用户名: 密码: 验证码:
载货汽车危险状态辨识及监测预警研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国国民经济的快速增长,道路交通运输行业也进入快速发展的成长期,由于运输行业的发展不足以及相关部门监管能力的匮乏,我国交通安全形势日益严峻。近几年,道路运输群死群伤的重特大恶性事故频繁发生。据统计,我国道路交通事故由于生产经营运输车辆导致的伤亡比例较高,营运载货汽车的运输安全问题已成为道路交通运输亟待解决的关键问题之一。
     国家中长期科学技术发展规划明确将“重点开发交通事故预防预警、应急处理技术”列为交通领域优先研究的技术之一,2008年交通部《国家道路交通安全科技行动计划》中也将“车辆安全性能及新技术、装备应用、营运车辆运行安全监控技术与装备”等列为国家重点科技研究任务。2011年,“十二五”科技重大专项“交通运输领域关键技术与示范”也逐渐在各省展开。针对日益严峻的道路运输形势,以德国为首的欧共体,以及美国和日本等车辆生产发达国家在车辆安全动态监控预警方面进行了大量的研究,并结合车联网技术对车辆行驶状态进行实时集中的监控,在危险状态预警、车-路协调系统等方面取得了长足的进步。由此可见,车辆在途状态的监控和危险状态预警是全球在车辆安全方面的主要研究课题之一。作为造成重特大交通事故比例较高的营运载货汽车,对其在途状态的监测预警更成为重中之重,车辆危险状态辨识技术作为监控预警技术的基础,也成为车辆安全研究的前沿技术和热点。
     本文结合国家对营运载货汽车安全监控技术与装备方面的技术需求,依托国家863高技术研究发展计划项目《营运载货汽车安全性能检测与预警集成技术及装置》,重点研究车辆在途危险状态辨识方法。首先通过分析导致交通事故的几种典型危险状态,确定需要检测车辆的行驶状态参数,通过在一汽解放赛龙CA1169PK2L2EA80重型货车上加装传感器采集相应的车辆行驶状态参数信息;其次,通过分析传感器采集车辆状态数据,提出能够直接由单参数来判断车辆危险状态的方法;再次,通过对车辆悬架振动特性以及停车距离计算模型的分析,提出基于多个车辆状态参数来判断车辆载荷危险状态和行车间距危险状态方法;最后,基于虚拟仪器软件,以解放赛龙货车为车辆模型开发车辆危险状态监测预警仿真系统,系统可完成车辆故障预设仿真、试验室车辆危险状态监测预警试验,并且保留系统参数编辑能力、车辆状态信号实时采集程序,能够实现车载实时监控和试验室车辆危险状态的监控预警仿真的双重需求。研究为载货汽车行驶状态监测预警阈值的设定提供了理论基础,也为车辆监控预警车载系统的开发提供了上位机软件程序和试验室仿真研究平台。论文研究的主要工作及结论包含以下5方面:
     1.车辆危险状态分析和行驶状态信息采集
     系统分析了车辆行驶过程中容易导致事故的车辆超速、超载、行驶纵向间距不足、机械故障和爆胎等典型危险状态因素,从而确定了制动系中的制动管路压力、制动蹄片温度、蹄片磨损程度、制动灯、转向灯状态、轮胎温度与压力、车辆载荷状态和车速等容易快速引发恶性交通事故的状态参数。通过在解放赛龙车货车上安装相应的传感器来获取以上参数信息,并使用单片机采集和存储传感器信号数据。
     2.基于单参数的危险状态判定方法研究
     通过对传感器获取车辆状态参数信息的特征分析,结合试验车辆结构性能要求,车辆行驶环境(路面情况及天气温度)综合因素的影响,研究了基于单个传感器参数数据的载货汽车危险状态判定方法,其中包括载货汽车行驶速度、轮胎温度压力、转向/制动灯、制动蹄片温度及磨损异常状态辨识,确定了以上危险状态判定阈值。
     3.基于悬架振动特性的载荷危险状态辨识方法研究
     建立了二自由度车辆后悬架振动模型,以路面不平度作为激励输入,分析不同行驶速度,不同装载状态下车辆悬架动行程和悬架动态载荷间关系,提出了采用测量悬架变形量来计算车辆载荷状态的方法;基于此方法开发了带过载保护的拉线式载荷状态检测装置,分别采用Levenberg-Marquardt和EMD方法对载荷状态传感器信号进行了处理,分析了两种方法在动态载荷信号处理方面可行性和实用性,并确定使用EMD方法作为动态载荷信号的处理方法;结合路面环境、车辆行驶速度,载荷状态参数信息,提出了使用水平质心位置监测来判断车辆偏载,货物脱落滑移等载荷危险状态的方法;使用试验车辆在可靠性路面及八种特殊路面上车辆不同工况(行驶车速,载荷状态)下进行了载荷状态检测试验和水平质心位置监测试验,实现了车辆水平质心的测定,验证了载荷状态检测的准确性和水平质心位置监测的可行性。
     4.基于停车距离的多参数危险状态辨识方法研究
     建立停车距离分析模型,分析影响停车距离的主要因素包括驾驶人自身因素,车辆状态参数,制动器结构参数和道路环境因素。通过对驾驶员制动反应时间、制动器起作用时间、制动管路压力、制动蹄片温度、路面附着系数等制动距离的影响参数的分析,基于制动力学分析建立停车距离计算公式,并通过空挡怠速、滑行试验来标定停车距离计算模型中车辆内外阻力参数。最后在不同工况下进行了仿真试验和实车制动试验,验证了停车距离计算模型的可行性和准确性。
     5.车辆危险状态监测及预警仿真系统的设计
