用户名: 密码: 验证码:
含H_2S和VOCs废气的生物过滤过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
还原性硫化合物(Reduced Sulfur Compounds, RSCs)和挥发性有机物(Volatile Organic Compounds, VOCs)是众多工业过程中排放的两类重要的大气污染物,这些污染物对人体健康和环境都有非常有害的影响。另外,已证实VOCs还参与大气的光化学反应,是导致近地层大气臭氧浓度升高,氧化性增强的重要原因。目前,中国政府正不断出台越来越严厉的有关有毒有害废气排放的政策,为遵守政府规定以保护生态环境和空气质量。工矿企业必须对所排放的废气进行净化处理。生物过滤已被证明是一种低成本和环境友好的从废气中去除RSCs和VOCs等污染物的选择,目前生物过滤技术已成为一种具有良好前景的污染控制技术。本研究针对工业过程排放的含H2S和VOCs废气,利用生物过滤技术在不同的污染源开展了一系列的中试研究,在实验室富集了3个降解菌群,并利用菌群开展了处理混合BTEX废气的小试研究。实验分析了工艺条件与去除效率的关系,并利用PCR-DGGE、克隆文库和454-焦磷酸测序等生态学分析技术研究了生物过滤过程中细菌群落结构与工艺条件的关系。具体的研究结果如下:
     1、生活污水处理厂恶臭污染物的浓度在不同的污水处理工艺段差异较大,硫化氢是污水厂恶臭污染的关键污染物,其浓度沿着污水处理的工序顺序降低。废气中污染物的浓度变化还与气候条件密切相关,尤其和温度的相关度较高。污水厂不同处理单元释放废气中还含有多种类型的有机化合物,在格栅、沉砂池和污泥浓缩池产生的主要有机物为甲苯和二氟一氯甲烷。污泥脱水车间恶臭气体还含有种类较多的还原性有硫化合物,以甲硫醚和乙硫醇为主。生物滤池成功用于污水厂和垃圾压缩站的恶臭污染控制,对于大流量、含低浓度恶臭污染物的废气,可以在极短的停留时间内获得良好的去除效果。
     2、在利用生物滴滤池处理生活污水厂沉砂池恶臭气体的实验研究中,两个装填不同填料的生物滴滤池启动运行5天后即可达到拟稳定状态,硫化氢的去除率即可接近100%,火山岩生物滴滤池的气体停留时间甚至可以缩短至3s而不影响去除效率。硫化氢的去除效果和稳定性与定植于生物滴滤池中的微生物群落的结构组成关系密切。在负荷增加、停留时间缩短后,两个生物滴滤池的去除性能逐步显示出差异。陶粒生物滴滤池的去除效率的降低可归因于pH的下降抑制了微生物的活性,而火山岩生物滴滤池的表现出持续、良好的去除性能。焦磷酸测序结果表明Thiomonas能够迅速在两个生物滴滤池中繁殖,但Acidithiobacillus属仅在火山岩生物滴滤池中发展为优势种群,这类细菌对于生物滴滤池能在酸性条件下表现出良好的去除性能至关重要。
     3、在评价生物滴滤池去除涂料厂废气中VOCs的实验中,生物滴滤池能够成功在非稳定状态(VOCs浓度波动和间歇运行)下启动,但生物滴滤池需要比丙酮和甲乙酮更长的时间去适应甲苯和苯乙烯。营养浓度和设备的暂停显著影响生物滴滤池处理芳香族化合物的能力。增加营养浓度有助于提高生物滴滤池处理甲苯和苯乙烯的效率,说明微生物利用VOCs为碳源时需要相应量的氮源。另外,细菌群落分析表明,变性细菌纲的细菌种群是生物滴滤池中的优势微生物。生物滴滤池启动时的接种物对于提高生物滴滤池的去除能力有重要作用。营养浓度的变化和设备的暂停也许是引起细菌群落结构变迁的原因,并导致生物滴滤池在处理疏水性化合物时效率下降。
     4、从石油污染的土壤当中,经过长期的驯化富集了3个菌群,菌群的群落结构利用16S rDNA基因克隆文库技术进行了较为详细的解析。三个菌群均以变性细菌纲的种属为主。菌群经过驯化后群落结构趋向简单,主要的优势菌属均为2个,优势菌属的比例在三个菌群中分别为42.4%、62.3%和68.3%。从上述三个菌群中,分别分离纯化得到3个降解菌株T3、DX1和DS2,其中T3降解谱最广。DX1对m-二甲苯和p-二甲苯具有较强的降解能力,而DS2仅能降解苯乙烯。
     5、在生物滴滤池处理含混合VOCs的小试实验中,接种专门驯化菌群的生物滴滤池能在很短时间完成驯化过程并获得理想的对BTEX的去除效果。生物量增长迅速,但未引起填料床压降的明显上升。在拟稳定状态下,尽管同时接种活性污泥和菌群的生物滴滤池能比仅接种菌群的生物滴滤池更快的达到拟稳定状态,但两者之间的最大去除负荷无显著差异。在生物滴滤池前附加活性炭吸附柱对于生物滴滤池的去除负荷有显著的增强作用,最大去除负荷从176g/m3.h(进气负荷为189g/m3.h)增加至263g/m3.h(进气负荷为270g/m3.h)。而无活性炭吸附柱的生物滴滤池尽管去除负荷从176g/m3.h增加至191g/m3.h,但去除率从99%下降至91%以下。DGGE指纹图谱表明,驯化菌群中的优势微生物能够在两个反应器中稳定存在,生物滴滤池上下层填料的细菌群落结构相似性程度高,可能是PU作为填料能使得营养和废气污染物的垂直分布较为均匀。
Reduced sulfur compounds (RSCs) and Volatile organic compounds (VOCs) are twomajor groups of pollutants generally released from a wide variety of industrious processes.Both RSCs and VOCs are very harmful to human health and ecosystem. In addition, VOCshave been shown to play an important role in the atmospheric chemistry. Environmentallegislation related to waste air emissions has been becoming strict in china in recent years. Inodor to abide by the regulations of governments on the protection of the environment and airquality, industrial plants need to efficiently removal RSCs or VOCs from gaseous effluentprior to their release into the atmosphere. Biofiltration has proven to be a cost effective andenvironmental friend aternative in removing RSCs and VOCs from waste air stream, andtherefore has emerged as a promising control technology of air pollution. In this study, aseries of pilot scale experiments were carried out in various pollution sources. Bench scaleexperiment had been carried out to evaluate the performance of the biotrickling filter, whichwas inoculated with pre acclimated microbial consortiums, in removing BTEX mixture.PCR DGGE (Denaturing gradient gel electrophoresis),16S rDNA clone library and454pyrosequence techniques were employed to analysis the relationship between theoperating parameters and bacterial communities. Specific conclusions were described asfollows:
     1. The concentration of odor compounds varied depends on the wastewater treatmentunit. Hydrogen sulfide was a key pollutant of waste gases released from wastewater treatmentplant. Its concentration is gradually dropping along the wastewater treatment processes. Inaddition, the concentrations of all pollutants were closely related with climate conditions,especially with the temperature. Many kinds of organic compounds were also released fromthe wastewater treatment plant. Main odor causing organic compounds produced in gritchamber, settler and sludge thickener were toluene and monochlorodifluoromethane. RSCs,such as Dimethyl sulfide and Ethyl mercaptan, were another kind of odorous compoundsin the sludge dewatering workshop. Biofilters were successfully applied to control theodor pollution of wastewater treatment plant and waste compacting station. Ideal removalefficiency was obtained for biofilters, therefore, exhibiting advantages of biofiltration inpurifying odorous gases with large flow rate and low concentration even at the very shortEBRTs(Empty bed retention times).
     2. Two pilot field scale BTFs(Biotrickling filters), which packed with ceramic and volcanic stone, respectively, were successfully used to treat waste gases containing H2S at anaverage concentration of2.84±1.76mg/m3. The results showed that volcanic BTF was morerobust than ceramic BTF under acidic conditions. At empty bed residence times (EBRTs) of20and15s, the removal efficiency of ceramic BTF was close to100%. At EBRTs of10and5s, the removal efficiency of ceramic BTF slightly decreased. The removal efficiencies ofceramic BTF decreased by different degrees at the end of each stage, dropping to94%,81%,60%, and71%, respectively. However, the H2S removal efficiency in volcanic BTFconsistently reached99%throughout the experiment. Pyrosequencing analyses indicated thatmembers of Thiomonas dominated in both BTFs, but the relative abundance ofAcidithiobacillus was higher in volcanic BTF than in ceramic BTF.
