用户名: 密码: 验证码:
侧进式搅拌反应器内均相及多相流体动力学的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
侧进式三相搅拌反应器是脱硫吸收过程的核心设备,在烟气脱硫过程(FGD)中得到广泛应用。反应器内存在复杂的流体办学行为,包括浆液、固体颗粒和氧化空气的三相流动,直接影响传质和化学反应,决定了整个吸收塔的脱硫效率。但是,由于设备尺寸较大(直径达20m)和大量固体颗粒(脱硫产品晶体)、气泡(氧化空气)的存在,其流体力学的实验研究颇为困难,其设计和优化主要通过工程经验来实现,致使反应器的性能难以达到设计要求。近年来,计算流体力学(CFD)技术已经成为工业设备设计中通用的流体力学研究手段,但对侧进式三相搅拌釜,目前还鲜有报导。本文针对大型侧进式搅拌釜,以CFD技术为主要研究手段,对釜内均相和多相流场开展深入研究,以望为脱硫塔三相氧化釜的设计及优化提供理论依据。
     论文主要开展了以下几方面的研究工作。
     首先,采用雷诺平均N-S控制方程组和标准k-e湍流模型相结合,以一个直径和高度均为13m的大型侧进式搅拌釜为研究对象,对其内部均相宏观流场进行数值计算。结果表明,将计算域划分为大约90万网格时计算得到的搅拌功率曲线和流体速度分布与实验数据吻合较好;考察不同操作参数和搅拌桨安装情况对釜内低速死区分布的影响发现,增大搅拌转速很难彻底有效地消除水平面上的死区;搅拌桨垂直向下5.71°或水平偏转11°安装能明显改善流体运动。三桨和四桨搅拌体系对釜上部流场的优化要好于两桨体系;但在相同转速下,双桨、三桨和四桨搅拌釜的搅拌功率不同程度地高于单桨搅拌釜。综合考虑,三桨体系搅拌效率较高。
     其次,对三种轴流桨:宽叶推进式轴流桨(WBH)、旋流式轴流桨(MTP)和窄叶推进式轴流桨(NBH)进行了比较研究。在低粘度流体搅拌中,WBH和MTP的搅拌功率较高,但由于泵排量也较大,因此泵送效率明显高于桨叶较窄的NBH。三种桨叶背后均形成一个单一的尾流漩涡,但是WBH和MTP的尾涡结构使得釜内整体循环流动更理想,即排出流类似于水平射流,且速度分布梯度较大,形成了一个较大的循环流动;而NBH的排出流一定程度地偏向桨径向方向,导致其泵轴向排量明显小于WBH和MTP。此外,MTP的流线型桨叶使得其尾涡里的湍流动能较小,能有效地预防搅拌桨周围气穴的形成,因此将其应用到一个冷模气液侧进式搅拌釜中,气液分散效果较好。
     第三,检验了不同气液界面边界条件和相间作用力模型对气液两相流模拟的影响。采用的气-液界面边界条件包括:速度进口、压力出口、仅考虑质量守恒的脱气边界和同时考虑相间反作用力的脱气边界;而相间作用力模型包括:标准S-N曳力模型、修正S-N曳力模型、Tsuchiya曳力模型和升力作用模型。结果显示,在采用速度进口作为气-液边界面条件、修正S-N模型或Tsuchiya模型作为曳力模型时,总体气含率和气体分布的预测结果与实验数据吻合较好,且升力作用对预测结果影响不大。气体的加入会对液相流场产生影响,特别是在釜上部区域内;增大转速能增强釜上部的液相轴向运动和釜下部的液相径向运动;大通气量和高转速下,釜中心到壁面间的通气区域内局部气含率梯度较大,导致流体密度差增大,从而使得整体流动更为剧烈。
     第四,采用考虑气泡聚并和破碎的气泡界面浓度模型(BIACM)(?)和气泡群平衡模型(BPBM)两种气泡尺寸预测模型对气-液侧进式搅拌釜内气泡尺寸分布进行了研究,实现了BIACM-CFD和BPBM-CFD耦合计算。在BPBM-CFD耦合计算中,将Luo&Svendsen破碎模型分别与Luo聚并模型和Prince聚并模型组合。结果表明,在较高湍动能耗散率区域内,这两个聚并模型存在较大差异,但是预测气泡尺寸均集中在3-5mm之间,这与实验结果相一致。最后,采用欧拉-颗粒多相流模型对固-液两相流进行模拟,考察了RSM和标准k-εmixture两种湍流模型的影响。结果表明,欧拉-颗粒多相(EGM)方程和标准k-εmixture湍流方程相结合的CFD模型的预测较为准确;临界悬浮转速和颗粒粒径及固体装载量之间、无量纲颗粒悬浮高度与搅拌转速之间均成线性关系;大颗粒由于自由沉积速度增加,增加搅拌转速对固体悬浮的改善不明显;高固含量下,受阻沉降和悬浮粘度增加的共同作用使得颗粒悬浮均匀度增加。
A side-entering multiphase stirred reactor is one of the key equipment in the desulfurization and absorption process, and widely applied in Fuel Gas Desulfurization (FGD) process. The complicated flow dynamics of solids suspension and oxidation gas dispersion in the reactor could directly affect mass transfer and chemical reaction, and determine the desulfurization efficiency. The large size of the reactor (diameter equal to20m) and the exiting of the plentiful solid particles (desulfurization product) and gas bubbles (oxidation air) make the experimental research of fluid dynamical extremely difficult. The traditional device design and operation optimization conducted by using the engineering experiences easily leads to the poor performance of the reactor. Recently, the numerical simulation has been employed to undertake the design work of various industrial equipments. However, the reported CFD researcheson side-entering multiphase stirred tanks are extremely limited. The major emphasis of this dissertation is the application of CFD technique to investigate single-and multi-phase flow behaviors in the large-size side-entering stirred tank for guiding the equipment design and optimizationtheoretically.