     基于虚拟仪器软件开发了危险状态监测及预警系统,系统包含前面板(人机交互界面)和程序框图两大部分;其中软件程序的编写完成了行驶状态信息输入、单参数危险状态判定、多参数危险状态辨识、监测结果显示及预警四个功能;车辆行驶状态信息输入程序保留数据采集卡实时信号输入、车辆运行状态信息数据库输入、车辆运行状态信号仿真输入三种输入方式。数据库数据和仿真信号输入可实现试验室预设车辆危险状态仿真试验,同时预留的串口信号实时导入模块也可做为实车危险状态监测预警系统的上位机程序进行扩展开发。
     综上所述,本文研究的载货汽车危险状态辨识方法及设计开发的车辆危险状态监测及预警仿真系统为车辆在途行驶状态安全监测预警提供了一种新的方法,对预防载货汽车引发恶性道路交通事故具有着重要的社会意义和应用价值。
With the rapid growth of the national economy, China entered the period of rapiddevelopment and growth of road transport industry. Because of the lack ofdevelopment experience and the supervisory ability of the relevant departments, thedomestic situation of traffic safety is becoming increasingly serious. In recent years,vicious traffic accidents with heavy casualties happen frequently. According to thestatistic, the percentage of the casualties of traffic accident caused by trucks is higherin China. The problem of the transportation safety has been one of the key issueshurry to be resolved.
     Traffic accident prevention, early warning and emergency treatment technologyhave been emphasized specifically in national medium and long-term developmentplan of science and technology. The new technology of security monitoringtechnology and equipment also have been listed as the national key technology todevelop in traffic safety technology plan of action in2008.,“key technology anddemonstration in transportation” had gradually carried out in the provincesas as theNational Twelfth-Five-year Plan in2011. In view of the continually serious roadtransport situation, European Community in lead of German, American and Japan, inwhich the vehicle industry developed greatly, have managed to do a good deal ofresearch in security dynamic monitoring and early warning. And combining with carnetworking technology, these counties have made great progress in vehicle statusreal-time monitoring and early warning and vehicle-road coordinate system. Thisshows that the monitor technology and the risk early warning of vehicle status havebeen the primary subject in terms of the vehicle safety all over the world. Themonitoring and early warning of truck have been priority among many importantresearches. Vehicle risk identification technologies, as the basis of monitoring andearly warning, was hot spots and advancing of vehicle safety research.
