用户名: 密码: 验证码:
环保型水性聚氨酯树脂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统聚氨酯树脂的合成与稀释需要消耗大量的有机溶剂,溶剂的挥发和残留对周围环境系统及人体健康造成很大威胁。特别是随着社会经济的发展和人们环保意识的增强,各国开始制定各种环保政策以限制化工生产及有机树脂使用过程中的挥发性有机化合物含量,而在生产及使用过程中使用少量或者不用有机溶剂,主要以水为分散介质的水性聚氨酯树脂,具有相当的环保价值和应用前景。
     本课题从合成原料环保,合成过程环保角度出发,选用低毒性高活性的芳香族二苯基甲烷二异氰酸酯(MDI)和聚酯二元醇为基本原料,以二羟甲基丙酸(DMPA)为亲水扩链剂,以毒性低成本低的丙酮(ACE)为预聚阶段主要稀释溶剂,进行水性聚氨酯分散体的合成实验。通过二正丁胺异氰酸酯基滴定实验跟踪监测聚合反应进程,讨论了实验过程中实验操作等各种条件对水性聚氨酯产品生产过程的影响,然后利用红外光谱、透射电子显微镜、材料拉仲试验机等设备手段对水性聚氨酯产品分散体及薄膜的性能进行了测试,通过调整实验条件原料配比等方法讨论了各种影响水性聚氨酯产品分散体及薄膜性能的关键因素。
     单一的水性聚氨酯分散体存在自增稠差、固含量低、耐水性差、机械强度不如丙烯酸树脂等缺点,而且成本较高。但是可以通过向聚氨酯分子链中引入特定官能团,实现对聚氨酯分散体的改性。而有机硅树脂具有表面能低,耐水性耐候性及透气性优良等特点,将有机硅引入聚氨酯分子链实现对水性聚氨酯的改性可以很大程度上弥补水性聚氨酯自身所存在的上述不足。
     尝试了一种向聚氨酯分子链中引入丙烯酸和有机硅基团对水性聚氨酯进行改性的新方法。首先通过丙烯酸羟乙酯中的羟基与异氰酸酯基的反应,向聚氨酯分子链中引入碳双键,然后借助引发剂使其与乙烯基硅氧烷中的碳双键进行自由基聚合,从而将有机硅引入水性聚氨酯分子链中,实现了水性聚氨酯的有机硅丙烯酸双改性。借助红外光谱、透射电镜、热分析等手段讨论了有机硅丙烯酸改性对于水性聚氨酯分散体及薄膜性能的影响。
The synthesis and dilution of traditional polyurethane require a large amount of organic solvents, the remaining of which will cause great threat to the envirioment system and human health. Especially with the development of society and the improvement of people's environmental awareness, many coutries begin to set up envirment protection laws to restrict the content of volatile organic compounds in the producing and application processses of organic resins. In this situation, waterborne polyurethanes, which use water as an alternative dispersion medium with little or none use of organic solvents, have great environmental values and potential applications.
     Our research chose the low toxicity, high activity diphenylmethane diisocyanate and polyester glycol as the basic raw materials, chose dimethylol propionic acid as the hydrophilic chain extender, and the lowtoxicity and low cost acetone as the dilution to conduct the synthesize of waterborne polyurethane, based on the environmental raw materials and environmental producing process. The remaining number of NCO group was monitored by di-n-butylamine titration method and the results showed the reaction process of waterborne polyurethane. We discussed all the conditions that could affect the the producing process of waterborne polyurethane. And then the morphology of the polyurethane dispersion was characterized by TEM and the properties of the PU films were also tested. Through the control groups, we discussed all kinds of key factors that may affect the properties of waterborne polyurethanes emulsions and films.
     There exist many disadvantages of the single WPU emulsion, such as poor self-thickening, low solid content, weak water resistance, lower mechanical strength compared to acrylic resin and high cost. However, the property of polyacrylate (PA) emulsion and polyurethane emulsion could complement each other, which has great potential application. Organic silicone resin with low surface energy, good water resistance, fine weatherability and excellent air permeability has been widely used in polyurethane modification. The introduction of organic silicone groups into the chain of WPU could solve the problems mentioned above.
     A novel modification method, which introduces acrylic acid groups and organosilicon groups in to the WPU molecular chain, was adopted in the experiment. We first introduce the double bond utilizing the reaction between OH and NCO group in HEMA. Then free radical polymerization occurs between double bond and C=C double bond of vinyl siloxane, which results in the organosilicon and acrylic acid modification of WPU. Several characterization methods are took to evaluate the modification effect to the WPU dispersion systems and films.
引文
[1]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社,2002,1-9.
    [2]许戈文等,水性聚氨酯材料[M].北京:化学工业出版社,2007,14-48.
    [3]汪多仁.水性聚氨酯的合成与应用[M].中国皮革,2001,30(17)
    [4]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社,2002,16-36.
    [5]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社,2002,60-89.
    [6]Yen MS, Tsai HC, Hong PD. Effect of soft segment composition on the physical properties of nonionic aqueous polyurethane containing side chain PEGME[J]. Appl Polym Sci,2007,105:1391-1399.
    [7]徐智策,张志艳,张晓燕,高玉华.水性聚氨酯分散体的研究新进展[J].江苏化工,2005,33(5):25-27.
    [8]陈延娜,李树材.环境友好型水性聚氨酯材料[J].化工新型材料,2002,30(5):18-20.
    [9]寿崇琦,娄嵩.水性聚氨酯的研究综述[J].中国建筑防水,2007,10:14-18.
    [10]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社,2002,608-632.
    [11]陈珀丽,刘经梅,张之涵等.聚氨酯涂料技术在中国的发展[J].涂料工业,2007,37(5):49-51.
