用户名: 密码: 验证码:
凹凸棒石粘土固定化辣根过氧化物酶处理废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以凹凸棒石粘土(简称“凹土”)为原料,水玻璃为绞结剂,淀粉为造孔剂,研究制备了用于辣根过氧化物酶固载的复合凹土,并对影响载体散失率的各种因素进行正交实验,确定了最佳载体制备条件;通过单因素平行实验,确定了固定化HRP的最佳条件、降解苯胺与硝基酚的最佳条件以及固定化HRP的重复使用性能;通过Lineweaver-Burk线性拟合初始硝基酚浓度与反应速度的关系,确定了固定化HRP降解硝基酚的动力学方程、最大反应速度Vmax以及米氏常数Km。
     实验结果表明:凹土与水玻璃和淀粉的质量比为100:12:20,造粒于550℃马弗炉中煅烧时间2 h,此时固定HRP的载体具备高机械强度;固载的工艺条件为常温,固定时间1.5 h,单位活度载体量1.5 mg/U,pH值5.0;固定化酶降解苯胺废水反应时,反应时间为1.5小时,不需要缓冲体系控制pH值,每毫升100mg/L的苯胺废水需要4.8U的固定酶,H2O2与苯胺的摩尔比为1.2:1;在此条件下固定化HRP可以重复使用4次,并均能维持90%以上的苯胺去除率。固定化HRP处理硝基酚废水的最佳条件为反应时间1.5 h,每毫升100 mg/L的硝基酚废水需6.0 U的给酶活(按固定率为95%计算,固定酶活为5.7 U),H2O2与硝基酚的最佳化学计量比为1.2:1;固定化HRP具有较好的重复使用性能,经重复使用7次后,硝基酚的去除率仍大于60%;固定化HRP降解硝基酚的动力学方程为:1/v = 1.403/[S] - 0.081,最大反应速度Vmax = 12.35 mg/L·min,米氏常数Km = 17.32 mg/L。
Attapulgite clay immobilized horseradish peroxidase was successfully prepared,the effects of the vector formulation、immobilization conditions and reaction conditions are studied, the optimal conditions for the preparation of the carrier, enzyme immobilization and reaction conditions are determined through the orthogonal experiments. The optimal conditions for HRP immobilization, nitrophenol degradation reaction, the repeatability of immobilized HRP are also investigated through single factor parallel experiments. the kinetic parameter of degradation of aniline and nitrophenol by immobilized HRP, the maximum response velocity and michaelis constant (Km) by Lineweaver-Burk linear fitting between the initial concentration of nitrophenol and response velocity are investigated.
     The results shows when the amount of mass ratio of attapulgite clay : sodium silicate: soluble starch are 100:12:20,the calcination temperature of 550℃and the calcination time of 2 h, we can get carriers holding the best absorption properties. The optimal technological parameters for HRP immobilization are PH = 5.0,the volume of unit vector activity of the 1.5 mg/U and the immobilized 1.5 h at room temperature.When non-adjust PH, the reaction time is 1.5 h, 100 mg/L of aniline need 4.8 U enzyme activity, the molar ratio is H_2O_2 and aniline is 1.2, the immobilized HRP can be reused for 4 times and aniline degradation efficiency maintain over 90%.
     In the meantime, when non-adjust PH, the reaction time is 1.5 h, 100 mg/L of nitrophenol need 6.0 U enzyme activity, the molar ratio is H2O2 and nitrophenol is 1.2,t he immobilized HRP can be reused for 7 times and nitrophenol degradation efficiency maintain over 60%.The kinetic equation is 1/v = 1.403/[S] - 0.081, the Vmax and Km are 12.35 mg/L·min,and 17.32 mg/L, respectively.
引文
[1]杨利营,盛京.凹凸棒石粘土的研究开发与应用[J].江苏化工.2001 ,6(29):33-37.
    [2]许冀泉,方邺森,李立文.江苏六合小盘山凹凸棒石粘土的发现及其意义[J].科学通报,1980,5(11):513-515.
    [3] Bradley. The structure scheme of attapulgite[J] . Am Mineral,1940 ,25:405~410.
    [4] Bmdley W F.The structure scheme of atapulgite[J], Am. Mineral, 1940, 25(6): 405-410.
    [5]陈天虎.凹凸棒石吸附性能应用的制约因素[J],安徽地质, 1999, 9(3):199-203.
