用户名: 密码: 验证码:
中国近海叶绿素和初级生产力的时空分布特征和环境调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究通过实测和遥感反演两方面的相结合,研究中国近海浮游植物生物量和初级生产力的时空变化和环境调控机制,描述不同海域叶绿素和生产力的季节和年际变化特征,探讨其生态动力学过程,并尝试估算中国近海浮游植物固碳量。
     首先通过对近三十年来叶绿素和初级生产力资料的整理和分析,研究了黄、东海大尺度浮游植物生物量和初级生产力的区域分布特征。通过对浮游植物生物量和初级生产力的相关参数进行聚类分析结果表明,浮游植物生物量和初级生产力的分布存在明显的区域特征和季节变化,其特征区的边界和各参数的水平与所在海域水团的性质、时空变化以及水深密切相关,其中高营养盐浓度、低真光层厚度的沿岸水与低营养盐浓度、高真光层厚度的黑潮水相互消长与混合是这一系列变化的主要驱动过程。研究同时表明黄、东海浮游植物分布能够反映不同生境的特征,以浮游植物的分布特征进行生态区划是可行的。
     在南海,通过2004年2月所进行的多学科综合调查,研究了该海域冬季浮游植物生物量和初级生产力的分布、粒级组成及其环境调控机制。结果表明南海北部叶绿素浓度平均为0.6mg/m3,初级生产力为386 mgC/m2/d。浮游植物生物量和初级生产力及其粒度结构主要受环流驱动下的营养盐调控,研究海域存在明显的物理一生物海洋学耦合过程。在近岸海域,受沿岸流和珠江冲淡水的影响呈现出低温、低盐、高营养盐、高叶绿素和初级生产力的特征;而在陆架以外区域营养盐和浮游植物的分布主要受中尺度涡控制,其中反气旋涡区以高温、低盐、低营养盐、低叶绿素和低初级生产力为主要特征,而在气旋涡区的特征则与之相反。浮游植物粒度结构沿岸带为小型(Net)>微型(Nano)>微微型(Pico),陆架以外海域大体为Pico>Nano>Net; Net、Nano和Pico级浮游植物对海域生物量和初级生产力的贡献分别为24.16%,30.36%、45.48%和11.81%、25.35%、61.84%。
     其次,在对国际主流初级生产力模型比较的基础上,基于渤、黄、东海的浮游植物群落特征,建立一个改进型的初级生产力反演模型(C-VGPM)。利用SeaWiFS提供的Chl a、K490、PAR等遥感产品计算得到了模式所需的各项参数,通过模型计算得到了渤、黄、东海10年(1998~2007)来叶绿素和初级生产力的分布资料。结果显示研究海域的初级生产力的季节分布为单峰形式,具体为夏季(524 mgC/m2/d)>春季(424 mgC/m2/d1>秋季(346 mgC/m2/d)>冬季(177 mgC/m2/d);各海域中黄海最高(404 mgC/m2/d),东海次之(372 mgCm2/d),渤海最低(289 mgC/m2/d,全海域平均为368 mgC/m2/d.陆架和河口海域是东中国海浮游植物生物量和生产力最高的区域,沿岸带和陆架外海域则相对较低。研究对近海叶绿素和初级生产力的时空变化给出了更为细致的描述,发现就全局而言,东中国海的“气候-水团-陆源输入”共同控制着浮游植物生物量和生产力的水平和分布。
     在南海海域,选取VGPM模式对南海北部海域初级生产力进行反演,,结合现场实测数据对模式进行了修订和误差分析。在此基础上通过反演计算获得了南海北部海域七年平均(1998~2004)初级生产力逐月分布图像。研究结果表明,研究海域初级生产力分布趋势为由沿岸带向陆架以及外海逐渐降低,其中沿岸带区高于400mgC·m-2·d-1,外海区大致在100~300 mgC·m-2·d-1;初级生产力水平冬季最高(平均为608 mgC·m-2·d-1)、夏季最低(平均为292 mgC·m-2·d-1),春、秋季基本持平。控制初级生产力时空分布的因子主要有营养盐、温度、光照,其中又以季风和环流驱动下的营养盐变化对初级生产力的调控最为显著。
     通过计算南海河口、上升流及反气旋涡等生境表层叶绿素和初级生产力的周年变化,进一步分析南海北部不同生境的物理-生物海洋学耦合特征。结果表明,季风驱动下的物理—化学—生物海洋学耦合过程是控制研究南海浮游植物生物量和初级生产力时空变化的主导因素。浮游植物生物量和初级生产力随着季风、环流以及中尺度涡等物理现象的更替而呈现出明显的区域差异和季节变化;其高值一般出现在珠江口和沿岸上升流区,而低值则出现在外陆架反气旋涡和海域南端,往往伴随东北季风的盛行而升高,随西南季风的增强而降低。通过遥感资料估算得到南海北部海域浮游植物年固碳量为4.83×107t C,其中沿岸带、陆架、开阔海海域对整个研究海域固碳量的贡献分别为38%、29%和33%。
In this dissertation, spatial and temporal distributions of phytoplankton biomass and primary products in Chinese coastal area, and its environmental control mechanism are studied by combining the approaches of both on site measurement and modeling based on ocean remote sensing data. The seasonal and annual variations of chlorophyll and primary production in different sea areas are described, and the corresponding eco-dynamic process is discussed. In addition, the quantity of carbon fixed by phytoplankton in Chinese coastal area is estimated.
