用户名: 密码: 验证码:
渤海湾西北部冰消期沉积层序与演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以其内约1000km的高分辨率浅地层剖面数据的地震分析为基础,开展验证钻孔的沉积岩相分析、微体生物分析、14C和OSL的沉积时序分析、以及13个主微量地球化学元素的物源分析,揭示了渤海湾西北部冰消期以来,在海面变化、沉积供给变化条件下,形成的地震层序、沉积环境和物源演化进程。
     渤海湾西北部冰消期以来沉积序列有6个地震单元构成,自上至下分别为Ua、Ub、Uc、Ud、Ue和Uf(其中Uf为声波基底),被6个主要地震反射界面所分隔,自上而下依次为T0、R1、R2、R3、T1和T2,在4个验证钻孔上部分别对应6个沉积单元:DU1、DU2、DU3、DU4、DU5、和DU6。渤海湾西北部层序地层以Ⅰ型层序界面为底界,之上发育了3个体系域。
     低位体系域(LST),形成于末次盛冰期低海面时期(约22~15 ka BP),对应于Uf单元,由大量的深切河谷和洪泛平原沉积组成。
     海侵体系域(TST),形成于冰消期海侵时期(约15~7 ka BP),对应于Ue单元。早期(约15~10 ka BP)主要形成洪泛沼泽炭质沉积和深切河谷充填;中期(约10~8 ka BP)沉积以潮滩或河口沉积为主,并形成大型、稳定的海侵水道;后期(约8~7 ka BP)原潮滩或河口沉积遭受海底侵蚀,海侵水道仍处于冲刷状态。冰消期海侵时期,研究区南部主要物质来源为黄河,并混合有其它源区物质;研究区北部物源供给不稳定,并无优势物源,主要为燕山水系和太行水系沉积。
     高水位体系域(HST),形成于约7 ka BP以后的海面高水位时期,在沉积供给复杂变化背景下,形成由Ud, Uc, Ub,和Ua单元组成的高水位体系域复杂体:
     约7-3.5 ka BP (Ud单元形成),黄河在此期间曾入海于渤海湾西岸,在研究区南部形成NE方向前积的黄河三角洲;在研究中部和北部形以黄河物源为主的陆架浅海沉积,海侵水道仍未被充填。
     约3.5-1 ka BP (Uc单元形成),研究区北部和中部形成2个三角洲沉积体,并形成海岸线的快速向海推进,海侵水道被完全充填。北部的三角洲为燕山水系和太行水系形成,并以燕山水系为主;中部的三角洲由黄河水系和太行水系形成。
     约1-0.15 ka BP (Ub单元形成),研究区中部海河口附近形成黄河与太行水系三角洲,北部近岸地区形成以燕山水系物源为主的滨浅海沉积。
     约150年以来(Ua单元形成),因AD 1855黄河重归渤海,形成以悬浮沉积物为主的现代渤海沉积,沉积物源以黄河物质为主。
From the northwest Bohai Bay, the western part of Bohai Sea, the seismic analysis in more than 1000km of high-resolution sub-bottom profiles, together with the lithofacies, micropaleontology, chronostratigraphy, and geochemistry elements analysis in sediment cores, reveal the structure, sedimentary environment and provenance evolutions of Deglacial succession in response to fluctuations in sea-level and switching of river discharges. The Deglacial succession in northwest Bohai Bay consists of six seismic units (Ua-Uf, in descending order) bounded by key reflection surfaces (To, R1, R2, R3, T1 and T2), corresponding respectively to six depositional units (DU1-DU6) in 4 sediment cores. The Deglacial sequence in the northwest Bohai Bay consists of three systems tracts of lowland, transgressive and highstand, overlying onto the type I boundary.
     Lowstand Systems Tract (LST), corresponding to the Unit Uf, consists of the deep fluvial valley and floodplain sediments, formed during the Last Glacial Maximum (LGM) period (ca.22~15 ka BP), when the global sea-level was 120m below present sea-level (bpsl).
     The Transgressive Systems Tract (TST) is associated to the unit Ue, deposited with retrogradational feature during the Deglacial transgression (ca.15~7 ka BP).
