用户名: 密码: 验证码:
基于生态学理念的智能墒情监控系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源日益短缺与恶化是全球生态环境的主要问题之一,农业作为第一用水大户,其节约用水、合理用水、高效用水对改善目前的水资源状况和促进生态环境保护具有十分重要的作用。在我国,随着社会经济的发展和工业化、城镇化的推进,农业用水已经从1949年的92.7%逐渐降到目前的60%左右,其中,农田灌溉占农业用水量的90%~95%。但是由于经济条件、人员素质以及技术条件的限制,农业用水依然存在用水效率不高、浪费严重、不能按需灌溉等问题。发达国家除普遍采用喷灌、微灌等先进的节水灌溉技术外,还应用先进的自动化控制技术实施精确灌溉,以作物实际需水为依据,以信息技术为手段,提高灌溉精准度,实施合理的灌溉制度,提高水的利用率。智能自动化控制灌溉能够提高灌溉管理水平,改变人为操作的随意性,同时能够减少灌溉用工,降低管理成本,显著提高效益。因此,推广实施自动化控制灌溉,改变目前普遍存在的粗放灌水方式,提高灌溉水利用率,是有效解决农业节水的必要措施之一。
     当前,农业节水与生态环境保护相结合已经逐渐成为现代节水农业的重要发展方向。实现农业节水灌溉与生态保护的共同发展,需要根据生态学理念,应用系统工程的方法建立和发展生态农业体系,通过人工设计实现水资源的高效利用,协调农业发展与环境、水资源利用与保护之间的关系,形成农业生产和生态上的良性循环。测墒灌溉作为发展农业节水灌溉的重要手段之一,在我国广大地区得到了一定发展。但由于投入成本过高、地理条件限制、操作复杂、决策支持程度不高、网络支持程度不够等原因,已成为大范围实现测墒灌溉发展的主要瓶颈。因此,研究开发一套完整的墒情监控系统,从硬件及软件上解决上述问题,对发展我国农业节水灌溉和促进区域生态建设和恢复具有重要意义。
     本文以生态学理念为基础,在仔细分析数据传输方案、墒情监测与灌溉联动控制、决策方式的基础上,对墒情监控方案进行了整体设计,研制了墒情采集设备、通讯网关、灌溉控制设备,并结合硬件设备开发了软件系统,完成了一套智能化墒情监控系统,以期实现农业节水灌溉与生态环境的和谐发展。该系统可应用于农田、园林、设施农业等领域的日常灌溉管理和控制。研究取得如下成果:
     1)研制了基于ZigBee无线和GSM技术的通讯网关。网关部署在田间ZigBee网络与上位机之间,采用自定义数据帧与田间网络通讯,以自定义SMS格式与上位机交换信息,解决了ZigBee不能进行超远距离通信的问题。同时,在田间具有多个墒情采集点的情况下,网关可以将多个采集点数据进行封装转发,整个系统只有网关使用收费网络,极大程度地降低了通讯费用。
     2)设计开发了基于C/S和B/S两种模式的“网络墒情监控系统”软件系统。 C/S软件可运行于局域网环境,B/S软件可运行于互联网,实现了墒情监控的智能决策与网络化管理。B/S软件采用UDP协议与专门的后台服务程序交互信息,后台服务程序通过串口读写GSM模块,从而实现了上位机与网关的互联互通,解决了B/S软件实时性较差、难以直接操作硬件的问题。
     3)采用主成分分析法分析了土壤水分传感器埋放深度与数量,结果表明,在一定深度范围内可以采用具有代表性的深度来表示土壤含水量,从而减少单个监测点传感器数量,降低投资成本。
     4)采用灌溉计划策略与实时灌溉策略,实现了系统的决策支持。灌溉计划策略采用混合蛙跳算法对定额灌溉按作物生育期优化分配灌水量;实时灌溉策略根据墒情监测结果,采用条件式推理,实时进行灌溉决策。两种策略均能保证土壤含水量始终维持在作物正常生长需要的范围之内。
     5)实现了墒情监测与灌溉过程的联动控制。软件系统根据墒情监测结果,通过专家知识进行灌溉决策,并将决策结果通知灌溉设备,实现了监测、决策与控制三者之间的联动控制。决策过程完全通过软件完成,灌溉控制设备只负责执行,降低了硬件系统开发成本。
     6)系统设计以绿色环保为基本理念,在田间充分利用太阳能供电和无线通讯技术,解决了由于大量布线造成的农田环境破坏;同时根据专家知识,实现了作物的按需灌溉,确保灌水量只作用在作物根系主要分布土层,有效控制了肥料的深层入渗造成的地下水污染。
Increasing shortage and deterioration of water resource is one of the worldwide leadingissues in ecological environment. In the agricultural sector, which is a major water user,conserved, reasonable and efficient use of water plays an important role in improving currentsituation of water resource and promoting ecological environment protection. In China, alongwith the social and economic development as well as the advance of urbanization, waterconsumption by agriculture has decreased from92.7%in1949to present60%around. Ofwhich, the water consumption by farmland irrigation represents for90%–95%of waterconsumption by agriculture. However, due to restrictions of financial condition, personnelquality and technological condition, there are still problems of inefficiency, severe waste, andnon-demand-based irrigation in the water consumption by agriculture. In developed countries,in addition to advanced water-saving irrigation techniques such as spray irrigation andmicro-irrigation which are used generally, advanced automatic control technologies are usedto carry our accurate irrigation. They use crop needs for water as the basis and informationtechnology as the means to improve the accuracy of irrigation, carry out reasonable irrigationsystem and improve the utilization rate of water. Smart automatically-controlled irrigationwill improve the management level of irrigation, and change the arbitrary of human operation,with reduced irrigation labors, lower management cost, and significantly improved benefit.Therefore, to promote the implementation of automatically-controlled irrigation, change thecurrently prevailing extensive way of irrigation, and improve the utilization rate of irrigationwater is one of the requisite measures to address water saving in agriculture.