    [6] Caldwell O G,Marshall A . Study of some chemical and physical properties of the clay minerals nontronite ,attapulgite and Saponite [J] . Missouri Univ Agr Exp Sta Research Bull,1942 ,354.
    [7]左鹏,于少明,杨杰茹,等. HRP固定化载体材料的研究进展[J].材料导报,2007,21(11):46-49.
    [8]肖海军,贺筱蓉.固定化酶及其应用研究进展[J].生物学通报,2001,36(7): 9-10.
    [9]蔡泽民.酶与人[M].北京:科学普及出版社,1985:82.
    [10] ChibataI .Immobilized Enzymes, NewYork: John Wiley and Sons,1978.
    [11]王长生,田玉国.酶的固定化技术[J].中国调味品.1994(12): 7.
    [12]罗九甫.酶和酶工程[M].上海:上海交通大学出版社,1996.
    [13]熊振平.酶工程[M].北京:化学工业出版社,1989.
    [14] Buchholz K. Historical highlights and current status of biotechnology- From mystery to the lock and key hypothesis to the design of recombinant enzymes[J]. Medicanal Chemistry Research. 2002,11(7): 399-421.
    [15] Ting CL , Makarov DE , Wang ZG .A Kinetic Model for the Enzymatic Action of Cellulase[J]. Process Biochemistry 2009,113(14):4970-4977.
    [16] Ortega N. Optimization of Bera-Glucosidase Entrapment in Alginate and Polyacry lamideGels. [J] Bioresouoe.Technol. 1998(64):105-111.
    [17] V . Ivanova. Catalytic properties of immobilizedα-amylase[J]. Process Biochemi stry .1994,29(1):607-612.
    [18]蒋中华.生物分子固定化技术及应用[M].北京:化学工业出版社. 1998.
    [19]袁振,韩相奎,赵金宝.固定化酶技术在环境工程中的应用[J].中国资源综合利用, 2009,27(11):11-12.
    [20] Venkata Mohan, S., Krishna Prasad, K., Chandrasekhara Rao, N. et al. Enzymemediated degradation of acid azo dye in aqueous phase[J].Chemosphere,2005, 58:1097-1105.
    [21]袁定重,张秋禹,侯振宁,等.固定化酶载体材料的最新研究进展[J].材料导报,2006,20(1):69-76.
    [22] Huang H, Hu N F, Zeng Y H. et al. Electrochemistry and electro catalysis with heme proteins in chitosan biopolymer films[J]. Analytical Biochemistry, 2002.308:141-147.
    [23] Zhou G J, Wang G, Xu J J. et al. Reagent less chemiluminescence biosensor for determination of hydrogen peroxide based on immobilization of horseradish peroxidase on biocompatible chitosan membrane[J]. Sensors and Actuators B: Chemical, 2002, 81(2-3):334-342.
    [24] Lu X B, Zhang Q, Zhang L. et al. Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid[J]. Electrochem Commun, 2006, 8: 874-880.
    [25] Begona C G, Ruth D. Evaluation of the biological properties of soluble chitosan and chitosan microspheres [J]. Int J Pharmaceutics, 1997,148:231-238.
    [26] Ayelet F, Ilan L, Uri C.et al Stabilization of horseradish peroxidase in aqueous-organic media by immobilization onto cellulose using a cellulose-binding-domain[J]. J Molecular Catalysis B: Enzymatic, 2002, 18:121-128.
    [27] Hervas P, Loez C E, Lopes R B. The application of methacrylate based polymers to enzyme biosensors [J]. Biomolecular Engineering, 2006, 23:233-243.
    [28] Fernandes K F, Lima C S, Lopes F M. et al. Porperties of horseradish peroxidase immobilised onto polyaniline [J]. Process Biochemistry, 2004, 39:957-963.
    [29] Agostinelli E. et al. Polyketone polymer: A new support for direct enzyme immobilization [J]. J Biotechnology, 2007, 127:670-679.
    [30] Xu Y, Peng W L, Liu X J. et al. A new film for the fabrication of an unmediated H2O2 biosensor [J]. Biosensors and Bioelectronics, 2004, 20:533.
    [31] Morrin A, Wilbeer F, Ngamna O. et al. Novel biosensor fabrication methodology based on processable conduction polyaniline nanoparticles[J]. Electrochem Commun, 2005, 7(3):317-325.