     In early stage (ca.15~10 ka BP) of TST, the deposition of fluvial carbonaceous swamp had been formed, resulting from the gradually warming climate in early Deglacial period; in its middle stage (ca.10~8 ka BP), several transgression channels were formed, and the sedimentation was mainly recorded in near shore environments, such as estuarine and tidal flat; and in its final stage (ca.8~7 ka BP), the original paralic sediments on the seabed far away from the shoreland were subjected to extensive erosion when submerged by the sea-water.
     The main sources of Deglacial transgression sedimentation in southern region, were from the Yellow River, but mixed with other source material. While in northern region, with no stable supply or source material, the sediments were mainly brought by the two water systems of Yanshan Mountains and Taihang Mountains.
     Since ca.7 ka BP, when the sea-level basically stabilized in highstand, the seaward progradational sedimentation, resulting from the different river discharges, made the complex of Highstand Systerms Tract (HST) of the upper four seismic units (Ud-Ua).
     During ca.7~3.5 ka BP (when unit Ud was formed), Yellow River had brought the sediments to the southwest margin of Bohai Bay, which formed a NE-progradational predelta in south region. While in northern and central regions, Yellow River provenance sediment was deposited under the environment setting of the shelf shallow sea.
     During ca.3.5~1 ka BP (when unit Uc was formed), two deltas were stacked respectively in northern and central regions, leading to the fast progradation of coastline. In northern region, the delta was formed by two water systems of Yanshan Mountains and Taihang Mountains, but the former was the major source. In central region, however, the delta was formed by the combined water system of Yellow River and Taihang Mountains.
     During ca.1~0.15 ka BP (when unit Ub was formed), in central region, a delta was formed by the combined water system of Yellow River and Taihang Mountains. In northern region, however, the Yanshan Mountains water system brought the main provenance for the sedimentations under littoral and shallow sea environments.
     Since last ca.150 years (when unit Ua was formed), the Yellow River discharged back into the south Bohai Sea. Under the control of the Yellow River materials, the surface suspended sediments were newly deposited in modern Bohai Bay.
引文
Anthony E J, Héquette A. The grain-size characterisation of coastal sand from the Somme estuary to Belgium:Sediment sorting processes and mixing in a tide- and storm-dominated setting. Sedimentary Geology,2007,202,369~382.
    Barnes P M. High-frequency sequences deposited during Quaternary sea-level cycles on a deforming continental shelf, north Canterbury, New Zealand. Sedimentary Geology,1995,97, 131~156.
    Bergman. K M, Walker R G. High-resolution sequence stratigraphic analysis of the Shannon Sandstone in Wyoming, using a template for regional correlation. Joural of Sedimentary Research,1995,65,255~264.
    Berné S, Vagner P, Guichard F, et al. Pleistocene forced regressions and tidal sand ridges in the East China Sea. Marine Geology,2002,188,293~315.
    Chappell J, Omura A, Esat T, et al. Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep-sea oxygen isotope records. Earth Planetary Science Letters,1996,141,227~236.
    Chappell J. Sea level changes forced ice breakouts in the Last Glacial cycle:New results from coral terraces. Quaternary Science Reviews,2002,21,1229~1240.
    Clark P U, Mix A C, Bard E. Ice sheets and sea level of the Last Glacial Maximum. EOS,2001,82, 241-247.
    Cullers R L. The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the Wet Mountains region, USA. Chem. Geol,1994,113: 327~343.
    Cullers R L. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA:implications for provenance and metamorphic studies. Lithos.2000,51, 181~203.
    Flemming B W. Process and pattern of sediment mixing in a microtidal coastal lagoon along the west coast of South Africa, In:de Boer, P L, van Gelder, A, Nio, S D, Tide-Influenced Sedimentary Environments and Facies. D. Reidel Publ. Co., Dordrecht,1988,275~288.
    Flemming B W. The influence of grain-size analysis methods and sediment mixing on curve shapes and textural parameters:Implications for sediment trend analysis. Sedimentary Geology,2007,202:425~435.
    Folk R J, Ward W C. Brazos river bar: a study in a significance of grain-size parameters. Journal of Sedimentary Petrology,1957,27,1,3~26.