     Large-scale ecological zonation of the Yellow Sea (YS) and East China Sea (ECS) were studied through sorting out and analysis of chlorophyll a and primary production data for nearly 30 years. The studied sea areas were partitioned into several ecological zones by cluster analysis of correlative parameters of phytoplankton biomass and production. Distribution of biomass and production of phytoplankton exhibited obvious regional characteristics and seasonal variation; their border and levels in the ecological zones were closely related to water masses' properties, and the temporal and spatial variations.In it, the mutual growth and decline and mixing between the coastal water with high nutrient concentration and thin euphotic zone, and Kuroshio water with low nutrient concentration and thick euphotic zone were main factors governing the processes of a series of ecological variation.The research results also showed that although the partitioning results exhibited seasonal and spatial variations, three ecological zones, i.e. the Coastal Zone, Kuroshio Zone and East China Sea Shelf Zone were fundamental zones reflected pronouncedly by major temporal and spatial patterns of phytoplankton biomass and production in the Yellow Sea and East China Sea.
     In this paper, the distributions, size fractionations and environmental control mechanisms of phytoplankton stock and primary production (PP) in the northern South China Sea were studies based on a comprehensive survey conducted in February 2004 in this area.The results show that the average concentrations of chlorophyll a (Chla) is 0.6 mg/m3 and PP is 386 mgC/m2/d.The distributions and size fractionations of Chla and PP in the northern South China Sea (NSCS) are mainly controlled by the nutrients which driven by monsoon-circulation and there are obvious coupled physical-chemical-biological processes in this area.In detail, in the coastal zone, influenced by the coastal current and Zhujiang dilute water, the characteristics are low temperature, low salinity, rich nutrients, high Chla and PP. While in the deep sea, the distributions of nutrients and Chla are mainly controlled by the mesoscale eddies:high temperature, low salinity, poor nutrients, low Chla and PP appear when controlled by the anticyclonic eddies and the characteristics are on the contrary when controlled by cyclonic eddies. With respect to the size fractionations of phytoplankton, Net>Nano>Pico are observed in the coastal zone, while Pico>Nano>Net in deep sea. The contributions of Net, Nano and Pico for Chla and PP are 24.16%,30.36%,45.48% and 11.81%,25.35%, 61.84%, respectively in the whole study area.