     Currently, the combination of agricultural water saving and environmental protectionhas been gradually an important trend of modern water-saving agriculture. To achievecommon development of agricultural water-saving irrigation and ecological protection needsto build and develop an ecological agriculture system based upon ecological principle and byapplying the method of systems engineering, in order to achieve efficient utilization of waterresource through artificial design, coordinate the relationship between agriculturaldevelopment and environment, water resource utilization and protection, and create avirtuous cycle in respect of agricultural production and ecology. As one of the important tools for developing agricultural water-saving irrigation, soil moisture measurement irrigation hasbeen developed to some extent in extensive areas in China. However, over-high cost of input,restricted geological condition, complicated operation, lower degree of decision support andlower degree of network support have been the main bottleneck for wide-range soil moisturemeasurement irrigation. Therefore, to research and develop a set of complete soil moisturemonitoring system to solve the foregoing problems by hardware and software is of greatsignificance to developing agricultural water-saving irrigation in China and promotingregional ecological construction and restoration.
     Through overall design of soil moisture monitoring plan, based upon careful analysis ofdata transmission plan, interlocked control and decision manner of soil moisture monitoringand irrigation, this study has ended with a set of smart soil moisture monitoring system, witha view to harmonious development between agricultural water-saving irrigation andecological environment. This system can be used for daily irrigation management and controlin such areas as farmland, gardens, and facility agriculture. Following results have beenachieved for the study:
     1) The study has developed a ZigBee wireless and GSM technology basedcommunication gateway. The gateway is deployed between the field ZigBee network andupper computer, communicates with the field network by using user-defined data frames, andexchange information with the upper computer in a user-defined SMS format. Thus theproblem that ZigBee cannot perform super-long distance communication has eliminated. Atthe same time, if there are multiple soil moisture collection points in the field, the gatewaycan seal and transmit the data at multiple collection points. In the entire system, only thegateway uses the pay network, which has reduced the communication costs significantly.
     2) The study has designed and developed an “online soil moisture monitoring system”software system which is based both on C/S and B/S modes. The C/S software can operate ina LAN context. B/S can operate in Internet, allowing smart decision and online managementof soil moisture monitoring. The B/S software exchange information with a specialbackground service program by using UDP. The background service program reads andwrites GSM modules through serial ports, and interconnection between the upper computer and the gateway becomes possible, resulting in absence of poor real-time nature of B/Ssoftware, and difficulty in direct operation of hardware.