     Combining with the requirement of the vehicle safety monitoring technology andequipment and relying on National High-tech Research and Development Projects(863), this paper focuses on method of vehicles risk status identification. Primarily,several kinds of typical risk states which lead to traffic accident were analyzed, thevehicle state parameters which need to be detected had been determined. And sensorswere installed on the medium-sized truck produced by FAW CA1169PK2L2EA80.The corresponding vehicle state parameters’ information were collected by using vehicle terminal microcontroller; Secondly, the data collected by the sensors wereanalyzed and a method to judge vehicle risk status was proposed based on singleparameter; Thirdly, the vehicle suspension vibration characteristics and vehiclestopping distance calculation model were researched, a method to identify the vehiclerisk of loading state and braking state based on multi parameters were described inthis paper; Finally, vehicle risk state monitoring and early warning simulation systemwhich used FAW truck as model was established based on virtual instrument software,The system could complete the simulation of vehicle failure preset and laboratoryexperiment of vehicle risk state monitoring and early warning. it also reserved abilityof parameter editing permission and real-time inputing signal which were collectedfrom the vehicle state sensors to meet the requirements of real-time monitoring intransit and laboratory simulation of vehicle risk states early warning. The researchprovides the theory basis for the threshold value setting of truck risk statesidentification and early warning. it supplies PC software programs and laboratorysimulation research platform for the exploration of on-board vehicle monitoring andearly warning system. The main work of this paper includes the following aspects:
     1. Analyse on the vehicle risk state and the running state information collecting
     The typical risk factors such as overspeed, overload, lacking of drivinglongitudinal space, mechanical fault and tire burst which all could trigger trafficaccident were analyzed in systematic. Based on analysis the state parameters such asbreak line pressure, the temperature of brake shoe, shoe wear degree of break system,the state of brake lamp and steering lamp, the temperature and pressure of tires,vehicle load status and speed of vehicle which could trigger malignant trafficaccidents were decided to acquire. Information of the parameters mentioned abovewere captured through installing the sensors on the FAW truck,, and signal datacaptured from sensors was saved by vehicle terminal microcontroller.
     2. Study on the method of the risk state identification based on single parameter
     Through the analysis of the characteristic of vehicle sate parameters informationfrom sensors, and combining with the need of the test vehicle structure performanceand the influence of the driving situation (the road condition and the weather), themethod of judge vehicle in risk states(speed of vehicle, tires temperature and pressure,brake lamp and steering lamp, brake shoe temperature,shoe wear degree) based onsingle parameter mentioned above was proposed in this paper and the threshold valueof risk state of all parameters were determined.
     3. Study on the multi-parameter risk identification method based on suspensionvibration characteristics
     In this paper the two degree-of-freedom rear suspension vibration model wasestablished, using road irregularities as incentive input, the relationship between thevehicle suspension stroke and the suspension dynamic loads was analyzed underdifferent driving speed and different loading status. a method of calculation of vehicleload status was proposed by measuring suspension deformation; Based on this method,guyed load status detection device with overload protection was development. AndLevenberg-Marquardt and EMD method were used to deal with the signals of the loadstatus sensors, feasibility and practicability of two methods were analyzed and EMDmethod was determines to process dynamic load signals; Combining with the roadcondition, vehicle speed and load state parameter information, a method of judgingrisk load status as unbalance loading and fall off and slip of the goods was proposedby locating of horizontal center of mass; Detection test of load status and monitoringtest of locating horizontal center of mass were carried on by using the laboratoryvehicle on A-level road and eight kinds of special road under different vehiclecondition(speed and load state), the error of the test result is less than5%, the testrealizes the measurement of the location of horizontal center of mass and verifies theaccuracy of load state detection and the feasibility of monitoring the location ofhorizontal center of mass.
     4. Study on the multi-parameter risk identification method based on stoppingdistance.
     The analytical model for stopping distance was established in this paper, mainfactors which influence stopping distance such as driver factors, vehicle stateparameters, brake structure parameters and road condition were researched; Based onthe analysis and calculation of the driver braking reaction time, the work time ofbrake, brake line pressure, the temperature of brake shoe and coefficient of roadadhesion which influence the brake distance, the stopping distance calculationformula was established based on braking mechanics analysis; The internal andexternal resistance parameters of vehicle stopping distance model were fitting inneutral idle and coasting test. Finally, simulation test and real vehicle braking test wasconducted under different work condition, accuracy and feasibility of the stoppingdistance calculation model was verified in test results.
     5. Design of vehicle risk state monitoring and early-warning software system.
     The vehicle risk state monitoring and early warning system was developed basedon virtual instrument software, it contains front panel (human-computer interactioninterface) and program diagram. program work includ input driving state information,identification of risk state based on single parameter and multi parameters, monitoringresult display and early-warning. The program of input vehicle driving stateinformation reserves three ways to obtain signal, real-time input from data acquisitioncard, input information from database, and input simulation signals. The ways thatinput from database and simulation can carry out the laboratory simulation test ofpreset vehicle risk state, and the real-time input module of serial signals can also asthe host computer procedure of whole system continue to develop.