    Gensous B, Tesson M. Sequence stratigraphy, seismic profiles, and core of Pleistocene Deposits on the Rhone continental shelf. Sedimentary Geology,1996,105,183~190.
    Girty, G H, Ridge, D L, Knaack, C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. J. Sediment. Res,1996,66,107~118.
    Hanebuth T J J, Stattegger K. Depositional sequences on a late Pleistocene-Holocene tropical siliciclastic shelf (Sunda Shelf, Southeast Asia). Journal of Asian Earth Sciences,2004,23, 113~126.
    Hanebuth T J J, Stattegger K, Schimanski A, et al. Late Pleistocene forced regressive deposits on the Sunda Shelf (Southeast Asia). Marine Geology,2003,199,139-157.
    Hunt D, Tucker M E, Stranded parasequences and the forced regressive wedge systems tract: Deposition during baselevel fall-Reply. Sediment. Geol.1995,95,145~160.
    Jin J H, Chough S K, Ryang W H. Sequence aggradation and systems tracts partitioning in the mid-eastern Yellow Sea: roles of glacio-eustasy, subsidence and tidal dynamics. Marine Geology,2002,184,249~271.
    Kapsimalis V, Pavlakis P, Poulos S E, et al. Internal structure and evolution of the Late Quaternary Sequence in a shallow embayment: The Amvrakikos Gulf, NW Greece. Marine Geology, 2005,222~223,399~418.
    Kim, Y H, Lee H J, Chough, S K, et al. Holocene transgressive stratigraphy of a macrotidal flat in the southeastern Yellow Sea: Gomso Bay, Korea. Journal of Sedimentary Research. Section B, Stratigraphy and Global Studies,1999,69,2,328~337.
    Labauen C, Jouet G, Berne S, et al. Seismic stratigraphy of the Deglacial deposits of the Rhone prodelta and of the adjacent shelf. Marine Geology,2005,222~223,299~311.
    Larcombe P, Carter R M. Sequence architecture during the Holocene transgression:an example from the Great Barrier Reef shelf, Australia. Sedimentary Geology,1998,117,97~121.
    Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea. Marine Geology,2004,209,45~67.
    Liu J, Saito Y, Wang H, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea. Marine Geology,2007,236,165~187.
    Lobo F J, Hernandez-Molina F J, Somoza L, et al. The sedimentary record of the post-glacial transgression on the Gulf of Cadiz continental shelf (Southwest Spain). Marine Geology, 2001,178,171~195.
    Lu X X, Song J M, Li X G, et al. Geochemical characteristics of nitrogen in the southern Yellow Sea surface sediments. Journal of Marine Systems,2005,56,1-2,17-27.
    Lykousis V, Karageorgis A P, Chronis G Th. Delta progradation and sediment fluxes since the last glacial in the Thermaikos Gulf and the Sporades Basin, NW Aegean Sea, Greece. Marine Geology,2005,222~223,381~397.
    Marsset T, Xia D, Berne S, et al. Stratigraphy and sedimentary environments during the Late Quaternary, in the Eastern Bohai Sea (North China Platform). Marine Geology,1996,135, 97~114.
    McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics. In:Johnson, M J, Basu, A (Eds.), Processes Controlling the Composition of Clastic Sediments. Geological Society of America,1993, Special Paper 284, 21~40.
    Park Y A, Lim D I, Khim B K, et al. Stratigraphy and subaerial exposure of Late Quaternary tidal deposits in Haenam Bay, Korea (south-eastern Yellow Sea). Estuarine, Coastal and Shelf Science,1998,47,4,523~533.
    Park, S C, Lee, H H, Han, H S, et al. Evolution of late Quaternary mud deposits and recent sediment budget in the southeastern Yellow Sea. Marine Geology,2000,170,3~4,271~288.
    Posamentier H W, Allen G P, James D P, et al. Forced regressions in a sequence stratigraphic framework: concepts, examples, and exploration significance. Am. Ass. Petro. Geo.,1992,76, 11,1687~1709.