     3. The performance of a field scale biotrickling filter (BTF) in the removal of wastegases containing low concentrations of mixed volatile organic compounds was evaluated.Results showed that acetone and methyl ethyl ketone (MEK) were more easily removed thantoluene and styrene. The removal efficiency for acetone and MEK reached over99%on days28and25of the operation, whereas those for toluene and styrene were80%and63%on day38. The maximum individual elimination capacities for styrene, toluene, acetone, and MEKwere10.2,2.7,4.7, and8.4g/m3.h, respectively. These values were achieved at inlet loadingrates of13.9,3.3,4.8, and8.5g/m3, respectively, at an empty bed retention time of14s. theremoval efficiency for styrene and toluene rapidly increased from67%and83%to86%andover99%, respectively, when the concentration of ammonia nitrogen (N NH+4) andphosphates (P) in the nutrients increased from350to840mg/l and76to186mg/l. When theBTF was restarted after a four day shutdown, the removal efficiency for toluene was restoredto over99%within a week. However, that for styrene was not restored to its previous levelbefore the shutdown. No noticeable adverse effect on acetone and MEK removal wasobserved. DGGE results for the bacterial community in the BTF during VOC removal showedthat proteobacterial phylum was dominant microorganisms, and the changes of nutrientconcentration and shutdown periods may have played a role in the community structuredifferences.
     4. Three microbial consortiums were enriched and obtained from Petroleumcontaminated soil. Clone library method were employed to analysis in detail the bacterialcommunities of these consortiums. Results showed that proteobacterial phylum was thedominant microorganisms in three consortiums. The bacterial community tends to simple afterlong time of acclimation. There were only two dominant bacterial genus existed in eachconsortium, and the proportion of dominant bacterial genus were42.4%,62.3%and68.3%, respectively. Three pure strains were isolated from above the consortiums; these strains couldrapidly degraded toluene, m xylene, p xylene and styrene.
     5. Two microbial consortiums were used as start inoculums of a bench scale biotricklingfilter, and the performance of the biotrickling filter on the removal of BTEX mixture wereevaluated. Results showed that BTFs that inoculated with the pre acclimated consortiumscould successfully start in very short time, and obtained ideal removal efficiency. Biomassrapidly accumulated in the BTF, but the press drop across the filter bed was kept very low(10mm H2O) during the experiments. This result can be attributed to the packing materials,which have large porosity. In spite that BTF that simultaneously inoculated with consortiumsand activated sludge need less time than that BTF only inoculated with consortiums to reachthe steady state, there were no significant difference of removal capacity between both BTFs.Removal capacity of BTF were significantly enhanced by the absorb column that packed withactivated carbon, the value increased from176g/m3.h to263g/m3.h.. However, removalcapacity of BTF without absorb column only increased from176g/m3.h to191g/m3.h, butremoval efficiency dropped from99%to91%. Fingerprint of DGGE for two biotricklingfilters indicates that the dominant microorganisms in the pre acclimated bacterial consortiumcould steadly reside in the two biotrickling filters. Bacterial communities of top and bottom ofpacking materials in two biotrickling filters were very silimler despit of various BTEX inletloading.
引文
[1] Caceres M.; Morales M.; Martin R.S., et al. Oxidation of volatile reduced sulphurcompounds in biotrickling filter inoculated with Thiobacillus thioparus. ElectronicJournal of Biotechnology[J],2010,13(5):
    [2] Firer D.; Friedler E., Lahav O. Control of sulfide in sewer systems by dosage of ironsalts: Comparison between theoretical and experimental results, and practicalimplications. Science of the Total Environment[J],2008,392(1):145156.
    [3] Susaya J.; Kim K.H.; Phan N.T., et al. Assessment of reduced sulfur compounds inambient air as malodor components in an urban area. Atmospheric Environment[J],2011,45(20):33813390.
    [4] Lee S.J.; Park J.Y.; Choi K.S., et al. Efficacy of Korean Red Ginseng Supplementationon Eradication Rate and Gastric Volatile Sulfur Compound Levels after Helicobacterpylori Eradication Therapy. Journal of Ginseng Research[J],2010,34(2):122131.
    [5] Guidotti T.L. Hydrogen sulfide: advances in understanding human toxicity. Int JToxicol[J],2010,29(6):569581.
    [6] Cholet O.; Henaut A.; Hebert A., et al. Transcriptional analysis of L methioninecatabolism in the cheese ripening yeast Yarrowia lipolytica in relation to volatilesulfur compound biosynthesis. Applied and Environmental Microbiology[J],2008,74(11):33563367.
    [7] Sekyiamah K.; Kim H.; McConnell L.L., et al. Identification of Seasonal Variations inVolatile Sulfur Compound Formation and Release from the Secondary TreatmentSystem at a Large Wastewater Treatment Plant. Water Environment Research[J],2008,80(12):22612267.
    [8] Ruokojarvi A.; Ruuskanen J.; Martikainen P.J., et al. Oxidation of gas mixturescontaining dimethyl sulfide, hydrogen sulfide, and methanethiol using a two stagebiotrickling filter. J Air Waste Manag Assoc[J],2001,51(1):1116.
    [9] Horton R.A.; Wing S.; Marshall S.W., et al. Malodor as a trigger of stress and negativemood in neighbors of industrial hog operations. Am J Public Health[J],2009,99Suppl3: S610615.
    [10] Wildsmith K.R.; Basak J.M.; Patterson B.W., et al. In vivo human apolipoprotein eisoform fractional turnover rates in the CNS. PLoS One[J],2012,7(6): e38013.
    [11] Heaney C.D.; Wing S.; Campbell R.L., et al. Relation between malodor, ambienthydrogen sulfide, and health in a community bordering a landfill. EnvironmentalResearch[J],2011,111(6):847852.
    [12]Hu B.; Ding Y; Wu W.X., et al.[Odor pollution from landfill sites and its control:a review]. Ying Yong Sheng Tai Xue Bao[J],2010,21(3):785-790.
    [13]Baker A. Environmental Exposure to Hydrogen Sulphide and Odor From Fish Meal Plants in St. Helena Bay, Western Cape Province, South Africa. Epidemiology[J],2011,22(1):S262-S262.
    [14]Wing S.; Horton R.A.; Marshall S.W., et al. Air pollution and odor in communities near industrial swine operations. Environmental Health Perspectives[J],2008,116(10):1362-1368.
    [15]Zhang Q.D.; Guo S.H.; Zhao D.F., et al. Study on environmental concentration standard of odor pollution in refining enterprises. Progress in Environmental Science and Technology, Vol I[J],2007:608-611.
    [16]《空气和废气监测分析方法指南》编委会.空气中挥发性有机物概述.北京:中国环境科学出版社;2006.
    [17]Schieder D.; Quicker P.; Schneider R., et al. Microbiological removal of hydrogen sulfide from biogas by means of a separate biofilter system:experience with technical operation. Water Sci Technol[J],2003,48(4):209-212.
    [18]Morgan-Sagastume J.M.; Noyola A.; Revah S., et al. Changes in physical properties of a compost biofilter treating hydrogen sulfide. J Air Waste Manag Assoc[J],2003,53(8):1011-1021.
    [19]Ramirez N.; Cuadras A.; Rovira E., et al. Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site. Environ Int[J],2012,39(1):200-209.
    [20]Zhou J.; You Y; Bai Z., et al. Health risk assessment of personal inhalation exposure to volatile organic compounds in Tianjin, China. Sci Total Environ[J],2011,409(3):452-459.
    [21]魏恩棋;时庭锐;李利荣等.天津市大气中挥发性有机物的组成及分布特点.中国环境监测[J],2010,26(4):4-8.
    [22]蔡长杰;耿福海;俞琼等.上海中心城区夏季挥发性有机物(VOCs)的源解析.环境科学学报[J],2010,30(5):926-934.
    [23]余宇帆;卢清;郑君瑜等.珠江三角洲地区重点VOC排放行业的排放清单.中国环境科学[J],2011,31(2):195-201.
    [24]Fournel L.; Mocho P.; Brown R., et al. Modeling breakthrough curves of volatile organic compounds on activated carbon fibers. Adsorption-Journal of the International Adsorption Society[J],2010,16(3):147-153.
    [25]Ramos M.E.; Bonelli P.R.; Cukierman A.L., et al. Adsorption of volatile organic compounds onto activated carbon cloths derived from a novel regenerated cellulosic precursor. Journal of Hazardous Materials[J],2010,177(1-3):175-182.