     In conclusion, the methods of truck risk state identification were studied and amonitoring and early-warning software system for truck risk state was developed inthis paper, it supports a new method to monitor and early warn about the vehicle riskstate in transit, and has significant social contribution and application value to preventtraffic accident caused by truck.
引文
[1]2013-2017年中国公路货运行业市场前瞻与投资战略规划分析报告[R].北京:前瞻产业研究院,2012.
    [2]汪卫东.世界汽车安全技术的最新发展[J].汽车工业研究,2004(4):36-37.
    [3]孙振平,安向京,贺汉根.汽车主动安全的发展及未来[C].青岛:中国汽车工程学会汽车电子技术分会第七届(2006)年会暨学术研讨会,2006.
    [4]史其信,吴波. ITS中的车辆与系统的信息交互[J]. ITS通讯,2006,8(2):45-47.
    [5]赵韩涛,王云鹏,王俊喜,等.高速公路应急车辆指挥调度优化模型[J].吉林大学学报:工学版,2006,36(3):336-339.
    [6]王云鹏,赵韩涛,王俊喜,等.基于共用信息平台的高速公路系统集成框架研究[J].公路交通科技,2006,23(2):128-132.
    [7] S. J. Lee, K.F.Lin. The Development of a Temperature Alarm Device for FailurePrevention of the Automobile Hydraulic Brake System [C]//SAE paper1999-01-0474.
    [8] J.Scott, R. Fay,et al. Brake Performance Testing and Truck RunawayAnalysis[C]//SAE paper2003-01-3396.
    [9] Delaigue P, Eskandarian A. A comprehensive vehicle braking model forpredictions of stopping distances[J]. Journal of Automobile Engineering,2004(218):1409-1417.
    [10]C. Chen, G.Wagner, et al. Prediction of Heavy Truck Stopping Distance andVehicle Behavior using Real-time HIL and SIL Simulation [C]//SAEpaper2008-01-2604.
    [11]李国平,谭跃刚.调整臂上的制动蹄片磨损报警器的测量误差分析[J].机械,2004,31(9):54-57.
    [12]李冬临,林土胜.轮胎加速度传感器的汽车制动性能监测分析[J].传感器与微系统,2006,25(12):15-17.
    [13]柴金义.动态称重技术在公路超载执法中的应用[J].内蒙古公路与运输,2005(1):42-44
    [14]Guanghua Chen, Na Ju, Fei Yang, Jianwei Li. Monitoring system for vehicleoverloading base on paste-type strain sensor[J]. Jamal of Beijing University ofAeronautics and astronautics,2011(37):409-414.
    [15]Klasus-Dieter Leimbach, Moeglingen, Gabriel Wetzel, Stuttgart. Method anddevice for determining a quantity describing the height of the center of gravity ofa vehicle [P]. US Patent, Pub. No.: US6370938B1.
    [16]A. Vahidi, A. Stefanopoulou, H. Peng. Recursive least squares with forgetting foronline estimation of vehicle mass and road grade: theroy and experiments [J].Vehicle System Dyanmics,2005,43(1):31-55.
    [17]Samuel Kline Shimp III. Vehicle sprung mass parameter estimation using anadaptive polynomial-chaos method [D]. Virginia Polytechnic Institute and StateUniversity,2008.04.
    [18]Gaurav Kewlani, Justin Crawford, Karl Iagnemma. A polynomial chaos approachto the analysis of vehicle dynamics under uncertainty [J]. Vehicle SyetemDynamics,2012.05,50(5):749-774.
    [19]Ben Pence, Joe Hays, Hosam Fathy, Corina Sandu. Vehicle sprung massestimation for rough terrain [R]. Department of Mechanical Engineering,University of Michigan,2011.04.
    [20]Selim Solmaz, Mehmet Akar, Robert Shorten, Jens Kalkkuhl. Real-timemultiple-model estimation of centre of gravity position in automotive vehicles [J].Vehicle System Dynamics,2008.03,46(9):763–788.