    Rodero J, Pallares L, Maldinado A. Late Quaternary seismic faces of the Gulf of Cadiz Spanish margin:depositional processes influenced by sea-level change and tectonic controls. Marine Geology,1999,155,131~156.
    Saito Y, Wei H, Zhou Y, et al. Delta progradation and chenier formation in the Huanghe (Yellow River) delta. China Journal of Asian Earth Sciences,2000,18,489~497.
    Saito Y, Yang Z, Hori K. The Huanghe Yellow River and Changjiang Yangtze River deltas:a review on their characteristics, evolution and sediment discharge during the Holocene. Geombrphology,2001,41,219~231.
    Shepard F. Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Petrology,1954, 24,151~158.
    Somoza L, Hernandez-Molina F J, De Andres J R, et al. Continental shelf architecture and sea-level cycles:Late Quaternary high-resolution stratigraphy of the Gulf of Cadiz (Spain). Geo-Mar. Lett.,1997,17,133~139.
    Vail P R,1987. Seismic stratigraphy interpretation using sequence stratigraphy, Part 1:seismic stratigraphy interpretation procedure. In:Bally, A.W. (Ed.), Atlas of Seismic Stratigraphy, Vol. 1. Am. Assoc. Petrol. Geol. Studies Geol.27,1~10.
    Vail P R, Audemard F, Bowman, S A, et al. The stratigraphic signatures of tectonics, eustacy and sedimentology; an overview. In:Einsele, G., Ricken, W., Seilacher, A. (Eds.), Cycles and Events in Stratigraphy. Springer Verlag, Berlin, Germany,1991,617~659.
    Van Wagoner J C, Posamentier H W, Mitchum R M, et al. An overview of the fundamentals of sequence stratigraphy and key definitions. In:Wilgus, C.K., (Ed.), Sea-level Changes:An Integrated Approach, SEPM Special Publications,1988,39~45.
    Wang Q, Yuan G, Hu Y, et al. Microfossils in tidal flat strata on the northern Huanghua area since the MIS3. Acta Micropalaeontologica Sinica,2008,25,1,1~18.
    Wang Y, Ke X K. Cheniers on the east coastal plain of China. Marine Geology,1989,90,4, 321-335.
    Wehausen R, Brumsack H J. Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments. Earth and Planetary Science Letters, 2002,201,621-636.
    Xue C. Historical changes in the Yellow River delta, China. Marine Geology,1993,113,321~329.
    Xue C, Zhu X, Lin H. Holocene sedimentary sequence, foraminifera and ostracoda in west coastal lowland of Bohai Sea, China. Quaternary Science Reviews,1995,14,521~530.
    Zecchin M, Baradello L, Brancolini G, et al. Sequence stratigraphy based on high-resolution seismic profiles in the late Pleistocene and Holocene deposits of the Venice area, Marine Geology,2008,253,185~198.
    Zhang C, Wang L, Li G, et al, Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China. Applied Geochemistry,2002,17,59~68.
    Zhao G C, Wilde SA, Cawood P A, et al. Petrology and P-T path of the Fuping mafic granulites: implications for tectonic evolution of the central zone of the NorthChina Craton. Journal of Metamorphic Geology,2000,18,375~391.
    Zhao X T, Zhang J W. Basic characteristics of the Holocene sea level changes along the coastal area in China. In:Liu D S (Ed.), Quaternary Geology and Environment of China, China Ocean Press,1982,155~169.
    苍树溪,黄庆福,张宏才,等.渤海晚更新世以来的海侵与海面变动,见:中国海平面变化(国际地质对比计划第200号项目中国工作组编).北京:海洋出版社,1986,35~42.
    陈斌,贺敬博,马星华.北太行山燕山期中酸性岩体中暗色包体的成因:岩石学、地球化学和锆石Hf-O同位素证据.中国科学D辑:地球科学,2009,39(7):922~934.
    陈斌,刘超群,田伟.太行山中生代岩浆作用过程中的壳幔岩浆混合作用:岩石学和地球化学证据.地学前缘,2006,13(2):140~147.
    陈斌,田伟,翟明国,等.太行山和华北其他地区中生代岩浆作用的锆石U-Pb年代学和地球化学特征及其岩浆成因和地球动力学意义.岩石学报,2005,21(1):13~24.