     Firstly, the Reynolds-averaged Navier-Stokes governing equations combined with standard k-ε turbulence model were employed to simulation the single-phase turbulent flow field in an industrial-scale stirred tank with diameter and height of13m and equipped with a side-entering impeller. The calculated power curve and velocity profiles were in good agreement with the available experimental results for the finer-mesh cases in which about900,000mesh cells were included in the calculation domain. The effect of operation parameters and impeller layout on mixing effect was studied in detail. The results indicate that the increasing of impeller speed cannot effectively eliminate the mixing dead zone, and the flow pattern can be obviously improved when the impeller was inserted into the tank with a vertical angle of5.71°or a horizontal angle of11°. Comparing with two-impeller stirred system, the three-and four-impeller systems can more obviously decrease the area of low-velocity dead zone, especially in the top part of the tank. But the total power consumption of two-, three-and four-impeller stirred tank was obviously higher than that of the single-impeller stirred tank. In general, the three-impeller stirred system has the expected mixing performance with lower power consumption.
     Secondly, mixing behavior of wide-blade hydrofoil (WBH) impeller, marine-type propeller (MTP) and narrow-blade hydrofoil (NBH) impeller was respectively investigated in order to design a high-efficiency mixing system for the side-entering stirred tank. The simulated results indicate that WBH and MTP with the wider blades consumed more energy that NBH, but also have higher pumping efficiency due to their higher pumping capacity in turbulent flow regime of low-viscosity fluid. A single trailing vortex formed behind the blades of all the three impellers, but trailing vortex structure of WBH and MTP resulted in a better bulk flow pattern, and the discharged flows were similar to a horizontal jet flow with the sharply velocity gradient. But the discharged flow produced by NBH deviated to the impeller radial direction that made the pumping capacity lower. Moreover, there is a reduction in the turbulence kinetic energy of trailing vortices as the larger curvature of MTP blades, and that is very beneficial to prevent the impeller from erosion and invalidation. Hence MTP has been proposed for an existing gas-liquid side-entering tank and achieved a significant improvement in the performance of gas dispersion.
     Thirdly, the dissertation has conducted the first detailed numerical simulations to study the effects of boundary conditions of gas-liquid surface and-interphase force models under the assumption of uniform bubbles. The gas-liquid boundary conditions involved in the work include velocity-inlet, pressure-outlet, degassing boundary; and the interphase force models include standard S-N drag force model, revised S-N drag force model, Tsuchiya drag force model and lift force model. The modeling results clearly indicate that the predicted total gas hold-up and gas distribution calculated by the model in which the gas-liquid surface was set as a'velocity inlet' and the interphase force model was the revised S-N model or Tsuchiya model, were in good agreement with the experimental measurements. And the life force in the modeling can be ignored. Further, the effect of operating parameters on gas-liquid two-phase flow has been investigated. It can be known that the profiles of liquid-phase velocity vectors with and without gas phase were obviously different; the increasing impeller speed can improve the fluid axial movement in the top part of the tank and the radial movement in the bottom part of the tank; and the gradient of local gas hold-up was sharp in the domain between the tank center and wall on the cases of high gas capacity, that resulted in the difference of fluid density and improved the bulk fluid flow.
     Fourthly, the bubble interfacial area concentration model (BIACM) and the bubble population balance model (BPBM) were respectively incorporated into the fluid dynamical models through UDF subroutines to predict the bubble size distribution in a gas-liquid side-entering stirred tank. The effect of bubble coalescence and break-up was taken into consideration. In the simulations of BPBM-CFD coupled model, Luo-Svendsen bubble break-up model was respectively combined with Luo's bubble coalescence model and Prince's model to describe the bubble calescence and break-up process. The simulations show that the difference between the predicted results of bubble coalescence rate calculated by these models was found in the domain of higher turbulence dissipation, resulting in the different simulating results of the bubble size distribution. But the predicted bubble size in the tank for all the cases ranged from3to5mm, well agreeing with the experimental results.