    [21]Robert Shorten, Selim Solmaz, Mehmet Akar. Mehotd for determining the centerof gravity for an automotive vehicle [P]. US Patent, Pub. No.: US2009/0024269A1.
    [22]Selim Solmaz, Robert Shorten, Kai Wulff. A design methodology for switcheddiscrete time linear systems with applications to automotive roll dynamics control[J]. Automatic,2008.03,4:2358-2363.
    [23]王云鹏,李世武,隗海林,杨志发,祖力等.一种公路运输车辆偏载检测装置[P].发明专利,公开号:CNIO144713OA.
    [24]王建强,李克强,李升波,张德兆.货车偏载动态检测报警系统[P].实用新型,公开号:CN201304933Y.
    [25]陈广华,鞠娜,杨飞,李建伟.基于粘贴式应变传感器的车辆超载监测系统[J].北京航空航天大学学报,2011.04,37(4):409-414.
    [26]单春贤,韩钧,胡苏杭,仲敏波.轮胎气压监测系统的开发及发展趋势[J]拖拉机与农用运输车,2006,5(33):91-92.
    [27]孙宏伟.汽车轮胎爆胎预警系统的研制[D].长春:吉林大学,2003.
    [28]付永庆,张林刘,占亚陶,宝泉,姜玉蕾.汽车轮胎温度压力监测系统的定位发射装置及方法:中国, CN101947905A[P].2011-1-19.
    [29]朱小镇,岳伯陶,高家兵,高新华.一种轮胎监测报警装置:中国,CN201824807[P].2011-5-11.
    [30]袁慧彬.汽车车灯智能控制技术[D].成都:电子科技大学,2006.
    [31]朱命怡,娄云.旅游客车灯光检测器的研究[J].拖拉机与农用运输车,2009,36(2):88-89.
    [32]重庆长安汽车股份有限公司.一种汽车转向灯的判断控制系统[P].中国专利.101947932A.2011-01-09
    [33]李巧燕,赵全福.汽车制动灯、转向灯、尾灯故障检测系统详谈[J].农业装备与车辆工程,2011,5:25-29
    [34]王立颖.载货汽车交通事故成因分析与对策[J].辽宁警专学报,2008(52):53-55.
    [35]高建平,柳本民,郭忠印.货车交通对高速公路安全性的影响[J].同济大学学报(自然科学版),2005,33(6):763-767.
    [36]叶忠慧.高速公路上大货车事故多的原因与对策[J].公路与汽运,2005(106):23-25.
    [37]蒋工亮,吕佳,杨丽改.高速公路车辆安全行驶速度仿真识别系统[J].交通运输工程学报,2010,10(4):121-126.
    [38]冯涛,李迅,丁德平,等.高速公路不同路况下的安全限速[J].气象科学,2012,40(5):865-868.
    [39]殷涛,贾贤盛.基于停车视距的高速公路雨天行车安全车速研究[J].北方交通,2009(1):150-152.
    [40]Levision W H,Bittner Jr A C,Hunn S J.Computational techniques used in thedriver performance model of the interactive highway safety design model[C].80thTRB Annual Meeting Paper No01-2187.
    [41]孙宏伟.汽车轮胎爆胎预系统的研制[D].长春:吉林大学,2003.
    [42]孙伟太.如何确定轮胎在使用过程中的标准气压[J].城市车辆,2008(11):62-64.
    [43]顾永田.车辆长大下坡持续制动制动鼓温升试验研究[D].西安:长安大学,2008.
    [44]孙景阳.汽车制动器摩擦性能试验方法研究[D].长春:吉林大学,2006.
    [45]朱攀.车辆制动摩擦材料关键特性的研究及检测方法[D].武汉:武汉理工大学,2006.
    [46]Shuo-Jen Lee,Ke-Feng Lin. The Development of a temperature alarm device
    [47]for failure prevention of the qutomobile hydraulic brake system[J]. SAE Theengineering society for advancing mobility land sea air and space.1999
    [48]陈家瑞.汽车构造下册[M].第三版.北京:机械出版社,2009:200-201.
    [49]胡启国,王文静,孙宝贤,等.基于MATLAB的非独立悬架振动特性分析[J].重庆交通大学学报(自然科学版),2012,31(1):133-136.