    陈斌,翟明国,邵济安.北太行山北段中生代岩基的成因和意义:主要和微量元素地球化学证据.中国科学D辑:地球科学,2002,32(11):896~907
    陈智超,陈斌,田伟.太行山北段中生代岩基及其包体锆石U-Pb年代学和Hf同位素性质及其地质意义.岩石学报,2007,23(2):295~306.
    大港油田地质研究所,海洋石油勘探局研究院,同济大学海洋地质研究所.滦河冲积扇—三角洲沉积体系.北京:地质出版社,1985,112~123.
    范昌福,李建芬,王宏,等.渤海湾西北岸大吴庄牡蛎礁测年与古环境变化.地质调查与研究,2005,28(2):124~129.
    高善明.全新世滦河三角洲相和沉积模式.地理学报,1981,36(3):303~314.
    高玉巧,刘立.渤海湾贝壳堤研究现状及意义.海洋地质动态,2003,19(5):7~9.
    黄海军,李凡,庞家珍,等.黄河三角洲与渤、黄海陆海相互作用研究.北京:科学出版社, 2005,221~251.
    黄慧珍,唐保根,杨文达.长江三角洲沉积地质学.北京:地质出版社,1996,143~169.
    黄盛璋.历史时期的水系变迁,海河,见:中国自然地理,历史自然地理,北京:科学出版社,1982,152~182.
    金仙梅,刘健,董清水.黄东海及邻近陆架晚第四纪层序地层.海洋地质动态,2003,19,7:28~30.
    李凤林,王宏,阎玉忠,等.渤海湾西岸滨海平原晚第四纪以来的沉积间断.地质调查与研究,2004,27(3):177~183
    李凤业,史玉兰.渤海南部现代沉积物堆积速率和沉积环境.黄渤海海洋,1995a,13(2):33~37.
    李凤业,史玉兰.渤海现代沉积的研究.海洋科学,1995b,19(2):47~50.
    李凤业,高抒,贾建军,等.黄、渤海泥质沉积区现代沉积速率.海洋与湖沼,2002,33(4):364~369.
    李建芬,王宏,李凤林,等.渤海湾牡蛎礁平原中部兴坨剖面全新世地质环境变迁.地质通报,2004,23(2):169~176.
    李建芬,王宏,夏威岚,等.渤海湾西岸210pb和137Cs测年与现代沉积速率.地质调查与研究,2003,26(2):114~128.
    李培泉,张树辛.1991.黄河下游及黄河口表层沉积物中39种元素的中子活化分析及地球化学研究,海洋学报,13(4):507~518.
    林景星.华北平原第四纪海进海退现象的初步认识.地球学报,1977,51(2):109~116.
    李元芳,牛修俊,李庆春.海河河口地区全新世环境及其地层,地理学报,1989,44(3):363~375.
    林防,李凤林,李建芬,等.渤海湾西北岸全新世介形类组合特征及海进海退旋回.地球学报,2004,25(1):53~58.
    刘健,李绍全,王圣洁,等.末次冰消期以来黄海海平面变化与黄海暖流的形成.海洋地质与第四纪地质,1999,19(1):13~24.
    刘玲,陈斌,刘安坤.北太行紫荆关基性岩体的成因:岩石学和地球化学证据.地球科学,2009,34(1):1~14.
    刘兴泉,缪经榜,季仲贞.渤海冬季环流的数值研究.大气科学,1989,13(3):280~288.
    刘振夏,Berné S, L'ATALANTE科学考察组,等.中更新世以来东海陆架的古环境.海洋地质与第四纪地质,1999,19(2):1~10.
    刘振夏,夏东兴,中国近海潮流沉积沙体.北京:海洋出版社,2004,59~61.
    罗照华,邓晋福,韩秀卿.太行山造山带岩浆活动及其造山过程反演.北京:地质出版社,1999,1~124.
    孟伟,雷坤,郑丙辉,等.渤海湾西岸潮间带现代沉积速率研究.海洋学报,2005,27(3):67~72.