    [32] Razola S S, Ruiz B L, Diez N M. et al. Hydrogen peroxide sensitive amperometric biosensor based on horseradish peroxidase entrapped in apolypyrrole electrode[J]. Biosensors and Bioelectronics, 2002, 17:921-932.
    [33] Shao Y, Jin Y D, Wang J L. et al. Conducting polymer polypyrrole supported bilayer lipid membranes[J]. Biosensors and Bioelectronics, 2005, 20:1373-1386.
    [34]陈滨晖,吴辉煌,张流洲. HRP的电化学固定化及HRP/POPD酶电极的性能[J].厦门大学学报(自然科学版), 1997,36(2):234.
    [35]王杉霖,张剑波,王维敬,等.四氧化三铁吸附包埋固定HRP及其应用[J].北京大学学报(自然科学版), 2006,42(6):762.
    [36] Sun D M, Cai C X, Li X G. et al. Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase immobilized on active carbon[J]. J Electroanalytical Chem, 2004, 566:415-423.
    [37]徐虹,朱建良.利用固定化脉酶处理尿素废水[J].南京化工大学学报.1998 ,2 0(1):32-35.
    [38]李秋芬,杜春梅.现代生物技术在海洋环境保护中的应用[J].山东环境.2000 (5):49-51.
    [39] V . Ivanova. Catalytic properties of immobilizedα-amylase[J]. Process Biochemi stry .1994,29(1):607-612.
    [40]李秋芬,杜春梅.现代生物技术在海洋环境保护中的应用[J].山东环境.2000 (5):49-51.
    [41]付桂珍,龚文琪,陈治.蒙脱颗粒吸附剂的制备及除锌研究[J].环境工程, 2009, 27(2):45-48.
    [42]王湖坤,龚文琪,揭武,等.复合累托石颗粒材料的制备及应用[J].武汉理工大学学报. 2008, 30(12):88-91.
    [43]宋宁宁,袁晓兰,刘富刚.凹凸棒石颗粒吸附剂的制备及性能[J].环保科技. 2008, 14(4):11-14.
    [44]孙秀云,王连军,周学铁.凹凸棒土-粉煤灰颗粒吸附剂的制备及改性[J].江苏环境科技, 2003,16(2):1-3.
    [45]李富丽,罗发兴.淀粉载体固定化脲酶的研究[J].现在食品科技, 2009, 25(12):1448-1453.
    [46]叶鹏,张剑波.固定化HRP催化去除五氯酚[J].北京大学学报(自然科学版), 2005, 41(6):918-925.
    [47] Stellmach B.过氧化物酶,酶的测定方法[M].钱嘉渊译,北京:中国轻工业出版社, 1992.
    [48]于少明,程俊,左鹏,等.以层柱黏土为载体固定HRP[J].化工学报, 2006,12(57):3021-3024.
    [49]聂永平,邓正栋,袁进.苯胺废水处理技术研究进展[J].环境污染治理技术与设备.2003 ,3(4):77-81.
    [50]裘兆蓉,王车礼,承民联,等. H103树脂吸附废水中苯胺.高校化学工程学报,1999,13(3):277-279
    [51]陶红,周仕林,高廷耀. 13X分子筛处理含苯胺废水的实验研究[J].环境科学学报,2002,22(3):408-411
    [52]陈国树,阳小燕. CTS改性瓷土吸附水中苯胺的研究[J].江西科学,2000,18(3):158-161.
    [53]徐洪秋,王思人,汪平等.用废炭黑吸附二苯胺生产废水[J].化工环保,1998,18(6):323-327
    [54]冯旭东,林屹,瞿福平,等.处理苯胺类稀溶液的萃取置换技术[J].环境科学,2001,22(1):71-74.
    [55]于德爽,彭永臻,李梅.二氧化氯氧化法去除染料废水中苯胺类物质的生产性实验研究[J].哈尔滨商业大学学报,2001,17(3):19-21.
    [56] Klibanov A M, Alberti B N, Morris E D, etal. Enzymatic removal of toxic phenols and anilines from waste waters[J] .Jounral of Applied Biochemistry, 1980,2 :412-414.
    [57]邵凤琴,韩庆祥.酶工程在污染治理中的应用[J].石油化工高等学校学报,2003,16(2):36-40.
    [58]孙伟,韩军英,陆路德.过氧化物酶催化反应在工业废水处理中的应用[J].环境科学与技术,2003(26)(增刊):75-77.