     3) With the principal component analysis (PCA) method, the study analyzed the depthand quantity of soil moisture sensor buried. The result showed that, within certain range ofdepth, representative depth can be used to represent the soil moisture content, in order toreduce the quantity of sensors at single monitoring point, and reduce the investment cost.
     4) The study used the irrigation plan strategy and real-time irrigation strategy to allowdecision support to the system. The irrigation plan strategy used the Shuffled Frog LeapingAlgorithm (SFLA) to optimize the allocation of watering volume to rationed irrigationaccording to the growth period of crops; the real-time irrigation strategy provided irrigationdecision on real-time basis according to the soil moisture monitoring result and usingconditional reasoning, ensuring that the soil moisture content was always maintained withinthe range required by normal growth of crops.
     5) The study has made it possible for interlocked control of soil moisture monitoring andirrigation process. Based on the soil moisture monitoring result, the software system madeirrigation decision through expert knowledge, and notified the decision result to the irrigationequipment, thus the interlocked control of monitoring, decision-making and control has beenpossible. The decision-making process was completed totally through software, withirrigation control equipment only responsible for execution, and development cost ofhardware system reduced.
     6) With a basic concept of green and environmental protection in the system design,solar power supply and wireless communication technologies were fully employed in thefield, without destruction to the farmland environment caused by massive wiring; meanwhile,based on expert knowledge, on-demand irrigation of crops was made possible, ensuring thatthe watering volume acted exclusively on the soil layers where crop roots are mainlydistributed, which has effectively controlled the underground water pollution caused by deeppenetration of fertilizer.
引文
[1]潮轮.世界水资源现状堪忧[J].生态经济,2012,(5):8—13.
    [2]王瑗,盛连喜,李科,等.中国水资源现状分析与可持续发展对策研究[J].水资源与水工程学报,2008,19(3):10—14.
    [3]丁文喜.中国水资源可持续发展的对策与建议[J].中国农学通报,2011,27(14):221—226.
    [4]张晓宇,窦世卿.我国水资源管理现状及对策[J].自然灾害学报,2006,15(3):91—95.
    [5]张利平,夏军,胡志芳.中国水资源状况与水资源安全问题分析[J].长江流域资源与环境,2009,18(2):116—120.
    [6]齐学斌,庞鸿宾.节水灌溉的环境效应研究现状及研究重点[J].农业工程学报,2000,16(4):37—40.
    [7].殷飞,金世佳.节水灌溉对生态环境影响评价方法的影响研究[J].农机化研究,2013,(5):45—48.
    [8]高雪梅.中国农业节水灌溉现状、发展趋势及存在问题[J].天津农业科学,2012,18(1):54—56.
    [9]刘七军,李锋瑞.对我国节水型社会建设的系统思考[J].冰川冻土,2010,32(6):1202—1210.
    [10]周彩霞,汪志农.田间节水灌溉管理决策支持系统的开发[J].安徽农业科学,2008,36(3):1271—1272.
    [11]陈智芳,宋妮,王景雷.节水灌溉管理与决策支持系统[J].农业工程学报,2009,25(S2):1—6.
    [12]许迪,康绍忠.现代节水农业技术研究进展与发展趋势[J].高技术通讯,2002,12:103—108.
    [13]康绍忠,李永杰.21世纪我国节水农业发展趋势及其对策[J].农业工程学报,1997,4:1—7.
    [14]李和香.农田节水灌溉技术及发展对策[J].黑龙江水利科技,2010,38(3):205—206.
    [15]傅伯杰.中国旱灾的地理分布特征与灾情分析[J].干旱区资源与环境,1991,5(4):1—7.
    [16]张敏,马广铭,张志明.鄂尔多斯地区开展墒情监测的必要性[J].内蒙古水利,2003,(4):112—113.
    [17]杨诗秀,雷志栋.关于建立田间墒情监测网信息系统的探讨[J].农业工程学报,1996,12(2):17—22.