     Lastly, it is the first to study solids suspension quality in a stirred tank equipped with three side-entering impellers by using computational fluid dynamics (CFD) technique. Using an Eulerian-Granular Multiphase (EGM) model respectively coupling with standard k-ε mixture turbulence model and Reynolds stress model performed simulations of solid-liquid flow. CFD predictions have been verified by comparing the predicted results with the experimental just suspended impeller speed and solid sediment pattern at the tank bottom. The effects of impeller agitation speed, particle size and solid volume loading on just suspended impeller speed Njs, cloud height h and suspension homogeneity have been investigated to assess the solid suspension quality under the different operation conditions. The computational model and results discussed in this study would be useful for understand the solid-liquid dispersion process in side-entering stirred tanks and extend the application of CFD models for equipment design and process optimization.
引文
[1]Committee for Desulphurization of Boiler and Kiln. China development report on desulphurization and denitration industries in power plants in 2008. China Environmental Protection Industry.2009,7:8-13.
    [2]Dudek S.A., Rogers J.A., GoharaW.F.Computational fluid dynamics (CFD) modelfor predicting two-phase flow in a flue-gas-desulfurization wet scrubber. EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposiuml.16-20 August 1999, Atlanta, Georgia, U.S.A.
    [3]林永明,高翔,俞保云等.计算流体力学(CFD)在大型湿法烟气脱硫系统中的研究与应用进展.热力发电.2005,12:34-37.
    [4]盛森芝,徐月亭,袁辉靖.近十年来流动测量技术的新发展.力学与实践,2002,24(5):1-13.
    [5]The Babcock & Wilcox Company (2009). Environmental equipment:wet flue gas desulfurization (Wet FGD) scrubber, www.babcock.com/products.
    [6]方云进.烟气脱硫关键装置-喷射型大孔径复合筛板的研究.上海:华东理工大学,1999.
    [7]周屈兰,惠世恩,徐通模等.湿法烟气脱硫浆液池三相流动特性的研究.中国动力工程学会第三届青年学术论文集.2005.
    [8]Hemraiani R.R. Fluid mixing technology in the petroleum industry in the handbook of industrial mixing. New Jersey:Wiley.2004.
    [9]耿作凤,李春培,范佳亮.湿法烟气脱硫装置中吸收塔搅拌器的布置及设计.通用机械.2008,6:73-85.
    [10]Karatza D., Prisciandaro M, Lancia A., Musmarra D. Calcium Bisulfite Oxidation in the Flue Gas Desulfurization Process Catalyzed by Iron and Manganese Ions. Industrial & Engineering Chemistry Research.2004,43:4876-4882.
    [11]Kiil S., Michelsen M.L., Dam-Johanse K. Experimental investigation and modeling of a wet flue gas desulfurization pilot plant. Industrial & Engineering Chemistry Research. 1998,37:2792-2906.
    [12]Kallinikos L.E., Farsari E.I., Spartinos D.N., Papayannakos N.G. Simulation of the operation of an industrial wet flue gas desulfurization system. Fuel Processing Technology.2010,91:1794-1802.
    [13]Maier H. The importance of simulations for large scale spray scrubber with CFD. Proceedings of 2004 China International deSOX deNOX. Exhibition & Conference, 2004,Beijing:320-322.
    [14]Weiss C., Wieltsch U. Laser optical flow measurements and computational fluid dynamic calculation of spray tower hydrodynamics. Chemical Engineering Research and Design.2005,83(A5):492-507.
    [15]Strock T., Gohara W. Experimental approach and techniques for the evaluation of wet flue gas desulphurization scrubber fluid mechanics.Chemical Engineering Science. 1994,49(24A):4667-4679.
    [16]Fueyo N., Gomez A., Gonzalez J.F. A comprehensive mathematical model of flue-gas desulfurization. Progress in Industrial Mathmatics at ECMI 2006 Mathematics in Industry.2008,12:290-295.
    [17]Marocco L., Inzoli F. Multiphase Euler-Lagrange CFD simulation applied to Wet Flue Gas Desulphurisation technology. International Journal of Multiphase Flow.2009, 35:185-194.
    [18]Gomez A., Fueyo N., Tomas A. Detailed modeling of a flue gas desulfurisation plant. Computers and Chemical Engineering.2007,31:1419-1431.
    [19]Keskinen K.I., Alopaeus V., Koskinen J., Kinnunen T. etc. CFD simulation of the oxidation tank reactor of a wet flue gas desulfurization process. AICHE Annual Meeting. Indianapolis:Nov.3-8,2002.
    [20]Anderson J.D计算流体力学基础及其应用(computational fluid dynamics)北京:机械工业出版社,2007:1-191.
    [21]王福军.计算流体动力学分析.北京:清华大学出版社,2004.
    [22]Fletcher C.A.J. Computational techniques for fluid dynamics 1-Fundamental and general techniques. Berlin and New York:Springer-Verlag.1988.
    [23]Fokema M.D., Kresta S.M., Wood P.E. Importance of using correct boundary conditions for CFD simulation of stirred tanks. The Canadian Journal of Chemical Engineering. 1994,72:177-183.
    [24]周国忠,施力田,王英琛.搅拌反应器内流体力学模拟技术进展.化学工程.2004,32(3):28-32.
    [25]Pericleous K.A., Patel M.K. The source-sink approach in the modeling of stirred reactors. Physico Chemical Hydrodynamics.1987,9:279-297.