     In this study, an enhanced primary production estimation model (C-VGPM), which is more suitable for Chinese costal area, has been established based on comparing mainstream international primary production estimation models and analyzing the characteristics of phytoplankton community in Bohai Sea, Yellow Sea and East China Sea. The model parameters are calculated from remote sensing products, such as Chl a、K490 and PAR et al.,provided by the satellite SeaWiFS.By using the C-VGPM model and appropriate model parameters, the distributions of chlorophyll and primary production in ten years, from 1998 to 2007, are estimated.The results show that the seasonal distribution of primary production in the studied sea area is a single peak. The primary production in summer is the highest, i.e.,PP in summer (524 mgC/m2/d)>PP in spring (424 mgC/m2/d)> PP in autumn (346 mgC/m2/d)> PP in winter(177 mgC/m2/d). In terms of spatial distribution, PP in Yellow Sea is the highest (404 mgC/m2/d), the middle is in the East China Sea(372 mgC/m2/d), the lowest is in Bohai Sea (289mgC/m2/d).The average primary production in the whole studied sea area is 368 mgC/m2/d.The highest phytoplankton biomass and primary production in China Sea appears in shelf and estuary area, while those in the costal area and off-shelf area are comparatively lower. The spatial and temporal distributions of inshore chlorophyll and primary production are described in detail in this study. It is observed that from an overall point of view, the climate, the water mass and the terrestrial input in China Sea control the quantity and distribution of phytoplankton biomass and primary production together.
     An improved VGPM model were developed and applied to estimate the primary production in the northern South China Sea. The parameters of the model were gained based on the remote sensing data(including Chl a,K490 and SST et al.)provided by SeaWiFS and AVHRR.The model was modified according to the synchronous ship-measured data and the errors were estimated as well.Based on this improved model, the monthly mean of primary production in 7 years(1998 to 2004) in the northern South China Sea were calculated.Results show that the primary production in the studied area gradually decrease from coastal zone (the mean >400 mgC·m-2·d-1) to deep sea (100~200 mgC·m-2·d-1).With respect to the seasonal variation, the daily average primary production in the whole study area is the highest in winter (608 mgC·m-2·d-1) and the lowest in summer (292 mgC·m-2·d-1) and it is almost the same between spring and autumn.The main factors which affect the spatial-temporal distribution of primary production are nutrients, temperature and PAR.,particularly nutrients which driven by monsoon-circulation.
     Based on the improved VGPM model and 7 years average data from SeaWiFS and AVHRR, the annual variation of surface chlorophyll a and primary production in different environments (e.g. Estuary,upwelling and eddies) in the northern South China Sea was analyzed in this study. The results show that the physical-chemical-biological coupling processes driven by monsoon are the main factor controlling the spatial-temporal variation of phytoplankton biomass and primary production. With the changes of physical features (e.g. monsoon, circulation and eddies), chlorophyll a and primary production show great variation.The high values appeared in the Peal River Estuary and coastal zone and the low ones appeared in the shelf anti-cyclonic eddies and the open sea. According to their temporal change,in most cases, the phytoplankton biomass and primary production are high when the Northeast Monsoon prevails and low when the Southwest Monsoon does. Finally, based on the remote sensing data, the annual quantity of fixing carbon in the northern South China Sea was estimated (4.83×107t C/a) and the contributions of the coastal zone,shelf and open sea are 38%,29% and 33%,respectively.
引文
[1]Austin R W,Petzold T J.The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner. In:J F R Gower (ed.), Oceanography from Space. New York:Plenum Press,1981.239-256.
    [2]Babin M. Therriault J C, legendre L, et al. Variatiojns in the specific absorption coefficient for natural phytoplankton as semblages:Impact on estimations of primary production. Limnol.Oceanogr.1993,38:154-177
    [3]Babin M, Therriault J C, legendre L, et al.Variatiojns in the specific absorption coefficient for natural phytoplankton as semblages:Impact on estimations of primary production. Limnol. Oceanogr.1993,38:154-177.
    [4]Behrenfeld M J, Falkowski P G. Photosynthetic rates derived from satellite-based chlorophyll concerntration.Limnol.Oceanogr.,1997,42(1):1-16.
