用户名: 密码: 验证码:
基于液氮冷却方式的气动加热表面温度分布数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着红外探测系统和制导武器的迅速发展,有效降低高速飞行器表面红外辐射特性已成为日益关注的红外隐身技术关键问题之一。由于飞行器蒙皮表面的温度分布是影响飞行器红外辐射特性的主要因素,因此开展飞行器蒙皮表面温度分布及其控制技术的研究是十分必要的。本文的研究工作主要包括两个方面:
     其一、通过分析控制飞行器蒙皮温度场的传热过程,建立了包括蒙皮外部气动加热、辐射换热与内部对流换热的瞬态耦合传热数学模型。引入壁面气动热流函数,将蒙皮外部气动加热条件转化为浮动的热边界条件,对简化的二维平板模型进行气动加热条件下的温度场模拟计算,获得了不同飞行状况下表面的瞬态温度响应,分析了相关因素的影响。研究结果表明:飞行器在水平加速与降速阶段都存在明显的感应阶段;不同的蒙皮内表面冷却条件对其外表面的温度响应过程有较明显的影响。
     其二,以Fluent软件为平台,对液氮狭缝通道沸腾换热和带气膜喷吹的液氮狭缝通道沸腾换热进行数值研究,分析在不同工作条件和冷却需求下的换热特性和冷却效果。
     利用混合两相流模型和Lemmon提出的液氮物性表达式,通过编写用户自定义程序(UDFs)实现对液氮物性和气液相间传输项的模拟,从而对一侧表面模拟气动加热热流条件、另一侧表面为绝热条件的二维矩形狭缝通道内的液氮流动换热进行了数值模拟。结果表明,利用液氮狭缝通道换热可以实现气动加热表面的有效冷却;冷却通道沿程换热效果随着质量流率的增大而提高;在单位表面积质量流率一致的情况下,通道长度的增长有利于改善气动加热表面的冷却效果。
     对带有单排气膜喷吹的液氮狭缝通道冷却结构的气膜侧绝热冷却效率以及其对机翼前缘表面的整体冷却效果进行了研究,归纳了气膜孔排布位置、吹风比(或主次流质量分配比)、外流马赫数等因素对于该冷却结构冷却效果的影响规律。研究结果表明,该冷却结构对高马赫数飞行条件下的气动加热表面具有较好的冷却效果;适当增大通道冷却结构的液氮入口质量流量和合理布置气膜孔能改善表面的冷却效果。
Suppressing the infrared singles from the aircraft skin has become even more important for the infrared stealthy technology as the development of IR detector system and guided weapons. As the aircraft skin temperature distribution is a key factor affecting the infrared radiation characteristics of aircraft, it is needed to investigate the temperature distribution and control for the aircraft skin. The present paper includes two main aspects:
     1. By analyzing the heat transfer process governing the aircraft skin temperature, the physical and mathematical model for the transient heat transfer coupling the aerodynamic heating on the skin and radiative heat transfer and internal convective heat transfer was put forward. The aerodynamic heating condition on aircraft skin was transfered as the floating heat flux thermal boundary by introducing a wall heat flux function and the numerical simulations for a simplified two-dimensional flat plate were made to study the transient temperature response under various flight statuses. It is obtained that the thermal response lags were distinct during the acceleration and deceleration of aircraft, and the inner cooling condition affects the thermal response obviously.
     2. The commercial flow solver FLUENT CFD software was utilized to numerically simulate the heat transfer of liquid nitrogen through a two-dimensional narrow rectangular channel and a three-dimensional narrow channel with a row of 30°angling film-cooling holes, respectively.
     The mixture multiphase model and expressions of liquid nitrogen properties presented by Lemmon were adopted and the user-defined functions (UDFs) were introduced to simulate the properties of liquid nitrogen and the transfers between gas phase and liquid phase. The heat transfer of liquid nitrogen through a two-dimensional narrow rectangular channel, with one side surface simulating aerodynamic heating flux condition and the other side surface as adiabatic condition was numerically investigated. The results indicat that the liquid nitrogen enhanced heat transfer insides the narrow channel provides an efficient cooling on the surface suffering aerodynamic heating flux. The increase of liquid nitrogen mass-flux leads to heat transfer enhancement and the extending of channel length affects the cooling effectiveness positively with a constant ratio between mass flux and cooling area. The adiabatic film cooling effectiveness and overall cooling effectiveness for the liquid nitrogen cooling narrow channel with a row of film cooling holes were studied. The effects of the film holes arrangement, blowing ratio (or primary to secondary mass flux ratio) and primary flow Mach number on the cooling characteristics were concluded. The results show that the cooling configuration is an efficient cooling mode for the aerodynamic heating skin. The cooling effectiveness would be enhanced with a suitable mass-flux and better film holes arrangement.