    [12]张铭,肖婷.水性聚氨酯胶粘剂的研究进展[J].中国胶粘剂,2007,16(8):52-55.
    [13]鲍利红,兰云军.水性聚氨酯改性技术在皮革涂饰剂中的应用[J].西部皮革,2004,10:35-38.
    [14]Velez-Pages T, Martin-Martinez JM. Application of one-component primer to avoid the roughening of leather and increase its adhesion to polyurethane adhesive[J]. Int. J. Adhes. Adhes,2005,25:320-328.
    [15]许戈文等,水性聚氨酯材料[M].北京:化学工业出版社,2007.2.79-93.
    [16]Ramesh S, et al. Synthesis, physicochemical characterization, and applications ofpolyurethane ionomers:a review Sci[J], Rev Macromol Chem Phys, C38(3),481~ 509(English)1998.
    [17]Karl-Ludwig N. Waterborne polyurethanes[J], Prog. Org. Coat,32 (1997)131~ 136.
    [18]王平,吴念祖.含氮硅烷对聚二甲基硅氧烷涂膜表面疏水性的影响[J].高分子学报,1995,6:699-703.
    [19]王武生,曾俊,阮德礼等.纳米级水基聚氨酯微凝胶环氧硅氧烷交联成膜机理[J].高分子材料科学与工程,2001,17(3):102-105.
    [20]卿宁,张晓镭,俞从正,田禾.有机硅共聚改性水性聚氨酯PU-SI的制备及性能研究[J].中国皮革,2001,30(17):10-14.
    [21]李彦涛,杨淑兰,刘京华等.有机硅改性聚氨酯海绵衬垫的研究[J].河北省科学院学报,2000,17(2):51
    [22]何向东,贾叙东,丁霞,余学海.主链型液晶聚硅氧烷聚氨酯合成及性质[J].高分子学报,1996,(3):304-309.
    [23]卿宁,张晓镭,俞从正.皮革工业用聚氨酯材料研究的回顾与展[J].中国皮革,1999,28(7):5-10.
    [24]Li QA, Sun DC. Synthesis and characterization of high solid content aqueous polyurethane dispersion[J]. Appl Polym Sci,2007,105:2516-2524.
    [25]吕维忠,刘波,韦少慧.水性聚氨酯胶膜耐水性研究[J].皮革科学与工程,2006,16(2):50-53.
    [26]鲍亮,徐洪耀,吴振玉,方敏,光善仪.3-氨基丙基三乙氧基硅烷改性水性聚氨酯的研究[J].高分子材料科学与工程,2007,23(2):250-253.
    [27]王念贵,袁锐峰,邓丽娟,陈福和.交联剂用量对聚氨酯分散体膜性能的影响[J].聚氨酯工业,1998,13(4):16-18.
    [28]Barikani M, Ebrahimi MV, Mohaghegh SMS. Preparation and characterization of aqueous polyurethane dispersions containing ionic centers[J]. J. Appl. Polym. Sci, 2007, Vol. 104,3931-3937.
    [29]Lee DK, Yang ZD, Tsai HB. Aqueous polyurethane dispersions derived from polycarbonatediols and di(4-isocyanato-cyclohexyl)methane[J]. Polym.Eng.Sci,2006, 46:588-593.
    [30]Kim CK, Kim BK, Jeong HM. Aqueous dispersion ofpolyurethane ionomers from hexamethylene diisocyanate and trimellitic anhydride[J]. Colloid Polym. Sci, 1991,269:895-900.
    [31]Kim Bk, Lee JC. Polyurethane ionomer dispersions from poly(neopentylene phthalate) glycoland isophorone diisocyanate[J]. Polymer,1996,31(3):469-415.
    [32]Sugano S, Chinwanitcharoen C, Kanoh S, Yamada T, Hayashi S, Tada K. Preparation of aqueous polyurethane dispersions using aromatic diisocyanate[J]. Macromol. Symp,2006,239,51-57.
    [33]胡津昕,孙先多.软段含羧基的水性聚氨酯相反转过程研究[J].聚氨酯工业,2002,17(4):20-23.
    [34]梁宗军,沈业,奚惠兰,胡和丰.水性聚氨酯的相转变过程[J].上海大学学报(自然科学版),2005,11(2):178-182.
    [35]吴让君,闫福安.水性聚氨酯预聚体中异氰酸酯基团的容量测定[J].中国涂料,2006,21(1):33—34.
    [36]石元昌,吴佑实,朱志谦,李干佐.FTIR法研究IPDI/DMPA的聚合反应动力学[J].精细石油化工,2002,5:38-40.
    [37]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社,2002,564-566.
    [38]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社,2002,111-114.
    [39]田伟,王芳,汤克勇,王全杰.脂肪族水性聚氨酯涂饰剂的研究[J].皮革科学与工程,2006,16(3):9-11,31.
    [40]王毅,刘文利等.高透明水性聚氨酯胶粘剂的制备[J].广东化工,2008,35(8): 10-12.
    [41]孙启龙,黄少蝉,李建宗等.乙二胺扩链剂对水性聚氨酯性能的影响[J].中国胶黏剂,2005,14(10):1-5.
    [42]周其凤, 胡汉杰.高分子化学[M].北京:化学工业出版社,2001,105-131.[43] Kuan HC, Ma CCM, Chuang WP, SuHY. Hydrogen bonding, mechanical properties, and surface morphology of clay/waterborne polyurethane nanocomposites Polyurethane Nanocomposites[J]. Polym SciPart B:Polym Phys,2005,43:1-12.
    [44]赵秀丽,陈向荣,丁小斌等.有机硅改性聚氨酯-丙烯酸酯共聚分散体的研究[J].涂料工业,2007,37(12):7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700