    [26]Xu Y., Mcgrath G.CFD predictions of stirred tank flows. Chemical Engineering Research & Design.1996,74(4):471-475.
    [27]Brucato A., Ciofalo M., Grisafi F., Micale G. Complete numerical simulation of flow fields in baffled stirred vessels; the inner-outer approach. Proceeding 8th European Conference on Mixing.1994:155-162.
    [28]王卫京,毛在砂.用改进的内外迭代法数值模拟Rushton涡轮搅拌釜流场.过程工程学报.2002,2(3):193-198.
    [29]孙会,潘家桢,程刚.搅拌设备的CFD分析与软件对比.华东理工大学学报.2003,29(6):625-628.
    [30]Luo J.Y.. Gosman A.D. Prediction of impeller-induced flows in mixing vessels using multiple frame of reference. IChemE Symp.Ser.1994,136,549-556.
    [31]Naude I., Xuereb C., Bertrand J. Direct prediction of the flows induced by a propeller in an agitated vessel using an unstructured mesh. The Canadian Journal of Chemical Engineering.1998,76:631-640.
    [32]Oshinowo L., Jaworski Z., Dyster K.N., et al. Predicting the tangential velocity field in stirred tanks using the multiple reference frame (MFR) model with validation by LDA measurements [A].10th European Conference on Mixing. Delft:2000.281-288.
    [33]Lane G.L, Schwarz M.P, Evans G.M. Comparison of CFD methods for modeling of stirred tanks [A]. The 10th European Conference on Mixing [C]. Delft:2000.273-280.
    [34]Van't Riet K., Bruijin W., Smith J.M. Real and pseudo-turbulence in the discharge stream from a rushton turbine. Chemical Engineering Science.1976,31:407-412.
    [35]Luo J.Y., Gosman A.D., Issa R.I. Full flow field computation of mixing in baffled stirred reactors. Chemical Engineering Research & Design.1993,71 (A):342-344.
    [36]Harris C.K., Roekaerts D., Rosendal F.J.J. Computational Fluid Dynamics for Chemical Reactor Engineering [J]. Chemical Engineering Science.1996,51:1569-1594.
    [37]Brucato A. Numerical prediction of flow fields in baffled stirred vessels:A comparison of alternative modeling approaches. Chemical Engineering Science.1998,53(21): 3653-3648
    [38]Jaworski Z., Dyster K.N., Moore I.P.T. The use of angle resolved LDA data to compare two differential turbulence models applied to sliding mesh CFD flow simulation in a stirred tank. The 9th European Conference on Mixing. Pairs:1997.187-193.
    [39]Bsrtels C., Breuer M., Wechsler K. Computational fluid dynamics applications or parallel-vector computers:computations of stirred vessel flows. Computer & Fluids. 2002,31:69-97.
    [40]Sinnott R.K. Coulson & Richardson's Chemical Engineering. Volume 6:Chemical Engineering Design. UK:Elsevier Butterworth-Heinemann.2005:473.
    [41]Markatos N.C. The mathematical modeling of turbulence flows. Applied Math Modeling.1986,10:190-220.
    [42]戴干策,陈敏恒.化工流体力学[M].北京:化学工业出版社,2005.22-291.
    [43]张政,谢灼利.流体-固体两相流的数值模拟[J].化工学报.2001,52(1):1-9.
    [44]Moin P., Mahesh K. Direct numerical simulation:a tool in turbulence research. Annual Review of Fluid Mechanics.1998,30:39-78.
    [45]Moin P., Kim J. Numerical investigations of turbulent channel flow. Journal of Fluid Mechanics.1982,118:341-377.
    [46]Bakker A., Oshinowo L.M., Marshall E.M. The use of large eddy simulation to study stirred vessel hydrodynamics. The 10th European Conference on Mixing.2000:247-254.
    [47]康钦军.圆柱绕流的数值模拟.北京:清华大学.1999.
    [48]Elgobashi S.E., Abou-arab T.W. A two-equation turbulence model for tow-phase flows. Physics of Fluids.1983.26:931-938
    [49]Chen C.J.. Jaw S.Y. Fundamentals of turbulence modeling. Washington DC:Taylor& Francis.1998.
    [50]Sheng J., Meng H., Fox R.O. Validation of CFD simulation of a stirred tank using particle image velocity data. Canadian Journal of Chemical Engineering.1998: 611-625.
    [51]Yakhot V., Orzag S.A. Renormalization group analysis of turbulence, basic theory [J]. Journal of Scientific Computing.1986, 1(1):3-5.
    [52]Crowe C.T., Sommerfeld M., Tsuji Y. Fundamentals of gas-particle and gas-droplet flows. Boca Raton, USA:CRC Press,1998.546-555.
    [53]Kohnen G., Ruger M., Sommerfeld M., Convergence behavior for numerical calculations by the Euler/Lagrange method for strongly coupled phases. ASME Fluid Engineering Division Summer Meeting. Lake Tahoe, USA:1994.191-202.