    [5]Behrenfeld M J, P G Falkowski. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol.Oceanogr.,1997,42:1-20.(
    [6]Berthon J,A Morel.Validation of spectral light-photosynthesis model and use of the model in conjunction with remotely sensed pigment observations.Limnol. Oceanogr.,1992, 37(4):781-796
    [7]Bishop J K B, C K Guay, J T Sherman et al. Prospects for a "C-Argo":A new approach for exploring ocean carbon system variability, In:International Workshop on Autonomous Measurements of Biochemical Parameters in the Ocean, Honolulu,2001
    [8]Cadee G C.Primary production of the Guyana Coast. Netherlands Journal of Sea Research, 1975,9(1):126-143.
    [9]Chen,C.,Shiah, F., Chung, S.,and Liu, K.:Winter phytoplankton blooms in the shallow mixed layer of the South China Sea enhanced by upwelling, J. Mar. Syst.,59,97-110, 2006.
    [10]Cheristopher B F, M J Behrenfeld, J T Randerson, et al.Primary Production of the Biosphere:Integrating Terrestrial and Oceanic Components. Science,1998,281:237-240
    [11]Dugdale R C et al. Estimating new production in the equatorial Pacific Ocean at 150°W. J. Geophy. Res.,1992,97(C1):681-686
    [12]Eppley R W & B J Peterson.Particulate organic matter flux and planktonic new production in the deep ocean.Nature,1979,282:677-680
    [13]Eppley R W, Stewart E, Abbott M R.Estimating ocean primary production from satellite chlorophyll,introduction to regional differences and statistics for the southern California bight. J.Plankton Res.,1985,7(1):57-70.
    [14]Evans C A et al. A Handbook for the Measurement of Chlorophyll a and Primary Production. BIOMASS Scientific Series,1987,8,1-114
    [15]Fei Z., B Li, K Kazunori.Primary productivity in the Northern East China Sea. Proceeding of China-Japan Joint Symposium of the Cooperative Research on the Kuroshio, China Ocean Press, Beijing,1994,453-469
    [16]Gong G C, Wen Y H, Wang B W, Liu G J.Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep-Sea Res II,2003,50:1219-1236
    [17]Han B P,Mvirtanen,J Koponen, et al.Predictors of light-limited growth and competition of phytoplankton in an well-mixed water column. Journal of theoretical biology, 1999,197:439-450
    [18]Holm-Hansen O, et al. Primary production and the factors controlling phytoplankton growth in the Southern Ocean. In:adaptations within Antarctic Ecosysytems, ed.Llano G A,1977, 11-50
    [19]Iverson R L. Control of marine fish production. Limnol.Oceanogr.,1990,35(1):1593
    [20]Ishizaka J.Spatial Distribution of Primary Production off Sanriku,Northwestern Pacific, during Spring Estimated by Ocean Color and Temperature Scanner (OCTS). Journal of Oceanography,1998,54:553-564
    [21]Justic D,Rabalais N, Turner R, Dortch Q, Changes in nutrient structure of river-dominated coastal waters:stoichiometric nutrient balance and its consequences[J]. Estuarine, Coastal and Shelf Science,1995,40:339-356.
    [22]Keeling C D. The global carbon cycle:What we know and need to know from atmosphere and oceanic observations In:Proceedings of Carbon Dioxide Research Conference:Carbon Dioxide, Science and Consensus,1983,U.S.Dept.of Energy, Washington D.C.
    [23]Lewis M R, J J Cullen, T Platt. Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity in chlorophyll profile, J Grophys Res.1983, 88C(4):6575-6590
    [24]Litchman E and C A Klausmeier. Competition of phytoplankton under fluctuating light. The American Naturalist,2001,157(2):171-187
    [25]Liu K, Chao S, Shaw P, et al. Monsoon-forced chlorophyll distribution and primary production in the South China Sea:observations and a numerical study. Deep-Sea Res., 2002,49:1387-1412.
    [26]Liu, K.,Chen, Y.,Tseng, C.,Lin, I.,Liu, H.,and Snidvongs, A.:The significance of phytoplankton photo-adaptation and benthic-pelagic coupling to primary production in the South China Sea:Observations and numerical investigations, Deep-Sea Res. Ⅱ,2007,54, 1546-1574.