    [18]冯广志.我国节水灌溉发展的总体思路[J].中国农村水利水电,1998,(11):1—6.
    [19]黄修桥.灌溉用水需求分析与节水灌溉发展研究[D].2005.
    [20]刘雪梅,朱维斌.农田灌溉方式的经济学透视[J].节水灌溉,2003,(4):29—31.
    [21]顾巧英,李莉,曹伟婷,等.土壤墒情监测系统在有机葡萄灌溉中的应用[J].上海交通大学学报(农业科学版),2012,30(4):87—90.
    [22]彭强,梁银丽,陈晨,等.土壤含水量对结果期温室辣椒生长及果实品质的影响[J].西北农林科技大学学报(自然科学版),2010,38(1):154—160.
    [23]何帅,周建伟,郑旭荣.北方干旱内陆河灌区节水农业综合技术模式研究与示范[J].水资源与水工程学报,2009,20(6):62—65.
    [24]孙景生,康绍忠.我国水资源利用现状及节水灌溉发展对策[J].农业工程学报,2000,(2):1—5.
    [25]王关多,何洪升,韩丽霞.墒情监测与预测预报方法研究进展[J].农业网络信息,2011,(11):11—14.
    [26] Department of Rural Irrigation,Drainage&Soil Conservation,Ministry of WaterResources PR.C,Agricultural Publishing House[M].1991.
    [27]朱新国,林方存,高湖滨.墒情监测研究进展综述[J].节水灌溉,2011,(11):53—58.
    [28]吴文义,尉永平.瓶筒法快速测定土壤含水量[J].山西水利科技,2001,(4):20—22.
    [29] Watson K, Rowen L C,Offield T W. APPlication of Thermal Modeling in the Geologiclnterpretation of IR Images[J].Remote Sens Environ,1971,3:2017一2041.
    [30] Watson K, Pohn HA. Thermal Inertia MaPPing from Satellites Diserimination ofGeologic Units in Oman[J].J ResGeol Suvr,1974,2(2):147—158.
    [31] Hall F G Satellite Remote Sensing of Surface Energy Balance:Success, Failure,and Unsolved Issues in FiFE[J]. J Geophy Res,1992,97:19061—9089.
    [32] Vining R G. Estimation of Sensible Heat Flux from Remotely Sensed CanopyTemperature.J Geophy Res,1992,(97):18951—18959.
    [33]田国良,杨希华,郑柯.冬小麦旱情遥感监测模型研究[Jl.环境遥感,1992,7(2):83—89.
    [34] Bowers SA,Hanks R J.Reflection of Radiant Energy from Soils[J].Soil Science,1965,100(2):130—138.
    [35] Hills T C, Reynolds S G.Illustrations of soil moisture variability in selectedareas and plots of different sizes[J].Journal of Hydrology,1969,(8):27—47.
    [36] Bell K R, Blanchard B J, Schmugge TJ, et al. Analysis of surface moisturevariations within large field sites[J].Water Resources Research,1980,(16):796—810.
    [37] Hawley M E, Jackson T J, McCuen R H. Surface soil moisture variation on smallagricultural watersheds[J].Journal of Hydrology,1983,(62):179—200.
    [38] Famiglietti JS, J Devereaux A, Laymon CA, et al. Ground based investigation ofsoil moisture variability within remote sensing footpring during the Southern Greatplains1997(SGP97)Hydrology Experment[J]. Water Resources Research,1999,(35):1839—1851.
    [39] Entin J K, Robock A, Vinnikov, et al.Temporal and spatial scales of observedsoil moisture variations in the extratropics[J].Journal of Geophysical Research,2000,(105):865—877.
    [40] Wate T Crow, Eric F Wood. Impact of soil Moinsture Aggregation on Surface EnergyFlux Prediction During SGP97[J]. Geophysical Research Letters,2002,9(1):1029—2001.
    [41] Fernandez J M, Ceballos A. Temporal stability of soil moisture in a large—field experiment in Spain[J]. Soil Science Society of Americal Journal,2003,(67):1647—1656.
    [42] Buttafuoco G, Castrignano A, Busoni E, et al.Studying the spatial structureevolution of soil water content using multivariate geostatistics[J]. Journal ofHydrology,2005,(311):202—218.