    [54]Brucato A., Montante G. Particle drag coefficients in turbulent Fluids. Chemical Engineering Science.1998,53(18):3295-3314.
    [55]钟丽.搅拌釜内固-液悬浮的数值模拟.北京:北京化工大学,2003
    [56]Ranade V.V. An efficient computational model for simulating flow in stirred vessels:a case of Rushton turbine. Chemical Engineering Science.1997,52(24):4473-4484.
    [57]Kumaresan T., Joshi J.B. Effect of impeller design on the flow pattern and mixing in stirred tanks. Chemical Engineering Journal.2006,115:173-193.
    [58]Deglon D.A., Meyer C.J. CFD modeling of stirred tanks:Numerical considerations. Minerals Egnineering.2006,19:1059-1068.
    [59]Srinivasa T., Jayanti S. An Eulerian/Lagrangian study of solid suspension in stirred tanks. AICHE Journal.2007,53(9):2461-2469.
    [60]Bakker A., Fasano J.B. The Flow Pattern in an Industrial Paper Pulp Chest with a Side Entering Impeller. The Online CFM Book [OL]. http://www.bakker.org/cfm. Feb.2008.
    [61]Ford C., Ein-Mozaffari F., Bennington C.P.J., Taghipour F. Simulation of Mixing Dynamics in Agitated Pulp Stock Chests using CFD. AIChE Journal.2006,52(10): 3562-3569.
    [62]Saeed S., Ein-Mozaffari F., Upreti S.R. Using computational fluid dynamics modeling and Ultrasonic Doppler Velocimetry to study pulp suspension mixing. International Journal of Multiphase Flow.2007,46:2172-2179.
    [63]Gomez C., Bennington C.P.J., Taghipour F. Investigation of the flow field in a rectangular vessel equipped with a side-entering agitator. Journal of Fluids Dynamics. 2010,132:1-12.
    [64]Dakhel A.A, Rahimi M. CFD simulation of homogenization in large-scale crude oil storage tanks. Journal of Petroleum Science and Engineering.2004,43:151-161.
    [65]Rahimi M. The effect of impellers layout on mixing time in a large-scale crude oil storage tank. Journal of Petroleum Science and Engineering.2005,46:161-170.
    [66]Baldyga J., Pohprecki R. Turbulent micromixing in chemical reactors-a review. The Chemical Engineering Journal and the Biochemical Engineering Journal.1995; 58(2), 183-195.
    [67]Dudek S.A., Rogers J.A., Gohara W. F. Computational fluid dynamics(CFD) model for predicting two-phase flow in a flue-gas-desulfurization wet scrubber. Presented to EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposiuml.1999,Atlanta, Georgia.
    [68]崔娜.烟气脱硫吸收塔底部浆液池的数值模拟.上海:华东理工大学,2008.
    [69]Batchelor G.K. An Introduction to Fluid Dynamics. Cambridge:Cambridge Univ. Press, 1967.
    [70]Ranade V.V., Bourne J.R., Joshi J.B.Fluid mechanics and blending in agitated tanks. Chemical Engineering Science.1991,46:1883-1893.
    [71]Patankar S.V., Spalding D.B.A calculation procedure for heat, mass and momentum transfer in three dimensional parabolic flows. International Journal of Heat and Mass Transfer.1972,15:1787-1806.
    [72]Ochieng A., Onyango M.S. CFD simulation of the hydrodynamics and mixing time in a stirred tank. Chemical Industry & Chemical Engineering Quarterly.2010,16(4): 379-386.
    [73]Kukukova A., Mostek M., Jahodan M., Macho V. CFD prediction of flow and homogenization in a stirred vessel:Part I vessel with one and two impellers. Chemical Engineering Technology.2005,28(20):1125-1132.
    [74]Doormaal J.P.V., Raithby G.D. Enhancements of the SIMPLE method for predicting incompressible fluid flow.NumericalHeat Transfer,1984,7(2):147-163.
    [75]周国忠,王英琛,施力田.用CFD研究搅拌釜内的混合过程.化工学报.2003,54:886-890.
    [76]Oldshue J.Y. Fluid Mixing Technology. New York:Chemical Engineering McGraw-Hill Pub. Co.,1983.
    [77]Shekhar S.M., Jayanti S. CFD study of power and mixing time for paddle mixing in unbaffled vessels. Chemical Engineering Research and Design.2002,80(5):484.
    [78]Wesselingh J. A. Mixing of liquids in cylindrical storage tanks with side-entering propellers. Chemical Engineering Science.1975; 30,973-981.
    [79]M.Schafer, M.Yianneskis(1998). Trailing vortices around a 45° pitched-blade impeller. Fluid Mechanics and Transport Phenomena.1998,44:1233-1246.
    [80]Aubin J., Fletcher D.F., Xuereb C. Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme. Experimental Thermal and Fluid Science.2004,28:431-445.
    [81]Bakker A., Meyers K.J., Ward R.W., Lee C.K. The laminar and turbulent flow pattern of a pitched blade turbine. Trans. IChemE.1996,74A:485-491.
    [82]Naude I., Xuereb C., Bertrand J. Direct prediction of the flow induced by a propeller using an unstructured mesh. Canadian Journal of Chemical Engineering.1998,76: 631-640.