    [50]Lina Ding, Hong Hao, Xinqun, zhu. Evaluation of dynamic vehicle axle loads onbridges with different surface condition [J]. Jounrnal of sound and vibration,2009,15(323):826-848
    [51]Tospol Pinkaew, Pattarapong Asnachinda. Experimental study on theidentification of dynamic axle loads of moving vehicles from the bendingmoments of bridges [J]. Engineering Structures,2007,1(29):2282-2293
    [52]余志生.汽车理论[M].第5版.机械工业出版社,2011:203-244.
    [53]张立军,张天.车辆四轮相关路面非平稳输入通用时频模型[J].振动与冲击,2008,7(27):75~78.
    [54]K. Bogsj. Development of analysis tools and stochastic models of road profilesregarding their influence onheavy vehicle fatigue [J]. Vehicle System Dynamic,2006,44:780-790.
    [55]陈杰平,陈无畏,祝辉,朱茂飞.基于Matlab/Simulink的随机路面建模与不平度仿真[J].农业机械学报,2010.03,41(3):11-15.
    [56]楼少敏,王永达,许沧粟.基于路面不平度自功率谱密度函数计算国际不平度指数的研究[J].公路交通科技,2007,24(8):12-15.
    [57]Chen Jieping, Chen Wuwei, Zhu hui, Zhu Maofei. Modeling and Simulink onstochastic road surface irregularity based on Matlab/Simulink[J]. Transactions ofthe Chinese society for agricultural machinery:2010.3(41):11~15
    [58]Yifan Song, Rongfeng Chen. Analysis method of vehicle vibration responsecaused by pavement roughness [J]. Journal of Traffic and TransportationEngineering,2007(4):39-43.
    [59]于海燕.动态称重技术研究[D].西安:西北工业大学,2001.
    [60]马应林.车辆超载动态监测系统的研究与实现[D].北京:北京交通大学,2010.06.
    [61]陈广华,鞠娜,杨飞,李建伟.基于粘贴式应变传感器的车辆超载监测系统[J].北京航空航天大学学报,2011.04,37(4):409-414.
    [62]罗献燕,赵胜兵,陈鸫. Simulink在求解结构动力方程的运用以及优势[J].广西大学学报自然科学版,2008,33:19-21.
    [63]Xianyan Luo, Shengbing Zhao, Dong Chen. The advantages of Simulink used inSimulink in the dynamic equation solving [J]. Journal of Guangxi University(NatSci Ed),2008,33(1):19-21.
    [64]曹源文,梁乃兴,于清,等.路面不平整引起的车辆动载计算方法[J].交通运输工程学报,2008,8(2):69-73.
    [65]卢荡,董益量,秦民,程超.钢板弹簧动态力建模[J].吉林大学学报(工学版),2011,41(增刊1):12-16.
    [66]Wang J F,Wu M G. An Overview of Research on Weigh-in-motionSystem[R].Proceedings of the5th World Congress on Intelligent Control andAutomation, June15-19,2004.
    [67]N.E.Huang, Shen Z, S.R. Long, et al. The empirical mode decomposition and theHilbert spectrum for nonlinear and non-stationary time series analysis. Proc RsocLond,1998,454:56-78P
    [68]周志峰,蔡萍,陈日兴,等.基于非线性拟合的汽车动态在中数据处理新方法[J].上海交通大学学报,2006,40(5):709-712.
    [69]李磊.动态称重系统关键技术研究[D].长安:长安大学,2008.
    [70]胡亮.非线性拟合的初值问题[J].吉首大学学报,2003,24(1):37-39.
    [71]刘霖雯,刘超,江成顺.EMD新算法及其应用[J],系统仿真学报,2007.19(2):446~448
    [72]程军圣,于德介,杨宇. EMD方法在转子局部碰摩故障诊断中的应用[J].振动测试与诊断,2006.26(1):24-27.
    [73]周志峰,蔡萍,许嘉,等. EMD方法在汽车动态称重中的应用[J].数据采集与处理,2005,20(3):338-341.
    [74]高强,李良敏,孟庆峰等.EMD趋势分析方法及其应用研究[J],振动与冲击,2007.26(8):98~100
    [75]祝志慧,孙云莲,季宇.基于EMD和SVM的短期负荷预测[J].高电压技术,2007,33(5):118-122.