    [43] L Brocca, R Morbidelli, F Melone, et al. Soil moisture spatial variability inexperimental areas of central Italy[J]. Journal of Hydrology,2007,(333):356—373.
    [44]罗毅.墒情预测与随机预报及作物系数研究[M].北京:清华大学,1998.
    [45]杨诗秀,雷志栋,吴婉如,等.农田尺度土壤水分的监测[J].水科学进展,1996,7(1):14—19.
    [46]田国良.土壤水分的遥感监测方法[J].环境遥感,1991,6(2):89—98.
    [47]史海滨,陈亚新,蔡凯,等.西辽河平原土壤墒情的空间变异性与大面积区域预测预报研究[J].干旱区资源与环境,1997,(12):36—43.
    [48]李芳,王娟,邓孺孺.土壤含水量信息提取模型的理论初探[J].理论研究,2001,(4):19—20.
    [49]马孝义,李新平,赵延凤.土壤含水量的Kriging和Cokriging估值研究[J].水土保持通报,2001,21(3):59—62.
    [50]李国芳,夏自强,郝阵纯,等.田间土壤含水率的统计特性分析[J].河海大学学报,2002,(1):11—14.
    [51]靳广超,彭承琳,赵德春,等.基于ZigBee的土壤墒情监测系统[J].传感器与微系统,2008,27(10):92-94.
    [52]胡培金,江挺,赵燕东.基于zigbee无线网络的土壤墒情监控系统[J].农业工程学报,2011,27(4):230-234.
    [53]吴秋明,缴锡云,潘渝,等.基于物联网的干旱区智能化微灌系统[J].农业工程学报,2012,28(1):118-122.
    [54]陈天华,唐海涛.基于ARM和GPRS的远程土壤墒情监测预报系统[J].农业工程学报,2012,28(3):162-166.
    [55]汪燕.基于Zigbee技术和GSM短信息的农业数据采集[J].安徽农业科学,2009,37(27):13243—13245,13258.
    [56]樊志平,洪添胜,刘志壮,等.柑橘园土壤墒情远程监控系统设计与实现[J].农业工程学报,2010,26(8):205-210.
    [57]孙忠富,曹洪太,李洪亮,等.基于GPRS和WEB的温室环境信息采集系统的实现[J].农业工程学报,2006,22(6):131-134.
    [58]章军富,陈峻崎,胡剑飞,等.基于GPRS/SMS和μC/OS的都市绿地精准灌溉系统[J].农业工程学报,2009,25(9):1-6.
    [59]康立军,张仁陟,吴丽丽,等.节水灌溉联动控制系统[J].农业工程学报,2011,27(8):232-236.
    [60]樊志平,洪添胜,刘志壮,等.柑橘园土壤墒情远程监控系统设计与实现[J].农业工程学报,2010,26(8):205-210.
    [61]孙其博,刘杰,黎羴,等.物联网:概念架构与关键技术研究综述[J].北京邮电大学学报,2010,33(3):1—9.
    [62]沈苏彬,范曲立,宗平,等.物联网的体系结构与相关技术研究[J].南京邮电大学学报,2009,29(6):1—11.
    [63] European Research projects on the Internet of Things(CERP-IoT) StrategicResearch Agenda (SRA). Internet of things strategic research roadmap [EB/OL](2009-09-15)
    [2010-05-12].http://ec.europa.eu/information_society/policy/rfid/documents/in_cerp.pdf.
    [64] Commission of the European communities, Internet of Things in2020, EPoss,Brussels [EB/OL].(2008)[2010-05-12]. http://www.umic.pt/images/stories/publicacoes2/Internet-of-Things_in_2020_EC-EPoSS_Workshop_Report_2008_v3.pdf.
    [65]保云.物联网技术研究综述[J].电子测量与仪器学报,2009,23(12):1—7.
    [66]俞磊,陆阳,朱晓玲,等.物联网技术在医疗领域的研究进展[J].计算机应用研究,2012,29(1):1—7.