    [26]Seredych M., Bandosz T.J. Reactive adsorption of hydrogen sulfide on graphite oxide/Zr(OH)(4) composites. Chemical Engineering Journal[J],2011,166(3):1032-1038.
    [27]郑倩.金属-有机框架配合物吸附/脱附溶剂性能的研究:材料科学与工程学院,浙江大学;2010.
    [28]Mo J.H.; Zhang Y.P.; Xu Q.J., et al. Photocatalytic purification of volatile organic compounds in indoor air:A literature review. Atmospheric Environmen[J],2009,43(14):2229-2246.
    [29]Schmid S.; Jecklin M.C., Zenobi R. Degradation of volatile organic compounds in a non-thermal plasma air purifier. Chemosphere[J],2010,79(2):124-130.
    [30]Ganigue R.; Gutierrez O.; Rootsey R., et al. Chemical dosing for sulfide control in Australia:An industry survey. Water Research[J],2011,45(19):6564-6574.
    [31]Aguero F.N.; Barbero B.P.; Gambaro L., et al. Catalytic combustion of volatile organic compounds in binary mixtures over MnOx/Al(2)O(3) catalyst. Applied Catalysis B-Environmental[J],2009,91(1-2):108-112.
    [32]Pietrangeli B.; Bragatto P.A., Pittiglio P. Potential of biofiltration for VOCs emission control and safety aspects. International Journal of Environment and Pollution[J],2008,32(1):57-67.
    [33]Delhomenie M.C., Heitz M. Biofiltration of air:a review. Crit Rev Biotechnol[J],2005,25(1-2):53-72.
    [34]Mudliar S.; Giri B.; Padoley K., et al. Bioreactors for treatment of VOCs and odours-A review. Journal of Environmental Management[J],2010,91(5):1039-1054.
    [35]Pomeroy R.D., Pomeroy R.D.Pomeroy R.D.s; Pomeroy, Richard D., assignee. De-odoring of gas streams by the use of micro-biological growths. US patent2,793,096,1957.
    [36]Paca J.; Halecky M.; Misiaczek O., et al. Biofiltration of paint solvent mixtures in two reactor types:overloading by hydrophobic components. J Ind Microbiol Biotechnol[J],2010,37(12):1263-1270.
    [37]Bartacek J.; Lens P.N.L., Kennes C. Biotechniques for Air Pollution Control:Proceedings of the3rd International Congress on Biotechniques for Air PollutionControl. Delft, the Netherlands, September28-30,2009: Taylor&Francis;2010.
    [38] Quijano G.; Hernandez M.; Thalasso F., et al. Two phase partitioning bioreactors inenvironmental biotechnology. Applied Microbiology and Biotechnology[J],2009,84(5):829846.
    [39] Munoz R.; Villaverde S.; Guieysse B., et al. Two phase partitioning bioreactors fortreatment of volatile organic compounds. Biotechnology Advances[J],2007,25(4):410422.
    [40] Hernandez M.; Quijano G.; Munoz R., et al. Modeling of VOC mass transfer intwo liquid phase stirred tank, biotrickling filter and airlift reactors. ChemicalEngineering Journal[J],2011,172(23):961969.
    [41] Bailon L.; Nikolausz M.; Kastner M., et al. Removal of dichloromethane from wastegases in one and two liquid phase stirred tank bioreactors and biotrickling filters.Water Res[J],2009,43(1):1120.
    [42] Kumar A.; Dewulf J., Van Langenhove H. Membrane based biological waste gastreatment. Chemical Engineering Journal[J],2008,136(23):8291.
    [43] Kumar A.; Dewulf J.; Vercruyssen A., et al. Performance of a composite membranebioreactor treating toluene vapors: Inocula selection, reactor performance andbehavior under transient conditions. Bioresource Technology[J],2009,100(8):23812387.
    [44] Lim K.H.; Park S.W.; Lee E.J., et al. Treatment of mixed solvent vapors with hybridsystem composed of biofilter and photo catalytic reactor. Korean Journal of ChemicalEngineering[J],2005,22(1):7079.
    [45] Wang C.; Xi J.Y.; Hu H.Y., et al. Advantages of combined UV photodegradation andbiofiltration processes to treat gaseous chlorobenzene. J Hazard Mater[J],2009,171(13):11201125.
    [46] Cheng Z.W.; Lin W.W.; Jiang Y.F., et al.[Using UV pretreatment to enhancebiofiltration of chlorobenzene]. Huan Jing Ke Xue[J],2010,31(5):11601166.
    [47] Wang C.; Xi J.Y., Hu H.Y. A novel integrated UV biofilter system to treat highconcentration of gaseous chlorobenzene. Chinese Science Bulletin[J],2008,53(17):27122716.
    [48] Moussavi G., Mohseni M. Using UV pretreatment to enhance biofiltration of mixturesof aromatic VOCs. J Hazard Mater[J],2007,144(12):5966.
    [49] Cai Z.L., Sorial G.A. Treatment of dynamic VOC mixture in a trickling bed airbiofilter integrated with cyclic adsorption/desorption beds. Chemical EngineeringJournal[J],2009,151(13):105112.
    [50] Hassan A.A., Sorial G.A. Treatment of dynamic mixture of hexane and benzene vaporsin a Trickle Bed Air Biofilter integrated with cyclic adsorption/desorption beds.Chemosphere[J],2011,82(4):521528.
    [51] Pandey R.A.; Joshi P.R.; Mudliar S.N., et al. Biological treatment of waste gascontaining mixture of monochlorobenzene (MCB) and benzene in a bench scalebiofilter. Bioresour Technol[J],2010,101(14):51685174.
    [52] Yang L.; Wang X.; Funk T.L., et al. Biofilter Media Characterization and AirflowResistance Test. Transactions of the Asabe[J],2011,54(3):11271136.
    [53] Chmiel K.; Palica M., Jarzebski A. Analysis of butanol biofiltration over the pine treebark bed. Inzynieria Chemiczna I Procesowa[J],2003,24(4):677684.
    [54] Yani M.; Hirai M., Shoda M. Removal kinetics of ammonia by peat biofilter seededwith night soil sludge. Journal of Fermentation and Bioengineering[J],1998,85(5):502506.
    [55] Park J.; Evans E.A., Ellis T.G. Development of a Biofilter with Tire Derived RubberParticle Media for Hydrogen Sulfide Odor Removal. Water Air and Soil Pollution[J],2011,215(14):145153.
    [56] Hejazi P.; Borenberg F.; Isik G., et al. Treatment of alpha Pinene Contaminated AirUsing Silicone Oil Coated Perlite Biofilter. Environmental Progress&SustainableEnergy[J],2010,29(3):313318.
    [57] Jeong G.T.; Lee G.Y.; Cha J.M., et al. Comparison of packing materials in biofiltersystem for the biological removal of hydrogen sulfide: Polypropylene fibrils andvolcanic stone. Korean Journal of Chemical Engineering[J],2008,25(1):118123.
    [58] Babbitt C.W.; Pacheco A., Lindner A.S. Methanol removal efficiency and bacterialdiversity of an activated carbon biofilter. Bioresour Technol[J],2009,100(24):62076216.
    [59] Jiang X.; Yan R., Tay J.H. Reusing H2S exhausted carbon as packing material for odorbiofiltration. Chemosphere[J],2008,73(5):698704.
    [60] Jiang X., Tay J.H. Removal mechanisms of H(2)S using exhausted carbon inbiofiltration. J Hazard Mater[J],2011,185(23):15431549.
    [61] Akdeniz N.; Janni K.A., Salnikov I.A. Biofilter performance of pine nuggets and lavarock as media. Bioresour Technol[J],2011,102(8):49744980.
    [62] Cho E.; Galera M.M.; Lorenzana A., et al. Ethylbenzene, o Xylene, and BTEXRemoval by Sphingomonas sp. D3K1in Rock Wool Compost Biofilters.Environmental Engineering Science[J],2009,26(1):4552.
    [63] Aizpuru A.; Malhautier L.; Roux J.C., et al. Biofiltration of a mixture of volatileorganic compounds on granular activated carbon. Biotechnology andBioengineering[J],2003,83(4):479488.
    [64] Gutierrez Acosta O.B.; Arriaga S.; Escobar Barrios V.A., et al. Performance ofinnovative PU foam and natural fiber based composites for the biofiltration of amixture of volatile organic compounds by a fungal biofilm. J Hazard Mater[J],2012,201202:202208.