    [83]Fluent Inc. (2006),FLUENT 6.3 User's Guide,http://www.ansys.com/.
    [84]Ranade V.V.,. Bourne J.R, Joshi J.B. Fluid mechanics and blending in agitated tanks. Chemical Engineering Science.1991.46:1883-1893.
    [85]Fluent Inc. (2006). GAMBIT 2 User's Guide, http://www.ansys.com/.
    [86]Syrjanen J.K., Manninen M.T. Detailed CFD prediction of flow around a 45° pitched blade turbine. Proceedings of 10th European Conference on Mixing. Delft:2000, 265-272.
    [87]Patankar S.V., Spalding D.B. A calculation procedure for heat, mass and momentum transfer in three dimensional parabolic flows. International Journal of Heat and Mass Transfer.1972,15:1787-1806.
    [88]Aubin J, Mavros P., Fletcher D.F., Bertrand J., Xuereb C., Effect of axial agitator configuration (up-pumping, down-pumping, reverse rotation) on flow patterns generated in stirred vessels. Trans. IChemE.2001,79A:845-856.
    [89]Oldshue J.K. Pumping effects in fluid mixing technology. New York:McGraw-Hill. 1983:155-189.
    [90]Sheu Y.H.E., Chang T.P.K., Tatterson G.B., Dickey D.S. A three-dimensional measurement technique for turbulent flows. Chemical Engineering Communications. 1982,17:67-83.
    [91]Ali A.M., Yuan H.H.S., Dickey D.S., Tatterson G.B. Liquid dispersion mechanisms in agitated tanks:Part I.pitched blade turbine. Chemical Engineering Communications. 1981,10(4-5):205-213.
    [92]Deen N.G., Solberg T., Hjertager B.H. Flow generated by an aerated Rushton impeller: two-phase PIV experiments and numerical simulations. Canadian Journal of Chemical Engineering.2002,80:638-652.
    [93]Ranade V.V., Deshpande V.R. Gas-liquid flow in stirred reactors:trailing vortices and gas accumulation behind impeller blades. Chemical Engineering Science.1999, 54(13-14):1485-1499.
    [94]Morud K.E., Hjertager B.H. LDA measurements and CFD modeling of gas-liquid flow in a stirred vessel. Chemical Engineering Science.1996,51:233-249.
    [95]Gosman A.D., Issa R.I., Lekakou C., Looney L.K. Politis S. Multidimensional modeling of turbulent teo-phase flow in stirred vessels. AICHE.1992,38:1946-1956.
    [96]Josh J.B. Computational flow modeling and design of bubble column reactors. Chemical Engineering Science.2001,56(21-22):5893-5933.
    [97]Zhou L.X. Dynamics of Multiphase Turbulent Reacting Fluid Flows. Beijing:National Defence Industry Press,2002.
    [98]Lane G.L., Schwarz M.P., Evans G.M. Numerical modeling of gas-liquid flow in stirred tanks. Chemical Engineering Science.2005,60:2203-2214.
    [99]Sanyal J., Vasquez S., Roy S., Dudukovic M.P. Numerical simulation of gas-liquid dynamics in cylindrical bubble column reactors. Chemical Engineering Science.1999, 54:5071-5083.
    [100]Jakobsen H.A., Lindborg H., Dorao C.A. Modeling of bubble column reactors:Process and limitations. Industrial Engineering Chemical Engineering.2005,44:5107-5151.
    [101]Drew D.A., Lahey R.T. Particulate Two-Phase Flow. Butterworth-Heinemann. Boston. 1993:
    [102]Thomas N.H., Auton T.R., Se509-566ne K., Hunt J.C.R. Entrapment and transport of bubbles by transient large eddies in multiphase turbulent shear flows. Phys. Model. Multiphase flow.1983:169-184.
    [103]Lucas D., Prasser H.M., Manera A. Influence of the lift force on the stability of a bubble column. Chemical Engineering Science.2005,60(13):3609-3619.
    [104]Schiller L., Naumann Z. Z. Ver. Deutsch. Ing.,1935,77:318.
    [105]Bakker A., van den Akker HEA. A computational model for the gas-liquid flow in stirred reactors.Trans IChemE.1994,72:594-606.
    [106]Alves S.S., Maia C.I. Vasconcelos M.T.. Experimental and modeling study of gas dispersion in a double turbine stirred tank. Chemical Engineering Science.2002a, 57:487-496.
    [107]Khopkar A.R., Ranade V.V. CFD simulation of gas-liquid flow in a stirred vessel:VC, S33 AND L33 flow regimes. AIChE Journal.2006,52(5):1654-1672.
    [108]Landahl M.T., Mollo-chrisrensen E. Turbulence and random processes in fluid mechanics. Cambridge,2ed.1992.
    [109]Tsuchiya K., Furumoto A., Fan LS., Zhang J. Suspension viscosity and bubble rise velocity in liquid-solid fluidised beds. Chemical Engineering Science.1997,52:3053-3066.