    [67]刘建生,林自葵,王慧.基于物联网的药品流通过程再造研究[J].物流科技,2007,26(5):104—106.
    [68]侯春生,夏宁. RFID技术在中国农产品质量安全溯源体系中的应用研究[J].中国农学通报,2010,26(3):296—298.
    [69]郭曼,朱海鹏,郦晶.基于数据网络的RFID农产品跟踪与追溯系统研究[J].农机化研究,2007(11):101—104.
    [70]]谢菊芳,陆昌华,李保明,等.基于. NET构架的猪肉安全可追溯系统实现[J].农业工程学报,2006,22(6):218—220.
    [71]马鑫,黄全义,疏学明,等.物联网在公共安全领域中的应用研究[J].中国安全科学学报,2010,20(7):170—175.
    [72]张玉洁,刘军,贾利民,等. RFID技术在铁路集装箱堆场进出口的应用[J].物流科技,2008,31(2):34—36.
    [73]刘东红,周建伟,莫凌飞.物联网技术在食品及农产品中应用的研究进展[J].农业机械学报,2012,43(1):146—152.
    [74] Cai Q Y,Jain M K,Grimes C A. A wireless,remote query ammonia sensor[J].Sens.Actuat. Bio—Chem.,2001,77(3):614—619.
    [75] Marsh J R,Gates R S,Day G B,et al. Assessment of an injectable RFID temperaturesensor for indication of horse wellbeing [C]//ASABE Annual International Meeting2008.Providence,Rhode Island,USA,2008.
    [76]朱伟兴,戴陈云,黄鹏.基于物联网的保育猪舍环境监控系统[J].农业工程学报,2012,28(11):177-182.
    [77]王宗军.决策支持系统的现存问题及其主要研究领域[J].系统工程与电子技术,1992,(11):38—44.
    [78]许世卫.农业信息智能分析关键技术与应用[J].中国科技论坛,2010,(9):128—135.
    [79]曲成义.决策支持系统的探讨[J].系统工程与电子技术,1989,(12):1—7.
    [80]汪志农,吕宏兴,王密侠,等.节水灌溉管理智能决策支持系统研究[J].中国工程科学,2001,3(7):48—53,58.
    [81]张亮,张静,张忠孝,等.灌区节水灌溉决策支持系统研制[J].沈阳农业大学学报,2011,42(2):200—203.
    [82]郑重,马富裕,张凤荣,等.农田水分监测与决策支持系统的实现[J].农业工程学报,2007,23(7):155—161.
    [83]顾世祥,哀宏源,李远华.决策支持系统及其在灌溉实时调度中的应用[J].中国农村水利水电,1998,(8):17—19,45.
    [84] Friedman J H, Turkey J W. A projection pursuit algorithm for exploratory dataanalysis[J]. IEEE Trans on computer,1974,23(9):881—890.
    [85]韩毅,蔡建湖,周根贵,等.随机蛙跳算法的研究进展[J].计算机科学,2010,37(7):16—19.
    [86]段春青,邱林,陈晓楠,黄强.混沌算法在节水灌溉制度优化设计中的应用[J].西北农林科技大学学报(自然科学版),2005,33(9):133—136.
    [87]郑和祥,史海滨,柴建华等.基于RAGA-DP的饲草料作物非充分灌溉制度优化模型[J].农业工程学报,2007,23(11):65—70.
    [88]段春青,邱林,黄强等.基于超平面实码遗传算法的灌溉制度优化设计[J].农业工程学报,2006,22(10):36—39.
    [89]霍军军,尚松浩.基于模拟技术及遗传算法的作物灌溉制度优化方法[J].农业工程学报,2007,23(4):23—28.
    [90]贾小丰,卢文喜,杨忠平等.基于模拟退火算法求解灌溉制度优化模型[J].节水灌溉,2010,(8):64—68.
    [91]张兵,袁寿其,李红等.基于遗传算法求解的冬小麦优化灌溉产量模型研究[J].农业工程学报,2006,22(8):12—15.
    [92]张兵,袁寿其,李红,等.玉米灌溉模型及遗传算法的优化求解[J].农业机械学报,2006,37(9):104—106.