    [65] Dumont E., Andres Y. Evaluation of innovative packing materials for thebiodegradation of H(2)S: a comparative study. Journal of Chemical Technology andBiotechnology[J],2010,85(3):429434.
    [66] Yasuda T.; Kuroda K.; Fukumoto Y., et al. Evaluation of full scale biofilter withrockwool mixture treating ammonia gas from livestock manure composting.Bioresource Technology[J],2009,100(4):15681572.
    [67] Aizpuru A.; Dunat B.; Christen P., et al. Fungal biofiltration of toluene on ceramicrings. Journal of Environmental Engineering Asce[J],2005,131(3):396402.
    [68] Mathur A.K.; Majumder C.B., Chatterjee S. Combined removal of BTEX in air streamby using mixture of sugar cane bagasse, compost and GAC as biofilter media. Journalof Hazardous Materials[J],2007,148(12):6474.
    [69] Delhomenie M.C.; Bibeau L.; Gendron J., et al. A study of clogging in a biofiltertreating toluene vapors. Chemical Engineering Journal[J],2003,94(3):211222.
    [70] Prado O.J.; Veiga M.C., Kennes C. Effect of key parameters on the removal offormaldehyde and methanol in gas phase biotrickling filters. Journal of HazardousMaterials[J],2006,138(3):543548.
    [71] Maestre J.P.; Gamisans X.; Gabriel D., et al. Fungal biofilters for toluene biofiltration:Evaluation of the performance with four packing materials under different operatingconditions. Chemosphere[J],2007,67(4):684692.
    [72] Lobo R.; Revah S., Viveros Garcia T. An analysis of a trickle bed bioreactor: Carbondisulfide removal. Biotechnology and Bioengineering[J],1999,63(1):98109.
    [73] Popat S.C., Deshusses M.A. Analysis of the rate limiting step of an anaerobicbiotrickling filter removing TCE vapors. Process Biochemistry[J],2010,45(4):549555.
    [74] Lee S.H.; Li C.N.; Heber A.J., et al. Ethylene removal using biotrickling filters: Part I.Experimental description. Chemical Engineering Journal[J],2010,158(2):7988.
    [75] Kim S., Deshusses M.A. Determination of mass transfer coefficients for packingmaterials used in biofilters and biotrickling filters for air pollution control.1.Experimental results. Chemical Engineering Science[J],2008,63(4):841855.
    [76] Arulneyam D., Swaminathan T. Biodegradation of ethanol vapour in a biofilter.Bioprocess Engineering[J],2000,22(1):6367.
    [77] Reij M.W., Hartmans S. Propene removal from synthetic waste gas using ahollow fibre membrane bioreactor. Applied Microbiology and Biotechnology[J],1996,45(6):730736.
    [78] Pielech Przybylska K.; Zieminski K., Szopa J.S. Acetone biodegradation in atrickle bed biofilter. International Biodeterioration&Biodegradation[J],2006,57(4):200206.
    [79] Fortuny M.; Gamisans X.; Deshusses M.A., et al. Operational aspects of thedesulfurization process of energy gases mimics in biotrickling filters. WaterResearch[J],2011,45(17):56655674.
    [80] Elsgaard L. Ethylene removal by a biofilter with immobilized bacteria. Appl EnvironMicrobiol[J],1998,64(11):41684173.
    [81] Zilli M.; Del Borghi A., Converti A. Toluene vapour removal in a laboratory scalebiofilter. Applied Microbiology and Biotechnology[J],2000,54(2):248254.
    [82] Hwang J.W.; Choi C.Y.; Park S., et al. Biodegradation of gaseous styrene byBrevibacillus sp using a novel agitating biotrickling filter. Biotechnology Letters[J],2008,30(7):12071212.
    [83] Dehghanzadeh R.; Torkian A.; Bina B., et al. Biodegradation of styrene laden wastegas stream using a compost based biofilter. Chemosphere[J],2005,60(3):434439.
    [84] Oyarzun P.; Arancibia F.; Canales C., et al. Biofiltration of high concentration ofhydrogen sulphide using Thiobacillus thioparus. Process Biochemistry[J],2003,39(2):165170.
    [85] Farjah A.; Heydarian S.M.; Mashhadi M.B., et al. Biodegredation of H(2)S byThiobacillus thioparus in an optimized condition. Journal of Biotechnology[J],2010,150: S292S293.
    [86] Aroca G.; Urrutia H.; Nunez D., et al. Comparison on the removal of hydrogen sulfidein biotrickling filters inoculated with Thiobacillus thioparus and Acidithiobacillusthiooxidans. Electronic Journal of Biotechnology[J],2007,10(4):514520.
    [87] Lee E.Y.; Lee N.Y.; Cho K.S., et al. Removal of hydrogen sulfide by sulfate resistantAcidithiobacillus thiooxidans AZ11. Journal of Bioscience and Bioengineering[J],2006,101(4):309314.
    [88] Zamir S.M.; Halladj R., Nasernejad B. Removal of toluene vapors using a fungalbiofilter under intermittent loading. Process Safety and Environmental Protection[J],2011,89(1):814.
    [89] Qi B.; Moe W.M., Kinney K.A. Biodegradation of volatile organic compounds by fivefungal species. Applied Microbiology and Biotechnology[J],2002,58(5):684689.
    [90] Vergara Fernandez A.; Hernandez S., Revah S. Phenomenological Model of FungalBiofilters for the Abatement of Hydrophobic VOCs. Biotechnology andBioengineering[J],2008,101(6):11821192.
    [91] Arriaga S., Revah S. Improving hexane removal by enhancing fungal development ina microbial consortium biofilter. Biotechnol Bioeng[J],2005,90(1):107115.
    [92] Jin Y.M.; Veiga M.C., Kennes C. Performance optimization of the fungalbiodegradation of alpha pinene in gas phase biofilter. Process Biochemistry[J],2006,41(8):17221728.
    [93] Jin Y.; Guo L.; Veiga M.C., et al. Fungal biofiltration of alpha pinene: effects oftemperature, relative humidity, and transient loads. Biotechnol Bioeng[J],2007,96(3):433443.
    [94] Zhu G.Y., Liu J.X. Investigation of factors on a fungal biofilter to treat waste gas withethyl mercaptan. J Environ Sci (China)[J],2004,16(6):898900.
    [95] Qi B.; Moe W.M., Kinney K.A. Treatment of paint spray booth off gases in a fungalbiofilter. Journal of Environmental Engineering Asce[J],2005,131(2):180189.
    [96] Vergara Fernandez A.; Hernandez S., Revah S. Elimination of Hydrophobic VolatileOrganic Compounds in Fungal Biofilters: Reducing Start Up Time using DifferentCarbon Sources. Biotechnology and Bioengineering[J],2011,108(4):758765.
    [97] van Groenestijn J.W., Kraakman N.J.R. Recent developments in biological waste gaspurification in Europe. Chemical Engineering Journal[J],2005,113(23):8591.
    [98] Delhomenie M.C.; Bibeau L.; Bredin N., et al. Biofiltration of air contaminated withtoluene on a compost based bed. Advances in Environmental Research[J],2002,6(3):239254.
    [99] Krishnakumar B.; Hima A.M., Haridas A. Biofiltration of toluene contaminated airusing an agro by product based filter bed. Applied Microbiology andBiotechnology[J],2007,74(1):215220.
    [100] Jang J.H.; Hirai M., Shoda M. Styrene degradation by Pseudomonas sp SR5inbiofilters with organic and inorganic packing materials. Applied Microbiology andBiotechnology[J],2004,65(3):349355.
    [101] Rattanapan C.; Boonsawang P., Kantachote D. Removal of H2S in down flow GACbiofiltration using sulfide oxidizing bacteria from concentrated latex wastewater.Bioresour Technol[J],2009,100(1):125130.
    [102] Smet E.; Chasaya G.; VanLangenhove H., et al. The effect of inoculation and the typeof carrier material used on the biofiltration of methyl sulphides. Applied Microbiologyand Biotechnology[J],1996,45(12):293298.
    [103] Park S.; Lee C.H.; Ryu C.R., et al. Biofiltration for Reducing Methane Emissions fromModern Sanitary Landfills at the Low Methane Generation Stage. Water Air and SoilPollution[J],2009,196(14):1927.
    [104] Moussavi G., Mohseni M. The treatment of waste air containing phenol vapors inbiotrickling filter. Chemosphere[J],2008,72(11):16491654.