    [27]McClain C R, Cleave M L, Feldman G C,et al. Science quality SeaWiFS data for global biosphereresearch.Sea Technology,1998,39:10-16.
    [28]Mealler J L and Lange R E.Bio-optical provinces of the northeast Pacific Ocean:A provisional analysis. Limnol.Oceanogr.1989,34:1572-1586
    [29]Morel A, Berthon J F. Surface pigments, algal biomass profiles and potential production of the euphotic layer:relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr.1989,34:1541-1564.
    [30]Morel A.Light and marine photosynthesis:a spectral model with geochemical and climatological implication. Prog. Oceanogr.1991,26:263-306
    [31]Morel A, D Antoine, M Babin, et al.Measured and modeled primary production in the northeast Atlantic (EUMELI JGOFS program):the impact of natural variations in photosynthetic parameters on model predictive skill.Deep-Sea Res.1996,43:1273-1304
    [32]Ning X., Liu Z. The patterns of distribution of chlorophyll a and primary production in coastal upwelling area off Zhejiang. Acta Oceanol Sinica,1988,7(1):126-136
    [33]Ning X.,-Liu Z., Shi J. PP and estimation of potential fish catch in the Bohai Sea,Yellow Sea and East China Sea.Acta Oceanologica Sinica,1995,17(3):72-84
    [34]Ning, X., Liu, Z., Cai, Y., et al. Physicobiological oceanographic remote sensing of the East China Sea:Satellite and in situ observations. Journal of Geophysical Research,1998, 103(C10):21623-21635
    [35]Ning X.and Cai Y. A review on primary production studies for China seas in the past 20 years. Donghai Marine Scince,2000,18(3):14-20
    [36]Ning X., Chai F.,Xue H.,et al. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. J. Geophys. Res., 2004,109,C 10005
    [37]Ning X R, Li W K W, Cai Y M, Shi J X.Comparative analysis of bacterio-plankton and phytoplankton in three ecological provinces of the northern South China Sea. Mar Ecol Prog Ser,2005a,293:17-28
    [38]Ning X R, Li W K W, Cai Y M, Liu C G,Shi J X. Standing stock and community structure of photosynthetic picoplankton in the northern South China Sea.Acta Oceanol Sin.2005b, 24(2):57-76
    [39]Ning X.,Chai F., Xue H.et al.Physical-biological oceanographic coupling influencing phytoplankton and primary prodution in the South China Sea. J. Geophysical Res. in press.
    [40]Orellana M.and M J Perry. An immuneoprobe to measuree Rubisco concertration and maximal photosynthetic rates of individual phytoplankton cells. Limnol.Oceanogr. 37:478-490
    [41]Parsons T R,et al. A manual of Chemical and biological methods for seawater analysis. Pergamon Press,1984,1-173
    [42]Platt T.,K.L.Denman and A.D.Jassby. Modeling the productivity of phytoplankton, in The Sea:Ideas and Observations on Progress in the Study of the seas. Vol.Ⅵ.Goldberg, E. D.(Ed.),New York, John Wiley,1048pp,1977
    [43]Platt T, C.L. Gallegos and W.G.Harrison. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research,1981,687-700
    [44]Platt T.,Primary production of the ocean water column as a function of surface light intensity:algorithms for remote sensing. Deep-Sea Res.,1986,33:149-163.
    [45]Platt T, Carla Caverhill and Shubha Sathyendranath. Basin-Scale estimate of oceanic primary production by remote sensing:The North Atlantic. J. Geophys. Res.1991,96:15147-15159
    [46]Platt T, S Sathyendranath. Estimators of primary production for interpretation of remotely sensed data on ocean color. J.Geophys. Res.,1993,98:14561-14576.
    [47]Rodhe W. Standard correlation between pelagic photosynthesis and light. In:C R Goldman (ed.), Primary Productivity in Aquatic Environments. Berkeley:University of California Press,1965,365-38.1.