    [110]Simonin O. Eulerian formulation for particle dispersion in turbulent two-phase flows. In Fifth workshop on two-phase flow predictions. Wennerberg. S., Ed. Erlangen, Germany.,1990.
    [111]Hinze J.O. Turbulence. New York:McGraw-Hill Publishing Co.,1975.
    [112]Murthy B.N., Ghadge R.S., Joshi J.B. CFD simulations of gas-liquid-solid stirred reactor:Prediction of critical impeller speed for solid suspension. Chemical Engineering Science.2007,62:7184-7195.
    [113]Khopkar A.R., Kasat G.R., Pandit A.B., Ranade V.V. CFD simulation of mixing in tall gas-liquid stirred vessel:Role of local flow patterns. Chemical Engineering Science. 2006,61:2921-2929.
    [114]Ranade V.V. Modeling of flow in bubble columns. NCL internal report.1998.
    [115]RanadeV.V. Modeling of gas-liquid flows in stirred and bubble column reactors. CPCFD Meeting. Cincinnati, May 2000.
    [116]Ansys Inc. (2011). Fluent 12 User's Guide, http://www.ansys.com/.
    [117]Barigou M.,Greaves M. Bubble size distribution in a mechanically agitated gas-liquid contactor. Chemical Engineering Science.1992,47(8):2009-2025.
    [118]Alves S.S., Maia C.I., Vasconcelos J.M.T. Experimental and modeling study of gas dispersion in a double turbine stirred tank. Chemical Engineering Science.2002.57: 487-496.
    [119]Reyes J.N. Statistically derived conservation equations for fluid particle flows.5th Pro. ANSTHD, P.12,1989 ANS Winter Meering. San Francisco, CA, Nov.1989.
    [120]Kocamustafaogullari G. Ishiii M. Fundation of the interfacial area transport equation and its closure relation. International Journal of Heat and Mass Transfer.1995,38:481.
    [121]Wu Q.. Kim S., Ishii M., Beus S.G. One-group interfacial area transport in vertical bubbly flow. International Journal of Heat and Mass Transfer.1997,41(8-9): 1103-1112.
    [122]Ishii, M. and Kim, S. (2001). Micro four-sensor probe measurement of interfacial area transport for bubbly flow in round pipes. Nuclear Engineering and Design,205, 123-131.
    [123]Delhaye, J.M. Some issues related to the modelling of interfacial areas in gas-liquid flows, H. Modeling the source terms for dispersedflows, C. R. Acad. Sci. Paris, t.329, Serie Ⅱb,2001:473-486.
    [124]Lane G.L., Schwarz M.P., Evans G.M. Numerical modeling of gas-liquid flow in stirred tanks. Chemical Engineering Science.2005,60:2203-2214.
    [125]Moilanen P., Laakkonen M., Visuri O., Alopaeus V., Aittamaa J. Modelling mass transfer in an aerated 0.2 m3 vessel agitatedby Rushton, Phasejet and Combijet impellers. Chemical EngineeringJournal.2008,142:95-108.
    [126]Hulburt H.M., Katz S. Some problems in particle technology:a statistical mechanical formulation. Chemical Engineering Science.1964,19:555-574.
    [127]Luo H. Coalescence, breakup and liquid circulation in bubble column reactors. Norges Tekniske Hogskole:Universitetet I Trondheim,1993.
    [128]Prince M.J., Blanch H.W. Bubble coalescence and break-up in air-sparged bubble columns. AICHE Journal.1990,36:1485-1499.
    [129]Kolmogorov A.N. Local structure of turbulence in incompressicle viscous fluid for very lager Reynolds number. Dokl.Akad.Nauk.SSSR.1941,30:9-13.
    [130]王铁峰.气液(浆)反应器流体力学行为的实验研究和数值模拟.北京:清华大学.2004.
    [131]Coulaglou C.A., Tavlarides L.L. Description of interaction processes in agitated liquid-liquid dispersions. Chemical Engineering Science.1977,32:1289-1297.
    [132]Luo H., Svendsen H.F. Theoretical model for drop and bubble breakup in turbulent dispersions. AICHE Journal.1996,42:1225-1233.
    [133]Kolmogorov A.N. on the breakage of srops in a turbulent flow. Dokl.Akad.Navk.SSSR. 1949,66:825.
    [134]Drazin P.G., Reid W.H. Hydrodynamic stability. Cambridge:Cambridge University Press, U.K.,1981.
    [135]Alves S.S., Maia C.I. Vasconcelos M.T.. Experimental and modeling study of gas dispersion in a double turbine stirred tank. Chemical Engineering Science.2002a, 57:487-496.
    [136]Kumar S., Ramkrishna D. On the solution of population balance equation by discretization-I. A fixed pivot technique. Chemical Egineering Science.1996,51(8): 1311-1332.
    [137]Hidy G.M. On the theory of the coagulation of noninteracting particles in Brownian motion. Journal of Colloid Interface Science.1965.20:123-144.
    [138]Batterham R.J., Hall J.S., Barton G. Pelletizing kinetics and simulation of full scale balling circuits. In Nurnberg W(eds) Proceeding of the 3rd International symposium on Agglomeration. Germany. A136.