    [105] Wu D.; Quan M.; Zhao Y.Z., et al. Removal of p xylene from an air stream in a hybridbiofilter. Journal of Hazardous Materials[J],2006,136(2):288295.
    [106] Mohseni M., Allen D.G. Biofiltration of mixtures of hydrophilic and hydrophobicvolatile organic compounds. Chemical Engineering Science[J],2000,55(9):15451558.
    [107] Hassan A.A., Sorial G.A. Treatment of Benzene and n Hexane Mixtures inTrickle Bed Air Biofilters. Journal of the Air&Waste Management Association[J],2011,61(2):201210.
    [108] Moe W.M., Qi B. Biofilter treatment of volatile organic compound emissions fromreformulated paint: complex mixtures, intermittent operation, and startup. J Air WasteManag Assoc[J],2005,55(7):950960.
    [109] Cai Z.; Kim D., Sorial G.A. A comparative study in treating two VOC mixtures intrickle bed air biofilters. Chemosphere[J],2007,68(6):10901097.
    [110] Mathur A.K., Majumder C.B. Biofiltration and kinetic aspects of a biotrickling filterfor the removal of paint solvent mixture laden air stream. Journal of HazardousMaterials[J],2008,152(3):10271036.
    [111] Rene E.R.; Spackova R.; Veiga M.C., et al. Biofiltration of mixtures of gas phasestyrene and acetone with the fungus Sporothrix variecibatus. Journal of HazardousMaterials[J],2010,184(13):204214.
    [112] Littlejohns J.V., Daugulis A.J. Kinetics and interactions of BTEX compounds duringdegradation by a bacterial consortium. Process Biochemistry[J],2008,43(10):10681076.
    [113] Garcia Pena I.; Ortiz I.; Hernandez S., et al. Biofiltration of BTEX by the fungusPaecilomyces variotii. International Biodeterioration&Biodegradation[J],2008,62(4):442447.
    [114] Attaway H.H., Schmidt M.G. Tandem biodegradation of BTEX components by twoPseudomonas sp. Curr Microbiol[J],2002,45(1):3036.
    [115] Deshusses M.A.; Johnson C.T., Leson G. Biofiltration of high loads of ethyl acetate inthe presence of toluene. Journal of the Air&Waste Management Association[J],1999,49(8):973979.
    [116] Khammar N.; Malhautier L.; Degrange V., et al. Link between spatial structure ofmicrobial communities and degradation of a complex mixture of volatile organiccompounds in peat biofilters. Journal of Applied Microbiology[J],2005,98(2):476490.
    [117] Kuramitsu H.K.; He X.S.; Lux R., et al. Interspecies interactions within oral microbialcommunities. Microbiology and Molecular Biology Reviews[J],2007,71(4):653+.
    [118] Hugenholtz P.; Goebel B.M., Pace N.R. Impact of culture independent studies on theemerging phylogenetic view of bacterial diversity. Journal of Bacteriology[J],1998,180(18):47654774.
    [119] Amann R.I.; Ludwig W., Schleifer K.H. Phylogenetic Identification and in SituDetection of Individual Microbial Cells without Cultivation. MicrobiologicalReviews[J],1995,59(1):143169.
    [120] Ramirez M.; Fernandez M.; Granada C., et al. Biofiltration of reduced sulphurcompounds and community analysis of sulphur oxidizing bacteria. BioresourTechnol[J],2011,102(5):40474053.
    [121] Chung Y.C.; Cheng C.Y.; Chen T.Y., et al. Structure of the bacterial community in abiofilter during dimethyl sulfide (DMS) removal processes. Bioresour Technol[J],2010,101(18):71767179.
    [122] Fu Y.M.; Shao L.Z.; Tong L., et al. Ethylene removal efficiency and bacterialcommunity diversity of a natural zeolite biofilter. Bioresource Technology[J],2011,102(2):576584.
    [123] Fu Y.; Shao L.; Liu H., et al. Ethylene removal evaluation and bacterial communityanalysis of vermicompost as biofilter material. J Hazard Mater[J],2011,192(2):658666.
    [124] Jun Y., Wenfeng X. Ammonia biofiltration and community analysis ofammonia oxidizing bacteria in biofilters. Bioresour Technol[J],2009,100(17):38693876.
    [125] Babbitt C.W.; Pacheco A., Lindner A.S. Methanol removal efficiency and bacterialdiversity of an activated carbon biofilter. Bioresource Technology[J],2009,100(24):62076216.
    [126] Chung Y.C. Evaluation of gas removal and bacterial community diversity in a biofilterdeveloped to treat composting exhaust gases. J Hazard Mater[J],2007,144(12):377385.
    [127] Li C., Moe W.M. Assessment of microbial populations in methyl ethyl ketonedegrading biofilters by denaturing gradient gel electrophoresis. Applied Microbiologyand Biotechnology[J],2004,64(4):568575.
    [128] Omri I.; Bouallagui H.; Aouidi F., et al. H2S gas biological removal efficiency andbacterial community diversity in biofilter treating wastewater odor. BioresourTechnol[J],2011,102(22):1020210209.
    [129] Jiang X., Tay J.H. Microbial community structures in a horizontal biotrickling filterdegrading H2S and NH3. Bioresour Technol[J],2010,101(6):16351641.
    [130] Sercu B.; Boon N.; Verstraete W., et al. H2S degradation is reflected by both theactivity and composition of the microbial community in a compost biofilter. ApplMicrobiol Biotechnol[J],2006,72(5):10901098.
    [131] Maestre J.P.; Rovira R.; Alvarez Hornos F.J., et al. Bacterial community analysis of agas phase biotrickling filter for biogas mimics desulfurization through the rRNAapproach. Chemosphere[J],2010,80(8):872880.
    [132] Maestre J.P.; Rovira R.; Gamisans X., et al. Characterization of the bacterialcommunity in a biotrickling filter treating high loads of H(2)S by molecular biologytools. Water Science and Technology[J],2009,59(7):13311337.
    [133] Ho K.L.; Chung Y.C., Tseng C.P. Continuous deodorization and bacterial communityanalysis of a biofilter treating nitrogen containing gases from swine waste storage pits.Bioresour Technol[J],2008,99(8):27572765.
    [134] Kristiansen A.; Pedersen K.H.; Nielsen P.H., et al. Bacterial community structure of afull scale biofilter treating pig house exhaust air. Syst Appl Microbiol[J],2011,34(5):344352.
    [135] Yasuda T.; Kuroda K.; Hanajima D., et al. Characteristics of the microbial communityassociated with ammonia oxidation in a full scale rockwool biofilter treating malodorsfrom livestock manure composting. Microbes Environ[J],2010,25(2):111119.
    [136]Cai Z.; Sorial G.; Zhang K., et al. Effect of Changing VOC Influent Composition on the Microbial Community Structure of TBABs. J Water Air Soil Poll[J],2008,8(3):311-321.
    [137]Ding Y.; Wu W.X.; Han Z.Y., et al. Correlation of reactor performance and bacterial community composition during the removal of trimethylamine in three-stage biofilters. Biochemical Engineering Journal [J],2008,38(2):248-258.
    [138]Hwang S.C.J.; Lee C.M.; Lee H.C., et al. Biofiltration of waste gases containing both ethyl acetate and toluene using different combinations of bacterial cultures. Journal of Biotechnology[J],2003,105(1-2):83-94.
    [139]Lee E.H.; Ryu H.W., Cho K.S. Effect of switching gas inlet position on the performance of a polyurethane biofilter under transient loading for the removal of benzene, toluene and xylene mixtures. J Environ Sci Health A Tox Hazard Subst Environ Eng[J],2011,46(13):1570-1578.
    [140]Xu H.S.; Roberts N.; Singleton F.L., et al. Survival and Viability of Nonculturable Escherichia-Coli and Vibrio-Cholerae in the Estuarine and Marine-Environment. Microbial Ecology[J],1982,8(4):313-323.
    [141]Ghezzi J.I., Steck T.R. Induction of the viable but non-culturable condition in Xanthomonas campestris pv. campestris in liquid microcosms and sterile soil. Fems Microbiology Ecology[J],1999,30(3):203-208.
    [142]池振明.现代微生物生态学.北京:科学出版社;2005.
    [143]Halfon P.; Bourliere M.; Penaranda G., et al. Real-time PCR assays for hepatitis C virus (HCV) RNA quantitation are adequate for clinical management of patients with chronic HCV infection. Journal of Clinical Microbiology[J],2006,44(7):2507-2511.