引文
[1]夏新林.飞机蒙皮红外辐射的瞬态温度场分析[J].红外与毫米波学报,2007,26(3):174-178
    [2] Kinney D J.Aero-thermodynamics for conceptual design[R].AIAA paper 2004-0041,2004
    [3] Wurster K E,Zoby E V,Thompson R A.Flowfield and vehicle parameter influence on results of engineering aero-thermal methods[J].Journal of Spacecraft,1991,28(1):16-22
    [4] Hamilton H H , Franceis A G . Approximate method for calculating heating rates on three-dimensional vehicles[J].Journal of Spacecraft and Rockets,1994,31(3):345-354
    [5]陈志敏.天地往返运输器气动力和气动热工程计算方法研究[J].西北工业大学学报,2001,19(2):205-208
    [6]蒋友娣,董威,陈勇.高超声速飞行器瞬态表面热流和温度的工程计算[J].能源技术,2007,28(6):315-319
    [7]艾青,夏新林,唐尧.求解飞机蒙皮耦合热效应的壁面热流函数法[J].工程热物理学报,2006,27(4):635-638
    [8]王南炎,张可忠,张国强.尾翼片气动加热温度分布数值研究[J].弹道学报,1991,22(4):51-57
    [9] Chen Y K,Henline W D,Tauber M E.Mars pathfinder trajectory based heating and ablation calculations[J].Journal of Spacecraft and Rockets,1995,32(2):225-230
    [10] Dechal M P,Thornton E A,Wieting A R. Flow-thermal structural study of aerodynamically heated leading edges[R].AIAA paper 88-2245
    [11] Wieting A R.Experimental study of shock wave interference heating on a cylindrical leading edge[R].NASA TM-100484,1987
    [12]夏刚,刘新建,程文科,秦予增.钝体高超声速气动加热与结构热传递耦合的数值计算[J].国防科技大学学报,2003,25(1) :35-40
    [13]黄养生,吴杰,范绪萁.飞行器流场与结构温度场耦合数值分析[J].力学与实战,2004,26(2) :24-27
    [14]桂业伟,袁洲江.类前缘防热层流场与热响应藕合计算研究[J].工程热物理学报,2002,23(6) :733-736
    [15]黄唐,毛因良,姜贵庆,周伟江.二维流场、热、结构一体化数值模拟[J].空气动力学报,2000,18 (1):115-119
    [16] Chang Y C,Hou TY,Merriwan B,Osher S.A level set formulation of eulerian interface capturing methods for incompressible fluid flow[J].Journal of Computational Physics,1996,124(2) :449-464
    [17] Sussman M.An adaptive level set approach for incompressible two-phase flow[J].Journal of Computational Physics,1999,148:81.124
    [18] Sussmanm S P,Oshe S.A level set approach for computing solutions to incompressible phase two-phase flow [J].Journal of Computational Physics,1994,l14(1) :146-159
    [19]耿湘人,张涵信,沈清,高树椿.高速飞行器流场与固体结构温度场一体化计算新方法的初步研究[J].空气动力学学报,2002,12(4):422-428
    [20] Swanson A G,, Rumsey C B..Aerodynamic heating of a wing as determined from a free-flight rocket-model test to mach number 3.64[R].NACA RM L57B20,1956
    [21] Howard S Carter.Heat transfer on the lifting surfaces of 60°delta wing at angle of attack for mach number 1.98[R].NACA RM L56C23,1956
    [22] Sherwood H,Leo T C.Aerodynamic heat transfer and zero-lift drag of a flat windshield canopy on the NACA RM-10 research vehicle at high Reynolds numbers for a flight mach number range from 1.5 to 3.0[R].NACA RM L56G05.1956
    [23]王智勇.飞行器气动加热环境与结构响应耦合的热结构试验方法[J].强度与环境,2006,12(4):59-64
    [24]任青梅,杨志斌,成竹,蒋军亮.气动加热/热响应耦合分析与试验研究[J],强度与环境,2007,2:20-34
    [25]林建民,李仲发,张欣玉,俞鸿儒.含灰气体平板气动加热实验研究[J],气动实验与测量控制,1996,10(2):59-63
    [26] Petrov V A.Combined radiation and conduction heat transfer in high temperature fiber thermal insulation[J].International Journal of Heat and Mass Transfer,1997,40(9):2241-2247
    [27] Imakoma H , Sang K , Okazard U . The effective thermal conductivity of fibrous insulation[J].International Chemical Engineering,1990,36:738-746
    [28] Kamran D.Thermal analysis and design of multi-layer insulation for re-entry aerodynamic heating.AIAA ,2001:28-34