    [139]Hounslow M.J., Ryall R.L., Marshall V.R. A discretized pooulation balance for nucleation, growth and aggregation. AICHE Journal.1988.34:1821-1832.
    [140]Mak, A.T.C. Solid-liquid mixing in mechanically agitated vessels. Ph.D. Dissertation, University of London:London,1992.
    [141]Scully, J.; Frawley, P. Computational fluid dynamics analysis of the Suspension of nonspherical particles in a stirred tank. Industial&Engineering Chemical Research. 2011,50,2331-2342.
    [142]Chudacek, M.W. Relationships between solids suspension criteria, mechanism of suspension, tank geometry and scale-up parameters in stirred tanks. Industial&Engineering Chemical Research.1986,25,391-401.
    [143]Ochieng A., Onyango M. CFD simulation of solids suspension in stirred tanks:review. Hemijska industrija.2010,64(5),365-374.
    [144]Zwietering T.N. Suspending of solid particles in liquid by agitators. Chemical Engineering. Science.1958,8:244.
    [145]Nienow A. Suspension of solid particles in turbine agitated baffled vessels. Chemical Engineering. Science.1968,23,1453-1459.
    [146]Armenante P.M., Nagamine E.U. Effect of low off-bottom impeller clearance on the minimum agitation speed for complete suspension of solids in stirred tanks. Chemical Engineering. Science.1998,53,1757-1775.
    [147]Van der Westhuizen A.P., Deglon D.A. Solids suspension in a pilot-scale mechanical flotation cell:a critical impeller speed correlation. Minerals Engineering.2008,21, 621-629.
    [148]Bittorf, K.J.; Kresta, S.M. Prediction of cloud height for solid suspensions in stirred tanks, Chemical Engineering Research and Design.2003:568-577.
    [149]Ochieng, A. Lewis, A.E. CFDsimulation of solids off-bottom suspension and cloud height.Hydrometallurgy.2006,82(1-2),1-12.
    [150]Williams, R.A.; Jia, X.; McKee, S.L. Development of slurry mixing models using resistance tomography. Powder Technology.1996,87,21-27.
    [151]Hosseini, S.; Petel, D.; Ein-Mozaffari, F.; Mehrvar, M. Study of solid-liquid mixing in agitated tanks through computational fluid dynamics modeling. Industial&Engineering Chemical Research.2010,49,4426-4435.
    [152]Harrison, S.T.L.; Stevenson, R.; Cilliers, J.J. Assessing solids concentration homogeneity in Rushton-agitated slurry reactors using electrical resistance tomography (ERT). Chemical Engineering Science.2012.71,392-399.
    [153]Montante, G., Magelli. F.Modelling of solids distribution in stirred tanks:analysis of simulation strategies and comparison withexperimental data. International Journal of Computational Fluid Dynamics.2005.19(3),253-262.
    [154]Tatterson G.B. Fluid Mixing and Gas Dispersion in Agitation Tanks. New York: McGraw-Hill.1991.
    [155]DingJ. GidaspowD.A.Bubbling fluidization model using kinetic theory of granular flow, AIChE Journal.1990,36(4):523-538.
    [156]Schiller L., Naumann, A drag coefficient correlation. VDI-Zeitschrift.1935,77: 318-320.
    [157]Gidaspow D., Bezburuah R., Ding. J. Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach. In Fluidization VII, Proceedings of the 7th Engineering Foundation Conference on Fluidization.1992:75-82.
    [158]Brucato A., Grissini F., Montante, G. Particle drag coefficients in turbulent fluids, Chemical Engineering Science.1998,53:3295-3314.
    [159]Ochieng A. Onyango M.S. Drag models, solids concentration and velocity distribution in a stirred tank. Powder Technology.2008,181:1-8.
    [160]Nere N.K., Patwardhan A.W., Joshi J.B.Liquid-Phase Mixing in Stirred Vessels:Turbulent Flow Regime. Industrial &Engineering Chemical Research.2003,42 (12):2661-2698.
    [161]Launder B.E., Spalding D.B. Lectures in Mathematical Models of Turbulence. London: Academic Press,1972.
    [162]Cokljat D., Ivanov V.A., Sarasola F.J., Vasquez S.A. Multiphase k-epsilon Models for Unstructured Meshes. In ASME 2000 Fluids Engineering Division Summer Meeting: Boston, USA,2000.
    [163]Saeed S. Ein-Mozaffari F. Upreti S.R.Using Computational Fluid Dynamics Modeling and Ultrasonic DopplerVelocimetry To Study Pulp Suspension Mixing. Industrial &Engineering Chemical Research.2007,46:2172-2179.
    [164]Zheng X.D., Huang X.B., Du R.L. Suspension of Solid Particles by Side-entering Agitators. The Chinese Journal of Process Engineering.2009,9(3):417-423.
    [165]Bohnet M., Niesmak G. Distribution of solids in stirred suspension. German Chemical Engineering.1980,3:57-65.
    [166]Albright L.F. Albright's Chemical Engineering Handbook. New York:CRC Press, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700