    [144]Feng Y.; Feng Y.M.; Bai J., et al. Development of Real-Time PCR Assays for the Quantitative Detection of CD81Receptor gene of Hepatitis C Virus in Tupaia belangeri. Proceedings of the20092nd International Conference on Biomedical Engineering and Informatics, Vols1-4[J],2009:998-1002.
    [145]Hermansson A., Lindgren P.E. Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Applied and Environmental Microbiology[J],2001,67(2):972-976.
    [146]Yu C.P.; Ahuja R.; Sayler G., et al. Quantitative molecular assay for fingerprinting microbial communities of wastewater and estrogen-degrading consortia. Applied and Environmental Microbiology[J],2005,71(3):1433-1444.
    [147]Muyzer G.; Dewaal E.C., Uitterlinden A.G. Profiling of ComplexMicrobial Populations by Denaturing Gradient Gel Electrophoresis Analysis ofPolymerase Chain Reaction Amplified Genes Coding for16s Ribosomal Rna.Applied and Environmental Microbiology[J],1993,59(3):695700.
    [148] Nakatsu C.H.; Carmosini N.; Baldwin B., et al. Soil microbial community responses toadditions of organic carbon substrates and heavy metals (Pb and Cr). Applied andEnvironmental Microbiology[J],2005,71(12):76797689.
    [149] Dar S.A.; Kuenen J.G., Muyzer G. Nested PCR denaturing gradient gel electrophoresisapproach to determine the diversity of sulfate reducing bacteria in complex microbialcommunities. Applied and Environmental Microbiology[J],2005,71(5):23252330.
    [150] Abed R.M.M.; Safi N.M.D.; Koster J., et al. Microbial diversity of a heavily pollutedmicrobial mat and its community changes following degradation of petroleumcompounds. Applied and Environmental Microbiology[J],2002,68(4):16741683.
    [151] Klein M.; Friedrich M.; Roger A.J., et al. Multiple lateral transfers of dissimilatorysulfite reductase genes between major lineages of sulfate reducing prokaryotes.Journal of Bacteriology[J],2001,183(20):60286035.
    [152] Minz D.; Flax J.L.; Green S.J., et al. Diversity of sulfate reducing bacteria in oxic andanoxic regions of a microbial mat characterized by comparative analysis ofdissimilatory sulfite reductase genes. Applied and Environmental Microbiology[J],1999,65(10):46664671.
    [153] Joulian C.; Ramsing N.B., Ingvorsen K. Congruent phylogenies of most commonsmall subunit rRNA and dissimilatory sulfite reductase gene sequences retrieved fromestuarine sediments. Applied and Environmental Microbiology[J],2001,67(7):33143318.
    [154] Wagner M.; Roger A.J.; Flax J.L., et al. Phylogeny of dissimilatory sulfite reductasessupports an early origin of sulfate respiration. Journal of Bacteriology[J],1998,180(11):29752982.
    [155] Minz D.; Fishbain S.; Green S.J., et al. Unexpected population distribution in amicrobial mat community: Sulfate reducing bacteria localized to the highly oxicchemocline in contrast to a eukaryotic preference for anoxia. Applied andEnvironmental Microbiology[J],1999,65(10):46594665.
    [156] Zverlov V.; Klein M.; Lucker S., et al. Lateral gene transfer of dissimilatory (bi)sulfitereductase revisited. Journal of Bacteriology[J],2005,187(6):22032208.
    [157] Geets J.; Borrernans B.; Diels L., et al. DsrB gene based DGGE for community anddiversity surveys of sulfate reducing bacteria. Journal of Microbiological Methods[J], 2006,66(2):194-205.
    [158]Dar S.A.; Yao L.; van Dongen U., et al. Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using16S rRNA and dsrB genes as molecular markers. Applied and Environmental Microbiology[J],2007,73(2):594-604.
    [159]Egholm M.; Buchardt O.; Christensen L., et al. Pna Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules. Nature[J],1993,365(6446):566-568.
    [160]Stender H.; Fiandaca M.; Hyldig-Nielsen J.J., et al. PNA for rapid microbiology. Journal of Microbiological Methods[J],2002,48(1):1-17.
    [161]Wilks S.A., Keevil C.W. Targeting species-specific low-affinity16S rRNA binding sites by using peptide nucleic acids for detection of legionellae in biofilms. Applied and Environmental Microbiology[J],2006,72(8):5453-5462.
    [162]Prosser J.I. Molecular and functional diversity in soil micro-organisms. Plant and Soil[J],2002,244(1-2):9-17.
    [163]刑德峰,任南琪.应用DGGE研究微生物群落时的常见问题分析.微生物学报[J],2006,46(2):331-335.
    [164]Yu Z.T., Morrison M. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Applied and Environmental Microbiology[J],2004,70(8):4800-4806.
    [165]Case R.J.; Boucher Y; Dahllof I, et al. Use of16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Applied and Environmental Microbiology[J],2007,73(1):278-288.
    [166]Oskouie A.K.; Lordi D.T.; Granato T.C., et al. Plant-specific correlations to predict the total VOC emissions from wastewater treatment plants. Atmospheric Environment[J],2008,42(19):4530-4539.
    [167]Colomer F.L.; Espinos-Morato H.; Campos-Candel A., et al. Estimation of hydrogen sulphide emissions at several wastewater treatment plants through experimental measurements by using passive samplers. Nose2010:International Conference on Environmental Odour Monitoring and Control[J],2010,23:213-218.
    [168]Schlegelmilch M.; Streese J., Stegmann R. Odour management and treatment technologies:An overview. Waste Management[J],2005,25(9):928-939.
    [169]Capelli L.; Sironi S.; Del Rosso R., et al. Predicting odour emissions from wastewater treatment plants by means of odour emission factors. Water Research[J],2009,43(7): 1977-1985.
    [170]Lowry W.T.; Gamse B.; Armstrong A.T., et al. Toxicological investigation of liquid petroleum gas explosion:human model for propane/ethyl mercaptan exposures. J Forensic Sci[J],1991,36(2):386-396.
    [171]Tangerman A. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices. J Chromatogr B Analyt Technol Biomed Life Sci[J],2009,877(28):3366-3377.
    [172]Cooper C.D.; Godlewski V.J.; Hanson R., et al. Odor investigation and control at a WWTP in Orange County, Florida. Environmental Progress[J],2001,20(3):133-143.
    [173]Tymczyna L.; Chmielowiec-Korzeniowska A.; Drabik A., et al. Removal of volatile organic compounds by biofiltration of air exhausted from fattening facility. Przemysl Chemiczny[J],2010,89(4):567-572.
    [174]Rehman Z.U.; Farooqi I.H., Ayub S. Performance of Biofilter for the Removal of Hydrogen Sulphide Odour. International Journal of Environmental Research[J],2009,3(4):537-544.
    [175]李建军;梁燕珍;陈桐生等.利用生物填充塔处理生活污水厂臭气的研究.微生物学通报[J],2004,31(5):89-92.
    [176]Kage S.; Ikeda H.; Ikeda N., et al. Fatal hydrogen sulfide poisoning at a dye works. Leg Med (Tokyo)[J],2004,6(3):182-186.
    [177]Christia-Lotter A.; Bartoli C.; Piercecchi-Marti M.D., et al. Fatal occupational inhalation of hydrogen sulfide. Forensic Sci Int[J],2007,169(2-3):206-209.
    [178]Yongsiri C.; Vollertsen J., Hvitved-Jacob sen T. Hydrogen sulfide emission in sewer networks:a two-phase modeling approach to the sulfur cycle. Water Sci Technol[J],2004,50(4):161-168.
    [179]Al-Shammiri M. Hydrogen sulfide emission from the Ardiyah sewage treatment plant in Kuwait. Desalination[J],2004,170(1):1-13.
    [180]Duan H.Q.; Koe L.C.C.; Yan R., et al. Biological treatment of H2S using pellet activated carbon as a carrier of microorganisms in a biofilter. Water Research[J],2006,40(14):2629-2636.
    [181]Ramirez M.; Gomez J.M.; Cantero D., et al. Hydrogen sulfide removal from air by Acidithiobacillus thiooxidans in a trickle bed reactor. Folia Microbiologica[J],2009,54(5):409-414.
    [182] Hernandez J.; Prado O.J.; Almarcha M., et al. Development and application of ahybrid inert/organic packing material for the biofiltration of composting off gasesmimics. Journal of Hazardous Materials[J],2010,178(13):665672.
    [183] Kim J.H.; Rene E.R., Park H.S. Biological oxidation of hydrogen sulfide under steadyand transient state conditions in an immobilized cell biofilter. Bioresour Technol[J],2008,99(3):583588.