    [29] Kamvan D.Heat transfer in high temperature fibrous insulation[J].Journal of Thermophysics and Heat Transfe,2002,17(1):10-20
    [30] Marschall J et a1.Internal radiation transport and effective thermal conclusively of fibrousceramic insulation.AIAA,2001:2 822
    [31]姜贵庆.长时间气动加热飞行器的隔热机理[J].新材料新工艺,2006(1):27-29
    [32]陈连忠,欧东斌,刘德英.高温热管在热防护中应用初探[J].前沿科学,2009,2:41-46
    [33] Ghiaasiaan S M,Chedester R C.Boiling incipience in micro channels[J].International Chemical Engineering,2002,45:4599-4606
    [34] Liu D,Lee P S,Garimella S V.Prediction of the onset of nucleate boiling in micro channel flow[J].International Chemical Engineering,2005,48:5134-5149
    [35]陈国邦等著,新型低温技术[M].上海:上海交通大学出版社,2003
    [36] Robertson J M.Boiling heat transfer with liquid nitrogen in brazed-aluminum plate-fin heat exchangers.National Heat Transfer Conference,1979,189(75):151-164
    [37] Robertson J M.The boiling characteristics of perforated plat-fin channels with liquid nitrogen in up flow[J].National heat transfer conference,1983:35-40
    [38]孙淑凤,吴裕远.液氮在狭缝通道内受迫流动沸腾的实验研究[J].西安交通大学学报2001,35(5):450-455
    [39]任欣,张鹏,王如竹.大空间和毛细管内液氮池沸腾传热的实验研究[J].低温与超导,2005,33(3):21-24
    [40] Pfotenhauer J M.,Lee M R,Corradini M L.Visualization at cryogenic temperature using a glass fiber bundle [J].Cryogenics,2001,41:437-441
    [41] Andrew G. Swanson, Charles B. Rumsey. Aerodynamic heating of a wing as determined from a free-flight rocket-model test to mach number 3.64[R]. NACA RM L57B20,1956
    [42] Le Brocq P V,Launder B E ,Priddin C.H.,Discrete hole injection as a means of transpiration cooling-an experimental study,1971,Imp.Coll.Rep.HTS/71/37
    [43] Crawford M E,Kays W M,Moffat R J.Full-Coverage Film Cooling-PartⅠ:Comparison of Heat Transfer Data for Three Injection Angles[J].ASME Journal Engineering for Power,1980,102:1000-1005
    [44] Mayle R E,Camarata F J.Mutihole Cooling Film Effectiveness and Heat Transfer[J].ASME Journal of Heat Transfer,1975,97:534-538
    [45] Kim H K,Moffat R J,Kays W M.Heat Transfer to a Full-Coverage Film-Cooled Surface with Compound-Angle( 30×40)Hole Injection[R]. NASA Report CR-3103,1979
    [46] Ligrani P M ,Ciriello S,Bishop D T.Adiabatic Effectiveness and Injectant Distribution Downstream of a Single Row and Two Staggered Rows of Compound Angle Filming-CoolingHoles[J].ASME Journal of Turbomachinary,1994,114:687-770
    [47] Ligrani P M,Wigle J M,Ciriello S,Jackson S M.Film cooling from holes with compound angle orientations:Part 1-results downstream of two staggered rows of holes with 3D spanwise spacing[J].ASME Journal of Turbomachinary,1994,116:341-352
    [48] Ligrani P M,Wigle J M,Jackson S M.Film cooling from holes with compound angle orientations : Part 2-results downstream of a single row of holes with 6D spanwise spacing[J].ASME Journal of Turbomachinary,1994,116:353-362
    [49] Kadotani K,Goldstein R J.Effect of mainstream variables on jets issuing from a row of inclined round holes[J].ASME Paper 78-GT-138,1978
    [50] Brown A ,Saluja C L ,Film cooling from three rows of holes on adiabatic constant heat flux and isothermal surfaces in the presence of variable velocity gradients and turbulent intensity[J].ASME Paper 79j-GT-24,1979
