. Resistance to parathion in the rice stem borer, Chilo suppressalis Walker[J]. Botyu Kagaku, 1962, 27: 81-96.
    257. Palumbi S R. Humans as the world's greatest evolutionary force[J]. Science, 2001, 293: 1786-1790.
    258. Philips R B. Adaptive evolution or genetics drift? Dose genome complexity produce organismal complexity?[J]. Heredity, 2004,93:122-123.
    259. Plapp F W, Wang T C. Genetic origins of insecticide resistance. In: Georghiou G P, Saito T. Pest Resistance to Pesticide[M]. New York & London: Plenum Press, 1983:47-70.
    260. Qu M, Han Z, Xu X, et al. Triazophos resistance mechanism in rice stem borer (Chilo suppressalis Walker)[J]. Pesticide Biochemistry and Physiology, 2003,77:99-105.
    261. Raffa K F, Priester T M. Sygernists as research tools and control agents in agriculture[J], J. Agric. Entomology, 1985, 2: 27-45.
    262. Ranson H, Claudianos C, Ortelli F, et al. Evolution of Supergene Families Associated with Insecticide Resistance [J]. Science, 2002,298(5591): 179-181.
    263. Roush R T, Daly J C. The role of population genetics in resistance research and management. In: Roush R T, Tabashnik B E. Pesticide Resistance in Arthropods[M]. New York: Chapman & Hall, 1990:97-152.
    264. Roush R T, Miller G L. Considerations for design of insecticide resistance monitoring programs[J]. Journal of Economic Entomology, 1986,79:293-298.
    265. Salgado V L, Sheers J J, Watson G B, et al. Studies on the mode of action of spinosad: the internal effective concentration and the concentration dependence on neural excitation[J]. Pesticide Biochemistry and Physiology, 1998,60:103-110.
    266. SAS Institute. SAS/STST User's guide. SAS Institute Inc., Cary, NC, 1990.
    267. Scott J G, Georghiou G P. Mechanisms responsible for high levels of permethrin resistance in the house fly[J]. Pesticide Science, 1986,17:195-206.
    268. Scott J G, Georghiou G P. Rapid development of high-level permethrin resistance in a field-collected strain of house fly (Diptera: Muscidae) under laboratory selection[J]. Journal of Economic Entomology, 1985, 78:316-319.
    269. Scott J G Cytochromes P450 and insecticide resistance[J]. Insect Biochemistry and Molecular Biology, 1999, 29: 757-777.
    270. Scott J G. Investigating mechanisms of insecticide resistance. In: Roush R T, Tabashnik B E. Pesticide Resistance in Arthropods[M]. New York: Chapman & Hall, 1990:39-57.
    271. Shipp J L, Wang K, Ferguson G. Residual toxicity of avermectin bl and pyridaben to eight commercially produced beneficial arthropod species used for control of greenhouse pests[J]. Biological Control, 2000, 17: 125-131.
    272. Siegfrieda B D, Swansona J J, Devonshireb A L. Immunological Detection of Greenbug (Schizaphis graminum) Esterases Associated with Resistance to Organophosphate Insecticides[J]. Pesticide Biochemistry and Physiology, 1997, 57(3): 165-170.
    273. Soderlund D M, Knipple D C. The molecular biology of knockdown resistance to pyrethroid insecticides[J]. Insect Biochemistry and Molecular Biology, 2003,33: 563-577.
    274. Tabashnik B E, McGaughey W H. Resistance risk assessment for single and multiple insecticides: responses of indianmeal moth (Lepidoptera: Pyralidae) to Bacillus thuringiensis[J]. Journal of Economic Entomology, 1994, 87: 834-841.
    275. Tabashnik B E, Roush R T. Introduction. In: Roush R T, Tabashnik B E. Pesticide Resistance in Arthropods[M]. New York: Chapman & Hall, 1990:1-3.
    276. Tabashnik B E. Resistance risk assessment: realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and Colorado patato beetle (Coleoptera: Chrysomelidae)[J]. Journal of Economic Entomology, 1992,85(5): 1551-1559
    277. Tabashnik B E. Evolution of resistance to Bacillus thuringiensis[J]. Annual Review of Entomology, 1994,39:47-49.
    278. Tan J, Wang Y, Tan F, et al. The changes of insecticide resistance of rice stem borer, Chilo suppressalis (Walker)[J]. Resistant Pest Management, 1994, 6: 9-11
    279. Tan J, Zhou B. Monitoring of Insecticide Resistance of Rice Stem Borer, Chilo suppressalis (Walker) and Studies on the Monitoring Method[J]. Resistant Pest Management, 1993. 5:11-13
    280. Tanaka Y, Noppun V. Heritability estimates of phenthoate resistance in the diamondback moth[J]. Entomologia experimentalis et applicata, 1989, 52:39-47.
    281. Thompson G D, Dutton R, Sparks T C. Spinosad - a case study: an example from a natural products discovery programme[J]. Pest Management Science, 2000, 56:696-702.
    282. Tillman P G, Mulrooney J E. Effect of selected insecticides on the natural enemies Coleomegilla maculata and Hippodamia convergens (Coleoptera: Coccinellidae), Geocoris punctipes (Hemiptera: Lygaeidae), and Bracon mellitor, Cardiochiles nigriceps, and Cotesia marginiventris (Hymenoptera: Braconidae) in cotton[J]. Journal of Economic Entomology, 2000,93:1638-1643.
    283. Urmila J, Vijayan V A, Ganesh K N, et al. Deltamethrin tolerance & associated cross resistance in Aedes aegypti from Mysore[J]. The Indian Journal of Medical Research, 2001,113:103-107.
    284. Van de Veire M, Sterk G, van der Staaij M, et al. Sequential testing scheme for the assessment of the side-effects of plant protection products on the predatory bug Orius laevigatus[J]. Biocontrol, 2002, 47:101-113.
    285. Weerasinghe I S, Kasai S, Shono T. Correlation of pyrethroid structure and resistance level in Culex quinquefasciatus Say from Saudi Arabia. Journal of Pesticide Science[J], 2001,26: 158-161.
    286. Welling W, Paterson G. D. Toxicodynamics of insecticides. In: Kerkut G A, Gilbert L I. Comprehensive Insect Physiology[M], Biochemistry and Pharmacology, Vol. 12. Oxford: Pergamon, 1985:603-645.
    287. Wheelock C E, Shan G, Ottea J. Overview of Carboxylesterases and Their Role in the Metabolism of Insecticides[J]. Journal of Pesticide Science, 2005,30: 75-83.
    288. Williams C M. Third-generation pesticides[J]. Scientific American, 1967,217:13-17.
    289. Wilson T G, Ashok M. Insecticide resistance resulting from an absence of target-site gene product[J]. Proc. Natl. Acad. Sci. (USA), 1998,95:14040-14044.
    290. Yang Y, Wu Y, Chen S, et al. The involvement of microsomal oxidases in pyrethroid resistance in Helicoverpa armigera from Asia[J]. Insect Biochemistry and Molecular Biology, 2004, 34: 763-773.
    291.Zdobnov E M, von Mering C, Letunic I, et al. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster[J]. Science, 2002, 298(5591): 149-159.
    292. Zhang H G. The infancy of duplicate genes[J]. Heredity, 2004, 92: 479-480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700