    [184] Goncalves J.J., Govind R. Enhanced biofiltration using cell attachment promotors.Environ Sci Technol[J],2009,43(4):10491054.
    [185] Sercu B.; Boon N.; Verstraete W., et al. H2S degradation is reflected by both theactivity and composition of the microbial community in a compost biofilter. AppliedMicrobiology and Biotechnology[J],2006,72(5):10901098.
    [186] Ho K.L.; Chung Y.C.; Lin Y.H., et al. Microbial populations analysis and fieldapplication of biofilter for the removal of volatile sulfur compounds from swinewastewater treatment system. J Hazard Mater[J],2008,152(2):580588.
    [187] Blaalid R.; Carlsen T.; Kumar S., et al. Changes in the root associated fungalcommunities along a primary succession gradient analysed by454pyrosequencing.Mol Ecol[J],2012,21(8):18971908.
    [188] Hu M.; Wang X.; Wen X., et al. Microbial community structures in differentwastewater treatment plants as revealed by454pyrosequencing analysis. BioresourTechnol[J],2012,117C:7279.
    [189] Lim Y.W.; Kim B.K.; Kim C., et al. Assessment of soil fungal communities usingpyrosequencing. Journal of Microbiology[J],2010,48(3):284289.
    [190] Sanapareddy N.; Hamp T.J.; Gonzalez L.C., et al. Molecular diversity of a NorthCarolina wastewater treatment plant as revealed by pyrosequencing. Appl EnvironMicrobiol[J],2009,75(6):16881696.
    [191] Zhang H.; Ziv El M.; Rittmann B.E., et al. Effect of dechlorination and sulfatereduction on the microbial community structure in denitrifying membrane biofilmreactors. Environ Sci Technol[J],2010,44(13):51595164.
    [192] Rattanapan C.; Kantachote D.; Yan R., et al. Hydrogen sulfide removal using granularactivated carbon biofiltration inoculated with Alcaligenes faecalis T307isolated fromconcentrated latex wastewater. International Biodeterioration&Biodegradation[J],2010,64(5):383387.
    [193] Chaiprapat S.; Mardthing R.; Kantachote D., et al. Removal of hydrogen sulfide bycomplete aerobic oxidation in acidic biofiltration. Process Biochemistry[J],2011,46(1):344352.
    [194] Chung Y.C.; Huang C.; Tseng C.P., et al. Biotreatment of H2S and NH3containingwaste gases by co immobilized cells biofilter. Chemosphere[J],2000,41(3):329336.
    [195] Sercu B.; Nunez D.; Van Langenhove H., et al. Operational and microbiologicalaspects of a bioaugmented two stage biotrickling filter removing hydrogen sulfide anddimethyl sulfide. Biotechnology and Bioengineering[J],2005,90(2):259269.
    [196] Pol A.; van der Drift C., Op den Camp H.J. Isolation of a carbon disulfide utilizingThiomonas sp. and its application in a biotrickling filter. Appl Microbiol Biotechnol[J],2007,74(2):439446.
    [197] Ramirez M.; Gomez J.M.; Aroca G., et al. Removal of hydrogen sulfide byimmobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethanefoam. Bioresour Technol[J],2009,100(21):49894995.
    [198] Ryu H.W.; Yoo S.K.; Choi J.M., et al. Thermophilic biofiltration of H2S and isolationof a thermophilic and heterotrophic H2S degrading bacterium, Bacillus sp. TSO3. JHazard Mater[J],2009,168(1):501506.
    [199] Nisola G.M.; Tuuguu E.; Farnazo D.M., et al. Hydrogen sulfide degradationcharacteristics of Bordetella sp. Sulf8in a biotrickling filter. Bioprocess BiosystEng[J],2010,33(9):11311138.
    [200] Moreira D., Amils R. Phylogeny of Thiobacillus cuprinus and other mixotrophicthiobacilli: proposal for Thiomonas gen. nov. International Journal of SystematicBacteriology[J],1997,47(2):522528.
    [201] Chen X.G.; Geng A.L.; Yan R., et al. Isolation and characterization ofsulphur oxidizing Thiomonas sp and its potential application in biologicaldeodorization. Letters in Applied Microbiology[J],2004,39(6):495503.
    [202] Malhautier L.; Khammar N.; Bayle S., et al. Biofiltration of volatile organiccompounds. Applied Microbiology and Biotechnology[J],2005,68(1):1622.
    [203] Rene E.R.; Veiga M.C., Kennes C. Performance of a biofilter for the removal of highconcentrations of styrene under steady and non steady state conditions. Journal ofHazardous Materials[J],2009,168(1):282290.
    [204] Sempere F.; Gabaldon C.; Martinez Soria V., et al. Performance evaluation of abiotrickling filter treating a mixture of oxygenated VOCs during intermittent loading.Chemosphere[J],2008,73(9):15331539.
    [205] Reardon K.F.; Mosteller D.C.; Rogers J.B., et al. Biodegradation kinetics of aromatichydrocarbon mixtures by pure and mixed bacterial cultures. Environmental HealthPerspectives[J],2002,110:10051011.
    [206] Shim E.H.; Kim J.; Cho K.S., et al. Biofiltration and inhibitory interactions of gaseousbenzene, toluene, xylene, and methyl tert butyl ether. Environmental Science&Technology[J],2006,40(9):30893094.
    [207] Lee E.H., Cho K.S. Effect of substrate interaction on the degradation of methyltert butyl ether, benzene, toluene, ethylbenzene, and xylene by Rhodococcus sp.Journal of Hazardous Materials[J],2009,167(13):669674.
    [208] Chan W.C., Lai T.Y. Interaction of compounds on biodegradation of ketone mixturesin a biofillter. Journal of Chemical Technology and Biotechnology[J],2010,85(3):416422.
    [209] Chan W.C., Lin Y.S. Compounds interaction on the biodegradation of butanol mixturein a biofilter. Bioresource Technology[J],2010,101(11):42344237.
    [210] Martinez Soria V.; Gabaldon C.; Penya Roja J.M., et al. Performance of a pilot scalebiotrickling filter in controlling the volatile organic compound emissions in a furnituremanufacturing facility. J Air Waste Manag Assoc[J],2009,59(8):9981006.
    [211] Grove J.A.; Anderson W.A., Moo Young M. Changes in the potential functionaldiversity of the bacterial community in biofilters. Appl Microbiol Biotechnol[J],2007,77(3):741747.
    [212] Wang C.; Xi J.Y.; Hu H.Y., et al. Effects of UV pretreatment on microbial communitystructure and metabolic characteristics in a subsequent biofilter treating gaseouschlorobenzene. Bioresour Technol[J],2009,100(23):55815587.
    [213] Kimura N.; Shinozaki Y.; Lee T.H., et al. The microbial community in a2,4dinitrophenol digesting reactor as revealed by16S rDNA gene analysis. Journal ofBioscience and Bioengineering[J],2003,96(1):7075.
    [214] Ottengraf S.P.P., Vandenoever A.H.C. Kinetics of Organic Compound Removal fromWaste Gases with a Biological Filter. Biotechnology and Bioengineering[J],1983,25(12):30893102.
    [215] Ikemoto S.; Jennings A.A., Skubal K.L. Modeling hydrophobic VOC biofiltertreatment in the presence of nutrient stimulation and hydrophilic VOC inhibition.Environmental Modelling&Software[J],2006,21(10):13871401.
    [216] Liu Y.H.; Quan X.; Sun Y.M., et al. Simultaneous removal of ethyl acetate and toluenein air streams using compost based biofilters. Journal of Hazardous Materials[J],2002,95(12):199213.
    [217] Qi B., Moe W.M. Performance of low pH biofilters treating a paint solvent mixture: continuous and intermittent loading. J Hazard Mater[J],2006,135(1-3):303-310.
    [218]Sempere F.; Martinez-Soria V.; Penya-roja J.M., et al. Comparison between laboratory and pilot biotrickling filtration of air emissions from painting and wood finishing. Journal of Chemical Technology and Biotechnology[J],2010,85(3):364-370.
    [219]Moe W.M., Qi B. Performance of a fungal biofilter treating gas-phase solvent mixtures during intermittent loading. Water Research[J],2004,38(9):2259-2268.
    [220]Jang J.H.; Hirai M., Shoda M. Effect of shutdown on styrene removal in a biofilter inoculated with Pseudomonas sp SR-5. Journal of Hazardous Materials[J],2006,129(1-3):223-227.