    [51] Andrews G E,Asere A A,Gupta M L,Mkpadi M C.Full coverage discrete hole film cooling:the influence of hole size[J].ASME Paper 85-GT-47,1985
    [52] Andrews G E ,Gupta M L ,Mkpadi M C ,Full coverage discrete hole cooling:cooling effectiveness[J].Journal of Turbo Jet Engines,1985,2:199-212
    [53] Andrews G E,Bazdidi T F.Small diameter film cooling hole heat transfer:the influence of the number of holes[J].ASME Paper 89-GT-7,1989
    [54] Andrews G E,Asere A A,Gupta M L,Mkpadi M C,Tirmahi A.Full coverage discrete hole cooling:the influence of the number of holes and pressure loss[J].ASME Paper 90-GT-61,1990
    [55]葛绍岩,刘登瀛,徐靖中,李静.气膜冷却[M].北京:科学出版社,1985
    [56]林宇震,宋波,李彬,刘高恩,不同倾斜角多斜孔壁冷却方式绝热温比研究[J].航空学报,1999,20(3):201-204
    [57]胡娅萍,吉洪湖.平壁气膜冷却流场与温度场的协同分析[J].工程热物理学报,2004,25(1):94-96
    [58]胡娅萍.基于场协同理论的航空发动机冷却结构传热特性的数值研究[D].南京航空航天大学,2003
    [59]郭婷婷,金建国,李少华,王虎.不同出射角度对气膜冷却流场的影响[J].中国电机工程学报,2006,26(16):117-121
    [60] Le G E.Mixing process induced by the vorticity associated with the penetration of a jet into a cross flow [J].Transaction of the ASME,1977,100(3):465-475.
    [61] Ramette P H,Louis H F.Analytical study of the thermal and fluid mechanical evolution of a cooling film injected from a single row of inclined round holes [J].ASME/Isreal Joint Gas Turbine Congress,1979
    [62] Bergeles G.Three dimensional hole cooling processes: an experimental and theoretical study[D].University of London,1976
    [63] Bergeles G,Gosman A D,Launder B E.Double-row discrete hole cooling : an experimental and numerical study[J].Transaction of the ASME,1980,102:498-503
    [64] Brown A,Saluja C L.Film cooling from three rows of holes on adiabatic constant heat flux and isothermal surfaces in the presence of variable velocity gradients and turbulent intensity[J].ASME Paper 79j-GT-24,1979
    [65] Van Driest, E. R..The Turbulent Boundary Layer for Compressible Fluids on a Flat Plate with Heat Transfer[J].AL-997,1950
    [66] Van Driest, E. R..The Turbulent Boundary Layer in Compressible Fluids[J].Journal of the Aeronautical Sciences,1951,18(3):1012-1029
    [67]康青.红外辐射材料的研究现状与发展趋势[J].材料导报,1996,10(2):46-47
    [68]郑正泉.低温气液两相流动态模拟及实验研究[J].低温与超导,1999,27(4):21-27
    [69]张家荣.工程常用物质的热物理性质手册[M].北京:新时代出版社,1987
    [70] Lemmon E W, Jacobsen R T.Viscosity and thermal conductivity equations for nitrogen,oxygenargon and air[J].International Journal of Thermophysics,2004,25(1):21-70
    [71] Zaber N,Findlay J A.Average Volumetric Concentration in Two-Phase Flow Systems[J].Trans- actions of the ASME.1965,87:453-468
    [72]孙奇,赵华,杨瑞昌,张红岩.垂直上升两相流漂移流模型研究[J].核动力工程,2006,27(2):40-44
    [73]郑正泉.低温气液两相流动态模拟及实验研究[J].低温与超导,1999,27(4):21-27
    [74]章春伟,秋穗正,王布雷.矩形窄缝通道泡状流向弹状流流型转化研究[J].西安交通大学学报,2006,40(7):781-784
    [75]杨瑞昌,唐虹,王彦武.自然循环过冷沸腾流动不稳定性的研究[J].工程热物理学报,2004,25(3):435-438
    [76]杨娅君,刘楚芸等.漂移流模型用于毛细管两相流数值计算[J].高校化学工程学报,2004,18(3):303-307
    [77]李祥东,汪荣顺,顾安忠.低温液体流动沸腾数值计算中的动量模拟[J].低温与超导,2004,32(4):53-59
    [78] Li X D,Wang R S, Gu A Z.Numerical simulation of flow boiling of cryogenic liquids in tubes In: 20th International Cryogenic Engineering Conference,Beijing,2004
    [79]陈国邦,黄永华,包锐.低温流体热物理性质[M].国防工业出版社,2006
    [80]齐守良.微通道中液氮流动和换热特性研究[D].上海交通大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700