    [93]杨娜,付强,李荣东等.连续蚁群算法在水稻灌溉制度优化中的应用[J].农业工程学报,2010,26(Supp.1):134—138.
    [94]贾小丰,卢文喜,杨忠平,等.基于模拟退火算法求解灌溉制度优化模型[J].节水灌溉,2010,(8):64—68.
    [95]匡迎春.南方丘陵区水稻节水灌溉自动调控系统的研究[D].2011.
    [96]杨风亮,缴锡云,刘一休,等.棉花膜下滴灌墒情监测点的定位[J].灌溉排水学报,2010,29(3):29—31.
    [97]史岩,李帆,孙凯,等.墒情监测中土壤水分传感器埋设位置研究[J].莱阳农学院学报,2006,23(3):179—184.
    [98] Ferreyra R A,A pezteguia H P,Sereno R, et al. Reduction of Soil Water SpatialSampling Density Using Scaled Semivariograms and Simulated annealing[J].Geoderma(00167061),2002,110(3):265—289.
    [99]王树仿.智能化膜下滴灌田间土壤水分监测点布置方案研究[D].南京:河海大学,2009.
    [100]李芳松,雷晓云,周世军,等.膜下滴灌棉田墒情监测点的横向定位研究[J].节水灌溉,2011,(4):4—10.
    [101]信秀丽,张佳宝,朱安宁.区域土壤水分监测点布设方式探讨[J].灌溉排水学报,2008,27(3):16—19.
    [102]杜太生,康绍忠,闫博远,等.干旱荒漠绿洲区葡萄根系分区交替灌溉试验研究[J].农业工程学报,2007,23(11):52—58.
    [103]周青云,王仰仁,孙书洪.根系分区交替滴灌条件下葡萄根系分布特征及生长动态[J].农业机械学报,2011,42(9):59—63,58.
    [104]肖华勇.统计计算与软件应用[M].西安:西北工业大学出版社,2009.
    [105]何晓群.现代统计分析方法与应用[M].北京:中国人民大学出版社,2003.
    [106]张艳玲.山东德州地区土壤墒情监测方法的初步研究[D].2010.
    [107]杨绍辉,杨卫中,王一鸣.土壤墒情信息采集与远程监测系统[J].农业机械学报,2010,41(9):173—177.
    [108]杨绍辉,王一鸣,冯磊.土壤墒情(旱情)监测与预测预报系统的设计与开发[J].中国农业大学学报,2007,12(4):75—79.
    [109]李皓.基于ZigBee的无线网络技术及应用[J].信息技术,2008,(1):12—13.
    [110]蔡型,张思全.短距离无线通信技术综述[J].现代电子技术,2004,(3):65—67.
    [111]杨清爽.全球通GSM数字通信系统综述[J].现代通信,1996,(5)12—13.
    [112]张龙,郭华龙.ZigBee嵌入式物联网网关的设计[J].龙岩学院学报,2012,30(2):23—26.
    [113]张丽萍,缪希仁,程秀华.基于ARM9的嵌入式网关的研究[J].低压电器,2006,(11):44—47.
    [114]赵慧然,石磊,张坤.基于ZigBee技术的物联网网关设计[J].微计算机信息,2012,28(4):62—63,102.
    [115]邵艳清,张伟军,唐晖.物联网网关虚拟ID-虚拟IP映射方法实现[J].计算机工程与应用,2012,48(15):88—92.
    [116]黎燕琼,郑绍伟,李德鹏.岷江上游干旱河谷白刺花生物量及其与土壤含水量关系研究[J].四川林业科技,2009,30(4):17—22.
    [117]李林锋.土壤含水量对桉树幼苗生长及生物量分配的影响[J].湛江海洋大学学报,2004,24(1):68—71,84.
    [118]徐娜,张众,庞敏娜.不同土壤含水量对根茎冰草幼苗生长发育的影响[J].内蒙古农业大学学报,2011,32(2):297—299.
    [119]茹桃勤.刺槐无性系苗期叶水势和相对含水量与土壤含水量之间关系研究[J].水土保持研究,2006,13(4):22—24.