    牛利锋,张宏福.南太行山地区中基性侵入岩中角闪石的矿物学及其成因.大地构造与成矿学,2005,29(2):269~277.
    饶玉学.燕山东段地区与花岗岩有关的几个问题探讨.矿产与地质,2002,16(6):327~331.
    商志文,王宏,王云生,等.天津古海岸与湿地国家级自然保护区地勘一期项目勘查综合研究报告.天津地质矿产研究所,2007,1~67.
    宋召军,张志殉,黄海军.南黄海西部海域高分辨率声学地层及其沉积环境.海洋地质与第四纪地质,2005,25(1):33~39.
    孙湘平.中国近海区域海洋.北京:海洋出版社,2008,26~27.
    覃建雄,杨作升,梁卫,等.东海陆架全新统高分辨率层序地层学研究.岩相古地理,1998,18(6):11~25.
    谭其骧.西汉以前的黄河下游河道历史地理,1980,创刊号,48~64.
    汤艳杰,张宏福,英基丰,等.岩石学报,太行山地区中、新生代玄武质岩浆的源区特征与时空演化.2006,22(6):1657~1664.
    天津市海岸带地质地貌协调组.天津市海岸带综合地质普查报告.1986,13~20.
    田立柱,耿岩,裴艳东,等.渤海湾西部表层沉积物粒度特征与沉积混合.地质通报,2010,29(5):42~48.
    田立柱,王宏,裴艳东,等.天津市海域地质调查报告.天津地质矿产研究所,2008,1~55.
    汪品先,闵秋宝,卞云华,等.我国东部第四纪海侵地层的初步研究.地质学报,1981,55(1):1~13.
    汪品先,闵秋宝.我国第四纪海侵研究中的几个基本问题.海洋地质与第四纪地质,1985,5(1):15~25.
    汪洋,姬广义,邓晋福.燕山地区侏罗纪-白垩纪岩浆活动特征及其与造山演化的关系.矿物岩石地球化学通报,2003,22(4):344~349.
    王福.渤海湾海岸带210Pb、137Cs示踪与测年研究:现代沉积及环境意义:[博士学位论文].北京:中国地质科学院,2009,56~57.
    王宏,范昌福.环渤海海岸带14C数据集2.第四纪研究,2005,25(2):141~156.
    王宏,范昌福,李建芬,等.渤海湾西北岸全新世牡蛎礁研究概述.地质通报,2006,25(3):3~19.
    王宏.渤海湾泥质海岸带近现代地质环境变化研究(Ⅰ):意义、目标与方法.第四纪研究2003a,23(4):385~392.
    王宏.渤海湾泥质海岸带近现代地质环境变化研究(Ⅱ):成果与讨论.第四纪研究,2003b,23(4):393~403.
    王宏.渤海湾全新世贝壳堤和牡蛎礁的古环境.第四纪研究,1996,1:71~78.
    王强,李凤林.渤海湾西岸第四纪海陆变迁.海洋地质与第四纪地质,1983,3(4):83~89.
    王强,李凤林,李正德,等.十五万来渤海西、南岸平原海岸线变迁,见:中国海平面变化(国际地质对比计划第200号项目中国工作组编).北京:海洋出版社,1986,43~52.
    魏灵,贾玉连,易朝路,等.近4万年渤海西岸海侵时古海面的现代标高对比研究,第四纪研究,2006,26,3,361~369.
    文启忠,刁桂仪,潘景瑜,等.黄土高原黄土的平均成分与地壳克拉克值的比较.土壤学报,1996,33(3):225~231.
    吴忱,许清海,阳小兰,2000.论华北平原的黄河古水系.地质力学学报,6(4):1-9.
    吴明清,文启忠,潘景瑜,等.中国黄土的平均化学成分上部大陆地壳的一种典型代表.岩相古地理,1995,15(2):127~136.
    肖嗣荣,李庆辰,张稳,等.河北沿海全新世海侵与岸线变迁探讨,地理学与国土研究,1997,13(2):47~52.
    徐杰,冉勇康,单新建,等.渤海海域第四系发育概况.地震地质,2004,26(1):24~32.