    [48]Ryther J H,Photosynthesis in the ocean as a function of light intensity. Limnol.Oceanogr., 1956,1,61-70
    [49]Ryther J H R, C S Yentsch.The estimation of phytoplankton production in the ocean from cholorophyll and light data. Limnol. Oceanogr.,1957,2:281-286.
    [50]Sathyndranath S,Platt T,Caverhill C M,Warneck R E and Lewis M R. Remote sensing of oceanic primary production:computations using a spectral model,Deep Sea Research,1989, 36(3):431-453
    [51]Sathyndranath S,Platt T,Caverhill C M,Warneck R E and Lewis M R. Remote sensing of oceanic primary production:computations using a spectral model,Deep Sea Research,1989, 36(3):431-453
    [52]Shiah, F., Liu, K., and Tang, C:The South East Asia Time Series Study (SEATS). US-JGOFS Newsletter,1999,10(1),8-9
    [53]Shiah F K, Gong G C and Liu K K. Light effects on phytoplankton photosynthetic performance in the southern East China Sea north of Taiwan. Bot.Bull.Aca. Sin., 1996,37:133-140
    [54]Smith R C,Eppley R W, Baker K S.Correlation of primary production as measured aboard ship in southern California coastal water and as estimated from satellite chlorophyll images. Marine Biology,1982,66:281-288.
    [55]Steemann N E.The use of radioactive carbon (14C) for measuring organic production in the sea.J. Cons. Int. Explor. Mar.1952,18,117-140
    [56]Tailing J F. The phytoplankton population as a compound photosynthetic system.New Phytol.,1957,56:133-149.
    [57]Takahashi M and Hori T. A bundance of picophytoplankton in the subtropical and tropicalwaters. Mar Biol,1984,79(2):1847-1861
    [58]Tang Q. Marine biological resources in Chinese Exclusive Economic Zone and habitat environment. Beijing:Science Press,2006.
    [59]Tassan S. An improved in-water algorithms for the determination from Thematic Mapper data in coastal waters. Int. JRemote Sens,1993,14:1221-1229.
    [60]Wang G, Su J, Peter C. Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters,2005,30(21):212121
    [61]Wollast R. Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean, in:The Sea, The Global Coastal ocean,edited by K H Brink and A R Robinson,1998,Vol.10,213-252, J Wiley&Sons, New York
    [62]Yuan Y, SU J.,XIA X.Diagnostic calculation of three dimensional circulation in the East China Sea (summer 1984). SUN X. Kuroshio Symposium Series. Beijing:China Ocean Press,1987,45-53.
    [63]Zheng, G., and Tang, D.:Offshore and nearshore chlorophyll increases induced by typhoon winds and subsequent terrestrial rainwater runoff, Mar. Ecol. Prog. Ser.,2007,333.,61-74
    [64]柴扉,薛惠洁,侍茂崇.南海北部陆架区三个典型反气漩涡水文特征及演变规律.中国海洋学文集,第13集,北京:海洋出版社,2001,105-116
    [65]陈楚群.南海海域叶绿素浓度分布特征的卫星遥感分析热带海洋学报.2001,20(2):66-70
    [66]曹文熙,杨跃忠,钟其英等.南海海洋水色遥感的主因子分析,遥感学报,1999,2(1):47-54
    [67]曹文熙,钟其英,黄良民等.用生物光学方法研究南沙群岛海区的初级生产力,南沙群岛海区生态过程研究(一),科学出版社,1997
    [68]陈兴群,陈其焕,庄亮钟.南海中部叶绿素a分布和光合作用及其与环境因子的关系.海洋学报,1989,11(3):349-351
    [69]丁一汇,李崇银.南海季风爆发和演变及其与海洋相互作用.北京气象出版社,1999,66-72
    [70]黄良民.南沙群岛海区的光合色素和初级生产力的分布特征初探.中国科学院南沙综合科学考察队.南沙群岛及其邻近海区海洋生物研究论文集(二).北京:海洋出版社,1991.134-491
    [71]费尊乐,毛兴华,朱明远,李冰,李宝华,管永红,张新胜,吕瑞华.渤海生产力研究Ⅱ.初级生产力及潜在渔获量的估算.海洋学报,1988,10(4):481-489
    [72]费尊乐,Trees C C,李武.遥感海洋初级生产力的生物地理动力学问题.黄渤海洋,1996,14:63-72
    [73]贺志刚,王东晓,陈举,等.卫星跟踪浮标和卫星遥感资料海面高度中的南海涡旋结构.热带海洋学报,2001,20(1):27-35
    [74]李超伦,栾凤鹤.东海春季真光层分级叶绿素a分布特点的初步研究,海洋科学,1998,4:59-62
    [75]李国胜,梁强,李柏良.东海真光层深度的遥感反演及其季节性变化机制.自然科学进 展,2003,13(1):90-94.