    [221]Lee E.H.; Ryu H.W., Cho K.S. Removal of benzene and toluene in polyurethane biofilter immobilized with Rhodococcus sp. EH831under transient loading. Bioresour Technol[J],2009,100(23):5656-5663.
    [222]Dorado A.D.; Lafuente F.J.; Gabriel D., et al. A comparative study based on physical characteristics of suitable packing materials in biofiltration. Environ Technol[J],2010,31(2):193-204.
    [223]Sempere F.; Gabaldon C.; Martinez-Soria V, et al. Performance evaluation of a biotrickling filter treating a mixture of oxygenated VOCs during intermittent loading. Chemosphere[J],2008,73(9):1533-1539.
    [224]Acuna M.E.; Villanueva C.; Cardenas B., et al. The effect of nutrient concentration on biofilm formation on peat and gas phase toluene biodegradation under biofiltration conditions. Process Biochemistry[J],2002,38(1):7-13.
    [225]Son H.K.; Striebig B.A., Regan R.W. Nutrient limitations during the biofiltration of methyl isoamyl ketone. Environmental Progress[J],2005,24(1):75-81.
    [226]Jang J.H.; Hirai M., Shoda M. Enhancement of styrene removal efficiency in biofilter by mixed cultures of Pseudomonas sp SR-5. Journal of Bioscience and Bioengineering[J],2006,102(1):53-59.
    [227]Gerber N.N. Volatile Substances from Actinomycetes-Their Role in the Odor Pollution of Water. Water Science and Technology [J],1983,15(6-7):115-125.
    [228]Kofler W., Rassaerts H. On the Importance of Peak Concentrations for the Estimation of Odor Pollution in Social Medicine. Staub Reinhaltung Der Luft[J],1980,40(4):160-161.
    [229]Amann R., Ludwig W. Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. Ferns Microbiology Reviews[J],2000,24(5):555-565.
    [230]王霞;陈哲;袁红朝等.应用16S rDNA克隆文库技术研究长期稻草还田对水稻 土细菌多样性的影响.生态学报[J],2010,30(13):3865-3874.
    [231]窦娜莎,王琳.16S rDNA克隆文库法分析Biostyr曝气生物滤池处理城市污水的细菌多样性研究.环境科学学报[J],2011,31(10):2117-2124.
    [232]黄新蓉;刘劫,叶长芸.应用16S rDNA克隆文库筛查腹泻病暴发病原体及特异毒力基因验证.中国人兽共患并学报[J],2010,26(10):900-903.
    [233]Cole J.R.; Wang Q.; Cardenas E., et al. The Ribosomal Database Project:improved alignments and new tools for rRNA analysis. Nucleic Acids Research[J],2009,37: D141-D145.
    [234]Sogin M.L.; Morrison H.G.; Huber J.A., et al. Microbial diversity in the deep sea and the underexplored "rare biosphere". Proceedings of the National Academy of Sciences of the United States of America[J],2006,103(32):12115-12120.
    [235]Schloss P.D.; Westcott S.L.; Ryabin T., et al. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol[J],2009,75(23):7537-7541.
    [236]徐成斌;孟雪莲;马溪平等.16S rDNA克隆文库方法对制药废水处理系统中的微生物多样性的研究.生态环境学报[J],2009,18(4):1236-1240.
    [237]李建婷;纪树兰;刘志培等.16S rDNA克隆文库方法分析好氧颗粒污泥细菌组成.环境科学研究[J],2009,22(10):1218-1223.
    [238]McDermott C.; Allshire A.; van Pelt F.N.A.M., et al. Sub-chronic toxicity of low concentrations of industrial volatile organic pollutants in vitro. Toxicology and Applied Pharmacology[J],2007,219(1):85-94.
    [239]Roder-Stolinski C.; Fischader G.; Oostingh G.J., et al. Styrene induces an inflammatory response in human lung epithelial cells via oxidative stress and NF-kappa B activation. Toxicology and Applied Pharmacology[J],2008,231(2):241-247.
    [240]Smith M.R. The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation[J],1990,1(2-3):191-206.
    [241]du Plessis C.A.; Strauss J.M., Riedel K.H. BTEX catabolism interactions in a toluene-acclimatized biofilter. Appl Microbiol Biotechnol[J],2001,55(1):122-128.
    [242]Kim J.K.; Kam S.K., Lee M.G Characteristics of benzene, toluene and xylene gas removal by a biofilter using scoria. International Journal of Environment and Pollution[J],2009,39(3-4):264-278.
    [243]Gallastegui G.; Ramirez A.A.; Elias A., et al. Performance and macrokinetic analysisof biofiltration of toluene and p xylene mixtures in a conventional biofilter packedwith inert material. Bioresource Technology[J],2011,102(17):76577665.
    [244] Jung I.G., Park O.H. Enhancement of cometabolic biodegradation of trichloroethylene(TCE) gas in biofiltration. Journal of Bioscience and Bioengineering[J],2005,100(6):657661.
    [245] Ryu H.W.; Cho K.S., Lee T.H. Reduction of ammonia and volatile organic compoundsfrom food waste composting facilities using a novel anti clogging biofilter system.Bioresource Technology[J],2011,102(7):46544660.
    [246] Singh R.S.; Rai B.N., Upadhyay S.N. Removal of toluene vapour from air streamusing a biofilter packed with polyurethane foam. Process Safety and EnvironmentalProtection[J],2010,88(5):366371.
    [247] Ryu H.W.; Kim S.J., Cho K.S. Comparative studies on toluene removal and pressuredrop in biofilters using different packing materials. Journal of EnvironmentalBiology[J],2010,31(3):315318.
    [248] Ryu H.W.; Cho K.S., Chung D.J. Relationships between biomass, pressure drop, andperformance in a polyurethane biofilter. Bioresour Technol[J],2010,101(6):17451751.
    [249] Trigueros D.E.G.; Modenes A.N.; Kroumov A.D., et al. Modeling of biodegradationprocess of BTEX compounds: Kinetic parameters estimation by using Particle SwarmGlobal Optimizer. Process Biochemistry[J],2010,45(8):13551361.
    [250] Jo M.S.; Rene E.R.; Kim S.H., et al. Removal of BTEX compounds by industrialsludge microbes in batch systems: statistical analysis of main and interaction effects.World Journal of Microbiology&Biotechnology[J],2008,24(1):7378.
    [251] Klapkova E.; Halecky M.; Fitch M., et al. Impact of biocatalyst and moisture contenton toluene/xylene mixture biofiltration. Brazilian Archives of Biology andTechnology[J],2006,49(2):347352.
    [252] Choi S.C., Oh Y.S. Simultaneous removal of benzene, toluene and xylenes mixture bya constructed microbial consortium during biofiltration. Biotechnology Letters[J],2002,24(15):12691275.
    [253] Strauss J.M.; Riedel K.J., du Plessis C.A. Mesophilic and thermophilic BTEXsubstrate interactions for a toluene acclimatized biofilter. Applied Microbiology andBiotechnology[J],2004,64(6):855861.
    [254] Lu C.S.; Lin M.R., Chu C.H. Effects of pH, moisture, and flow pattern on trickle bedair biofilter performance for BTEX removal. Advances in Environmental Research[J],2002,6(2):99106.
    [255] Nikolova N., Nenov V. BTEX degradation by fungi. Water Science and Technology[J],2005,51(11):8793.
    [256] Aizpuru A.; Khammar N.; Malhautier L., et al. Biofiltration for the treatment ofcomplex mixtures of VOC Influence of the packing material. ActaBiotechnologica[J],2003,23(23):211226.
    [257] Liang J.; Chiaw L.K., Ning X. Application of biological activated carbon as a low pHbiofilter medium for gas mixture treatment. Biotechnol Bioeng[J],2007,96(6):10921100.
    [258] Park B.; Hwang G.; Haam S., et al. Absorption of a volatile organic compound by a jetloop reactor with circulation of a surfactant solution: Performance evaluation. Journalof Hazardous Materials[J],2008,153(12):735741.
    [259] Gao M.; Li L., Liu J.X. Simultaneous removal of hydrogen sulfide and toluene in abioreactor: Performance and characteristics of microbial community. Journal ofEnvironmental Sciences China[J],2011,23(3):353359.
    [260] Lee S.K., Lee S.B. Substrate utilization patterns during BTEX biodegradation by ano xylene degrading bacterium Ralstonia sp PHS1. Journal of Microbiology andBiotechnology[J],2002,12(6):909915.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700