    [59] Nelson Duran. Elisa Esposito Potential applications of oxidative enzyme and phenoloxidase-like compounds in wastewater and soil treatment: a review[J] .Applied catalysis B:Enviornmental,2000,28:83-99.
    [60] Wu Y M ,Taylor K E ,Biswas N ,etal. Kinetic model for removal of phenol by horseradish peroxidase with PEG. Jounral of Environmental Engineering, 1999, 125(5): 451-457.
    [61]胡龙兴,张仲燕.酶催化氧化处理废水的研究[J].环境科学.1992,13(4):40-41.
    [62] Gomez J L, Bodalo A, Gomez E. et al. Immobilization of peroxidases on glass beads: An improved alternative for phenol removal[J]. Enzyme and Microbial Technology, 2006, 39:1016-1028.
    [63]曹树祥,黎苇.固定化酶制备方法研究进展[J].化工环保, 1999,19(5):273-277.
    [64]杨宝德.硝基酚类生产废水处理工艺探讨[J].工业用水与废水, 2000,31(6):29-30.
    [65]唐萍,周集体,王竞,等.硝基苯废水治理的研究进展[J].工业用水处理,2003,23(3):16-19
    [66]陈美玲.含酚废水处理技术的研究现状及发展趋势[J].化学工程师,2003,95(2),48-51
    [67]付冬梅,陈吉平,梁鑫淼.湿式氧化法处理苯酚、苯胺和硝基苯废水的研究[J].精细化工,2004,21(10):772-774
    [68]戴猷元,杨义燕,杨天雪.络合萃取法处理含酚废水技术[J].化工进展, 1991, (6): 40-461
    [69]魏凤玉.络合萃取法处理对硝基苯酚生产废水[J].工业用水与废水,1999,30(4):18-19
    [70]林中祥,程康华.萃取法去出硝基苯生产废水中的硝基酚[J].环境导报,2000,2:18-20
    [71]张伟,雍鹤野,陈学琴.树脂吸附法处理含对硝基苯酚工业废水[J].中国氯碱,2003,4:39-41
    [72]唐树民,唐树和,费正皓.对硝基酚在几种树脂上的吸附性能研究[J].应用化工,2006,35(7):507-509
    [73]郭士元,张爱丽,周集体.不同性填料复极性固定床电解槽处理对硝基酚钠废水行为比较[J].电化学,2006,12(2):165-169
    [74]段柏华,钟宏.内电解法处理含酚废水[J].环境与开发,1999,14(4):19-20
    [75]栾金义,李昕,王宜军.液膜法处理含硝基酚废水试验研究[J].化工环保,2003,23(4):195-199
    [76]程丽华,黄君礼,高会旺. Fenton试剂对水中酚类物质的去除效果研究[J].环境科学与技术,2004,27(4):3-4
    [77]程丽华,黄君礼,王丽.草酸铁芬顿、UV/芬顿、暗芬顿降解对硝基酚的效果研究[J].哈尔滨建筑大学学报,2001,34(2):74-78
    [78]刘琼玉,李太友,陈化琼,等. UV/Fenton氧化-混凝联合工艺处理含酚废水[J].化工环保,2004,24(4):280-283
    [79]雷乐成,汪大翚.水处理高级氧化技术[M].北京:化学工业出版社,2001
    [80]杨志新,袁松虎,陆晓华. IrO2/Ta2O5-石墨电Fenton降解对硝基酚的研究[J] .环境科学与技术,2005,28(3):22-24
    [81]庞建峰,王连生,费学宁,等.催化湿式氧化法处理对硝基酚钠废水的试验[J].城市环境与生态,2003,16(4);34-36
    [82]李辉,庄源益,杨克莲,等.超临界水氧化去除含酚废水TOC的动力学研究[J].城市环境与生态,1999,12(4):1-4
    [83]甄宝勤,葛红光,李星彩,等.超临界水氧化处理对氨基苯酚废水研究[J].化工技术与开发,2005,34(5):44-46
    [84]葛红光,郭小华,李利华,等.催化超临界水氧化对氨基苯酚[J].环境污染治理技术与设备,2006,7(4):100-102
    [85]张文兵,肖贤明,傅家谟,等. UV/H2O2降解水中硝基酚及影响因素[J].环境科学研究[J]. 2001,14(6),9-15
    [86]赵娜,杨合,薛向欣,等.高钛渣作为光催化材料降解邻硝基酚的实验研究[J].硅酸盐学报. 2005,33(2),202-205
    [87]彭书传,王诗生,陈天虎,等.负载型TiO_2光催化氧化法处理硝基苯酚工业废水[J].工业水处理,2003,23(11):34-36
    [88] Neis U. Ultrasound in water,wastewater and sludge treatment [J]. Water,2000,21(4):36-39
    [89] Suri R P S,Paraskewich M R Jr,Zhang Q B. Effect of process variables on sonochemical destruction of aqueous trichloroethylene[J]. Environmental Engineering Science,1999,16(5):345-352.