    [76]刘宝银.应用航天遥感信息对黄、渤海冬季初级生产力的估算.水产学报,1984,8(3):227-234
    [77]吕瑞华,夏滨,李宝华,费尊乐.渤海水域初级生产力10年间的变化.黄渤海海洋,1999,17(3):80-86
    [78]宁修仁,刘子琳,史君贤.渤、黄、东海初级生产力和潜在渔业生产量的评估.海洋学报,1995,17(3):72-84
    [79]宁修仁.我国初级生产力研究二十年.东海海洋,2000,118:13-20
    [80]宁修仁.海洋微型和超微型浮游生物.见:苏纪兰,秦蕴珊主编.当代海洋科学学科前沿.北京:学苑出版社.2000a.272-277
    [81]宁修仁.海洋微型生物食物环.见:苏纪兰,秦蕴珊主编.当代海洋科学学科前沿.北京:学苑出版社.2000b.277-281
    [82]宁修仁,蔡昱明,李国为,等.南海北部微微型光合浮游生物的丰度及环境调控.海洋学报,2003,25(3):83-97
    [83]宁修仁,史君贤,蔡昱明等.长江口和杭州湾海域生物生产力锋面及其生态效应,海洋学报.2004,26(6):96-106
    [84]商少凌,洪华生.海洋初级生产力模式与遥感应用研究进展.厦门大学学报,2001,40:647-652
    [85]孙军,刘东艳,柴心玉,张晨.1998-1999年春秋季渤海中部及其邻近海域叶绿素a浓度及初级生产力估算.海洋学报,2003a,23(3):518-526
    [86]王桂华,苏纪兰,齐义泉.南海中尺度涡研究进展.地球科学进展,2005,20(8):882-886
    [87]王胄,陈庆生.南海北部之暖心涡流(一).台湾大学海洋学刊,1987,18:92-103.
    [88]王胄,陈庆生.南海北部之暖心涡流(二).台湾大学海洋学刊,1987,18:104-113.
    [89]王增焕,李纯厚,贾晓平.应用初级生产力估算南海北部的渔业资源量.海洋水产研究,2005,26(3):9-15.
    [90]薛惠洁,柴扉,王丽娅.珠江口及其邻近海域环流模式结构,中国海洋学文集,第13集,海洋出版社,2001,117-128
    [91]许建平,薛惠洁,侍茂崇等.1998年夏季南海上层环流和中尺度涡观测研究,中国海洋学文集,第13集,海洋出版社,2001,178-187
    [92]赵骞,田纪伟,赵仕兰,吴自库.渤海冬夏季营养盐和叶绿素a的分布特征.海洋科学,2004,28(4):34-39
    [93]郑国侠,宋金明,戴纪翠.南黄海秋季叶绿素a的分布特征与浮游植物的固碳强度.海洋学报,2006,28(3):109-118
    [94]唐启升,主编.中国专属经济区海洋生物资源与栖息环境.北京:科学出版社.2006
    [95]唐世林.海洋初级生产力的遥感研究进展.台湾海峡,2006,26(4):22-29
    [96]詹华平,潘玉球,许建平.1998年4-7月南海环流结构及其演变特点的初步分析,东海海洋.1999,17(4):12-18
    [97]朱根海,宁修仁,蔡昱明等.南海浮游植物种类组成和丰度分布的研究,海洋学报.2003,25(2):8-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700