    [76]Klasus-Dieter Leimbach, Moeglingen, Gabriel Wetzel, Stuttgart. Method anddevice for determining a quantity describing the height of the center of gravity ofa vehicle [P]. USPatent, Pub. No.: US6370938B1.
    [77]Cho Y. The Simulation of ABS Stopping Distance[J]. SAE,2011.
    [78]Rizzo M D, Song D, L T A K A D. Light Vehicle Dry Stopping Distance-VehicleSpeed Correction, Tire Burnish, and Surface Friction Correction[J]. SAEInternational,2011.
    [79]Selig M, Ball A, Schmidt J A A K. The influence of tyre contact patch and on thestopping distance of automotive vehicles[C]. IOP Publishing Ltd,2012.
    [80]Kloeppel, E., Peters, R. D., James, C., Fox, J. E. and Alicandri, E. Comparison ofolder and younger driver the Human Factors and Ergonomics Society,38thAnnual Meeting of the Human Factors and Ergonomics Society,Part2(of2),24–28October1994, Nashville, Tennessee,USA.
    [81]Hodgkins, J. Reaction time and speed of movement in males and females ofvarious ages. Res. Q.,1963,34,335–343.
    [82]Nishida, Y. Driving characteristics of the elderly: risk compensation of the elderlydriver from the viewpoint of reaction behavior. Japan. Soc. Auto. Eng. Rev.,1999,20.375–380.
    [83]Olson, P. L., Cleveland, D. E., Fancher, P. S., Schneider, L. W. and Sivak, M.Parameters affecting stopping sight distance. Interim Report, NationalCooperative Highway Research Program (NCHRP) Project15-8, University ofMichigan Highway Safety Research Institute,1982.
    [84]Green, M. How long does it take to stop? In ethodological analysis ofdriverPerception-Brake Times,2000,pp.195–216(ERGO–GERO Human factorsscience and department of ophthalmology, University of West Virginia MedicalSchool, Transportation Human Factors, Morgantown, West Virginia).
    [85]张健,雷雨成,卫修敬.领从蹄式鼓式制动器制动力矩计算方法研究[J].长沙交通学院学报,2001,17(3):31-35.
    [86]马迅,陈明东等.鼓式制动器有限元分析方法的研究[J].机械设计与制造,2012,06.
    [87]王宣风.鼓式制动器动力学性能的研究[D].哈尔滨:哈尔滨工业大学,2006.
    [88]张涛.陶瓷晶须增强树脂基摩擦材料研究[D].济南:山东大学,2008.
    [89]朱攀.车辆制动摩擦材料关键特性的研究及检测方法[D].武汉:武汉理工大学,2006.
    [90]田雪健,胡江碧.车辆制动距离影响因素分析[C].北京:中国智能交通协会,2012:245-251.
    [91]陈礼璠,余卓平等.汽车模型风洞试验方法研究[J].上海汽车,1997,02.
    [92]彭亚美.中气轿车气动特性模型风洞试验研究[D].长沙:湖南大学,2010.
    [93]赵雷刚.发动机台架试验过程实时监测与预警方法研究[D].武汉:武汉理工大学,2010.
    [94]王庆丰.基于虚拟仪器技术谐波检测分析研究[D].天津:天津大学,2010.
    [95]黄伟.基于虚拟仪器的汽车制动性能测试系统的研究[D].成都:西华大学,2007.
    [96]许美玲,李春茂,朱俊峰,等.基于LabVIEW串口通讯的多路数据采集系统[J].机械与电子,2010.7(1):172-174.
    [97]陈锡辉,张银鸿.LabVIEW8.20程序设计从入门到精通[M],北京:清华大学出版社,2007.7
    [98]吴成东.LabVIEW虚拟仪器程序设计及应用[M].北京:人民邮电出版社2008:13-20
    [99]张锦,胡平. LabVIEW在单片机数据采集系统的应用[J].微计算机信息,2008,24(8):93-94.
    [100]王海宝.LabVIEW虚拟仪器程序设计与应用[M].成都二西南交通大学出版社,2005,22-24
    [101]关旭,张春梅,王尚锦.虚拟仪器软件LabVIEW和数据采集[J].微机发展,2004,14(3):77-79.
    [102]华中,黄丽萍.基于LabVIEW和DSP串口的多通道电机参数采集系统[J].电子测量技术,2011,34(4):66-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700