    [90]卜龙利,陈硕,刘希涛,等.微波辅助湿式氧化处理对硝基酚溶液的研究[J].中国科学, E辑,工程科学,材料科学,2005,35(3):324-336
    [91]张晖,程江,杨卓如,等. O_3/UV法降解水中对硝基酚[J].环境化学,1996,15(4),313-318
    [92]傅建秀,叶平,王连生,等.催化氧化法处理对硝基酚钠生产废水的研究[J].城市环境与生态,2001,14(4):40-41
    [93] Ozlem Selcuk Kuscu, Delia Teresa Sponza. Performance of anaerobic baffled reactor (ABR) treating synthetic wastewater containing p-nitrophenol[J]. Enzyme and Microbial Technology.2005, 36 : 888–895
    [94]张丽华,薛万华,白培万,等.过氧化物酶在酚类废水处理中的应用[J].山西大同大学学报(自然科学版), 2009,25(6):44-48.
    [95] Klibanov A M, Alberti B N, Morris E D. et al. Enzymatic removal of toxic phenols and anilines from wastewater[J]. J Appl Biochem, 1980, 2:414-421.
    [96]孙伟,韩军英,陆路德.过氧化物酶催化反应在工业废水处理中的应用[J].环境科学与技术,2003,26(增刊):75-77.
    [97]国家环保局编.水和废水监测分析方法(第四版)[M]北京:中国环境科学出版社,2002
    [98]蔡天明,孔德伟.用分光光度法测定废水中的对硝基酚钠含量[J].环境监测管理与技术,1994,6(3):34.
    [99]刘国杰,邓桂春,张渝阳,等.分光光度法测定药厂废水中对硝基酚的含量[J].渤海大学学报(自然科学版),2005,27(1):14-17.
    [100]宗悦茹,张剑波,王杉霖,等.四氧化三铁明胶固定过氧化物酶催化降解五氯酚[J].环境科学,2007,28(12):2740-2744.
    [101]聂锦旭,肖贤明.改性膨润土吸附剂的制备及对苯酚的吸附性能[J].金属矿山,2006,(2):76-78.
    [102] Zhang Guoping, Nicell A James. Treatment of Aqueous Pentachlorophenol by Horseradish Peroxidase and Hydrogen Peroxide[J].Wat Res,2000,34(5):1629-1637.
    [103]胡龙兴,张仲燕.酶催化氧化处理废水的研究[J].环境科学,1992,13(4):40-41.
    [104]胡长诚.过氧化氢处理工业废水研究进展[J].化学推进剂与高分子材料,2006,4(5):1-5.
    [105] Nicell J A, Bewtra J K, Taylor K E. et al. Enzyme Catalyzed Polymerization and Precipitation of Aromatic Compounds from Wastewater [J]. Water Sci Tech, 1992, 25(3):157-164.
    [106] Miguel A D, Monica A O, Blanca E. et al. Removal of Aqueous Phenolic Compounds from A Model System by Oxidative Polymerization with Tumip (Brassic Napus L Var Purple Top White Globe) Peroxidase [J]. J Chem Technol Biotechnol, 2002, 78:42-47.
    [107]马秀玲,陈盛,黄丽梅,等.磁性固定化酶处理含酚废水的研究[J].广州化学, 2003,28(3):17-22.
    [108]宗悦茹,张剑波,王杉霖,等.四氧化三铁明胶固定过氧化物酶催化降解五氯酚[J].环境科学,2007,28(12):2740-2744.
    [109]王正烈,周亚平,李松林,等.物理化学[M].北京:高等教育出版社,1979.278.
    [110] D.A.成克著.生物化学基础[M].刘世伟,孙冠文译.北京:科学出版社,1982.
    [111]高廷耀,顾国维.水污染控制工程下册(第二版)[M].北京:高等教育出版社,1989.69-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700