    [120]苏涛,王鹏新,杨博,等.基于生物量的区域土壤水分变化量反演[J].农业工程学报,2010,26(5):52-58.
    [121]卢京潮.自动控制原理[M].西安:西北工业大学出版社,2004.
    [122]许晓鸣,杨惺普.智能控制理论的新进展[J].电子学报,1995,23(10):25—30.
    [123]裘正军,童晓星,沈杰辉,等.基于模糊控制与虚拟仪器的灌溉决策系统研究[J].农业工程学报,2007,23(8):165—169.
    [124]吴月茹,王维真,晋锐,等.TDR测定土壤含水量的标定研究[J].冰川冻土,2009,31(2):262—267.
    [125]李晓东,吴永烽,李光林,等.基于太阳能的无线土壤水分传感器的研制[J].农业工程学报,2010,26(11):13-18.
    [126]孙宇瑞,汪懋华,赵燕东.一种基于驻波比原理测量土壤介电常数的方法[J].农业工程学报,1999,15(2):37—41.
    [127]李道西,彭世彰,丁加丽. TDR在测量农田土壤水分中的室内标定[J].干旱地区农业研究,2008,26(1):249—252.
    [128]周凌云,陈志雄,李卫民.TDR法测定土壤含水量的标定研究[J].土壤学报,2003,40(1):59—64.
    [129]高亮,成立,袁寿其.多元回归分析在土壤湿度传感器标定中的应用[J].农机化研究,2003,(2):182—183.
    [130]黄开志,黄耀,雍毅.一种基于示值误差的传感器标定方法[J].传感器与微系统,2009,28(3):104—106.
    [131]陈琦,韩冰,秦伟俊.基于ZigBee/GPRS物联网网关系统的设计与实现[J].计算机研究与发展,2011,48(增):367—372.
    [132]俞鹤伟,牟艳华. C/S模式下MIS系统网络规模的分析[J].华南理工大学学报(自然科学版),2000,28(9):82—86.
    [133]王经卓,殷国富,胡晓兵.基于B/S模式的远程协同设计系统的实施方法[J].计算机集成制造系统,2000,6(6):52—55,60.
    [134]金海卫. MIS需求分析的层次分析法[J].系统工程理论与实践,1998,(7):94—97.
    [135]狄林林.基于约束目标的需求分析技术的研究与实现[D].2010.
    [136]丁茂顺.软件开发活动中的接口设计考虑[J].计算机研究与发展,1992,(7):16—22.
    [137]杨新宇,郑守淇,曾明.用于业务流设计的一种多Agent模型[J].西安交通大学学报,2001,35(8):834—838.
    [138]孟小峰,周龙骧,王珊.数据库技术发展趋势[J].软件学报,2004,15(12):1822—1836.
    [139]蒲昭岐.目前市场上主流的数据库管理系统[EB/OL].(2012-09-20).http://zhidao.baidu.co_m/question/479001368.html
    [140]王珊,萨师煊.数据库系统概论(第四班)[M].北京:高等教育出版社,2006.
    [141]杨继国. Web2DB:一个通用WWW数据库接口系统[J].计算机研究与发展,1998,35(10):886—890.
    [142]赵洪彪,张素琴,周立柱. Internet环境中的数据库信息发布途径[J].软件学报,1998,9(8):606—608.
    [143]于晓晖,李健.基于数据驱动的数据库动态发布技术的研究[J].计算机工程与应用,2001,(8):101—103.
    [144]尹娟,费良军,朱悦发.灌水定额对波涌灌溉土壤中硝态氮浓度的影响[J].农业工程学报,2009,25(5):30-34.
    [145]李毅,邵明安,王文焰,等.不同灌水定额条件下的覆膜开孔蒸发实验研究[J].水科学进展,2004,15(3):357—363.
    [146]匿名. IIS和Apache比较[EB/OL].(2008-10-31). http://zhidao.baidu.com_/questi_on/73774241.html.
    [147]梁高永,杨正华.Web Socket的远程实时监控系统设计[J].吉首大学学报,2010,31(6):46—48.
    [148]吴晓东,陈纯.基于策略的CRM决策支持研究[J].模式识别与人工智能,2007,20(6):861—866.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700