    薛春汀,周永青,王桂玲.古黄河三角洲若干问题的思考.海洋地质与第四纪地质,2003,23(3):23~29.
    薛春汀,周永青,朱雄华.晚更新世末至公元前7世纪的黄河流向和黄河三角洲.海洋学报,2004,26(1):48~61.
    阎玉忠,王宏,李凤林,等.渤海湾西岸BQ1孔揭示的沉积环境与海面波动,地质通报,2006a,25(3):357~382.
    阎玉忠,王宏,李凤林,等.渤海湾西岸晚更新世沉积的差异性特征.第四纪研究,2006b,26(3):321~326.
    杨子庚,主圣洁,张光威,等.冰消期海侵过程中南黄海潮流沙脊的演化模式.海洋地质与第四纪地质,2001,21(3):1~10.
    杨作升.黄河口毗邻海域细粒级沉积物特征及沉积物入海后的运移.山东海洋学院学报,1985,15(2):121~129.
    喻宗仁,窦素珍,赵培才,等.山东东平湖的变迁与黄河改道的关系.古地理学报,2004,6(4):469~479.
    张长厚,吴淦国,王根厚,等.冀东地区燕山中段北西向构造带:构造属性及其年代学.中国科学D辑:地球科学,2004,34(7):600~612.
    张瑞虎,郭平,肖霞云.长江三角洲南部下蜀黄土与硬粘土层关系初探.烟台师范学院学报(自然科学版),2002,18(2):113~117.
    张宗祜,邵时雄,陈云,等.中国北方晚更新世以来地质环境演化与未来生存环境变化趋势 预测.北京:地质出版社,1999,127~135.
    章人骏.华北平原地貌演变和黄河改道与泛滥的根源.华南地质与矿产,2000,10(4):52~57.
    赵保仁,庄国文,曹德明,等.渤海的环流、潮余流及其对沉积物分布的影响.海洋与湖沼,1995,26(5):466~473.
    赵长荣,Hus J.,司玉忠,等.渤海湾西岸湾顶晚更新世—全新世年代地层序列与地磁极漂移.地质调查与研究,2003,26(3):183~192.
    赵根模,李振海,杨港生,等.渤海湾西部声纳探测发现全新世埋藏槽谷.地质通报,2005a,24(6):520~523.
    赵根模,赵国敏,杨港生,等.声波探测显示的渤海湾西部全新世断层活动.中国地震,2005b,21(2):139~146.
    赵松龄,夏东兴,王永吉,等.渤海湾西岸中更新世末期以来的海侵问题.海洋科学通讯,1976,3:26~40.
    赵松龄,杨光复,苍树溪,等.关于渤海湾西岸海相地层与海岸线问题.海洋与湖沼,1978,9(1):15~25.
    赵希涛,耿秀山,张景文.中国东部2000年来的海平面变化.海洋学报,1979,1(2):269~281.
    赵一阳,鄢明才.中国浅海沉积物地球化学.北京:科学出版社.1994,1~200.
    赵越,徐刚,张栓宏,等.燕山运动与东亚构造体制的转变.地学前缘,2004,11(3):319~328.
    郑祥民,严钦尚.末次冰期苏北平原和东延海区的风成黄土沉积.第四纪研究,1995,3:258~266.
    中国科学院海洋研究所海洋地质研究室.渤海地质.北京:科学出版社,1985,1~223.
    中华人民共和国国家技术监督局.GB12763.8-2007.中华人民共和国国家标准—海洋调查规范第8部分:海洋地质地球物理调查.北京:中国标准出版社,2007-8-13.
    朱大岗,吴珍汉,崔盛芹,等.燕山地区中生代岩浆活动特征及其与陆内造山作用关系.地质论评,1999,45(2):163~172.
    朱筱敏.层序地层学.北京:石油大学出版社,2003,23~28.
    庄振业,许卫东,刘东生,等.渤海南部S3孔晚第四纪海相地层的划分及环境演变.海洋地质与第四纪地质,1999,19(2):27~35.
    邹逸麟,谭其骧,史念海.历史时期的水系变迁,黄河,见:中国自然地理,历史自然地理,北京:科学出版社,1982,38~86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700