用户名: 密码: 验证码:
流体—结构耦合数值方法研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在海洋、船舶、航空、水利、化工和核动力等工程领域中,都会遇到流体和结构相互作用的耦合问题,其中,非线性动态流固耦合问题是目前学术界和工程界最具挑战性的研究内容之一。随着计算机硬件水平和流固耦合数值计算方法的发展,如何利用现代数值方法,深入研究非定常流场对结构的激振作用,对于避免流体诱发的共振从而提高结构的可靠性和安全性具有重要意义。本文基于流固弱耦合交错算法,分别应用大型通用有限元分析软件FLUENT和MARC对耦合系统进行离散求解,其主要工作包括:
     1.对于流体—结构耦合系统的结构部分,本文给出了基于几何大变形非线性增量有限元模型,并讨论了在MARC软件中采用大变形理论时,力跟随和力不跟随对结构计算结果的影响。
     2.对于流体—结构耦合系统的流体部分,本文建立了基于ALE描述的N-S流体有限体积控制方程,并引入动网格法来保证结构大变形后流体网格的质量,避免流体网格出现畸变。最后,在FLUENT中以鱼类行波运动为算例进行动网格计算,验证了所采用方法的有效性和正确性。
     3.引入流体和结构在耦合界面上的协调条件,建立了非线性流体—结构耦合计算模型,采用基于FLUENT和MARC软件的弱耦合交错计算方法,并寻找合适的插值函数,通过两软件的二次开发功能,给出了耦合界面不匹配网格间运动和载荷传递的方法,编程实现流体—结构的耦合计算。
     4.以两个具有广泛工程背景的算例对所建立起来的耦合方法进行深入分析。首先研究了单自由度弹性支撑方柱的涡致振动问题,捕获了涡致振动的“锁定”、“拍”等现象,验证了所建立的耦合方法的可行性。然后重点分析了处于静止方柱尾迹结构内的柔性悬臂梁涡致振动问题,讨论了交错耦合计算时间步长、雷诺数、结构几何非线性模型对悬臂梁响应的影响。
The interaction of fluid flow and flexible solid structures is frequently encountered in many areas of civil, mechanical, marine, aerospace, chemical and nuclear power engineering. As one of those interaction problems, nonlinear dynamic fluid-structure interaction has become one of the most challenging research issues in academic and engineering field at present. With the development of computational resource and fluid-structure computational methodologies, how to adapt modern numerical method to deeply study the influence of structure vibration on fluid flied is of great significance to avoid the fluid-induced resonance and improve the reliability and security of the structures. In this thesis, a weak dynamic nonlinear fluid structure interaction staggered numerical simulation method is put forward and established, and is verified by several real examples through general-purpose finite element program MARC and FLUENT. The main works of this thesis are listed as follows:
     1. For the structure region of the fluid-structure interaction system, the incremental nonlinear finite element model is introduced based on large geometric deformation. Meanwhile, it is applied in the vibration problem of a flexible cantilever beam to discuss the effect of non-follow force model and follow force model to the structure responses.
     2. For the fluid region of the fluid-structure interaction system, the N-S equations with Arbitrary Lagarian-Eulerian(ALE) description are adopted to exactly describe the fluid boundary movement of FSI system. Also, the dynamic mesh method is introduced to maintain good element shapes of the fluid. Then, taking the fish-like swimming foils as a calculation example, the validity of ALE method and dynamic mesh method is verified.
     3. Through the compatible conditions on the boundary between the fluid and structure, a weak coupled nonlinear dynamic fluid-structure interaction model is set up. In this model, the solid region is solved with code MARC, while the fluid region is simulated with code FLUENT. To realize the data transmission between the two softwares, the user defined functions of both softwares are developed and compiled. At the same time, the data transmission methods of movements and loads between the non-matching discrete meshes of fluid and structure on the interaction surfaces are given.
     4. As the application of methods and models mentioned above, firstly, the elastic-mounted square rectangular free oscillation problem is present. The results show that, when oscillation frequencies of the rectangular are in a certain range, the "lock-in" phenomenon, a kind of nonlinear fluid-structure interaction resonance phenomenon, and "beat" phenomenon will appear. Secondly, the flow-induced vibration problem of a flexible cantilever beam is analyzed in details. And the effects of staggered coupled time step sizes, structure nonlinear finite element models and Renault number to the responses of the cantilever beam are investigated respectively.
引文
[1]邢景棠,周盛,崔尔杰.流固耦合力学概述.力学进展.1997,27(1):19-38.
    [2]Bisplinghoff R.L.,Ashely H.Principles of Aeroelasticity.J.Wiley and Sons,Inc.,New York.1962.
    [3]Strimquist W.K.,Sisman O.High flux reactor fuel assemblies-vibration and water flow.Report No.ORNL-50,June 15,1948.
    [4]顾王明,唐文勇,陈铁云,郑际嘉.结构流-固冲击屈曲研究进展.力学进展.1996,26(1):56-67.
    [5]薛伟,陈昭运.水轮机叶片裂纹原因及预防措施研究.大机电技术.2002,5:42-45.
    [6]Ergin,A.,Ugurlu,B.,Linear vibration analysis of cantilever plates partially submerged in fluid.Journal of Fluids and Structures.2003,17:927-939.
    [7]Lam K.Y.,Wang Q.X,Zong Z,A nonlinear fluid-structure interaction analysis of a near-bed submarine pipeline in a current.Journal of Fluids and Structures,2002,16:1177-1191.
    [8]王少波,刘元杰,梁醒培.弹性板在粘性流体中的耦合振动分析.机械工程学报.2004,40(7):63-66.
    [9]谌勇,张军,汪玉,唐平.流体介质中圆板受冲击载荷时的弹塑性非线性动力响应.振动与冲击.2005,24(5):30-34.
    [10]Gluck M.,Breuer M.,Durst F.,Halfmann A.,Rank E.Computation of wind-induced vibrations of flexible shells and membrane structures.Journal of Fluids and Structures.2003,17:739-765.
    [11]Slone A.K.,Pericleous K.,Bailey C.,Cross M.Dynamic fluid-structure interaction using finite volume unstructured mesh procedures.Computers and Structures.2002,80:371-390.
    [12]Zhang H.,Zhang X.,Ji S.,Guo Y.,Ledezma G.,Elabbasi N.Recent development of fluid-structure interaction capabilities in the ADINA system.Computers and Structures.2003,81:1071-1085.
    [13]Namkoong K,Choi H.G.,Yoo J.Y.Computation of dynamic fluid-structure interaction in two-dimensional laminar flows using combined formulation.Journal of Fluids and Structures.2005,20:51-69.
    [14]Park K,Felippa C,DeRuntz J.Stabilization of staggered solution procedures for fluid-structure interaction analysis.Computational methods for fluid-structure interaction problems.ASME,1977,AMD-vol.26.
    [15]戴大农.流固耦合系统动力分析的若干基本问题与数值方法.博士学位论文.清华大学工程力学系,1988.
    [16]Komatsu K.Fluid-structure interaction in progress in boundary element methods.Vol.2.Ed.C.A.Brebbia,Pentech press.1th,1983.
    [17]Westergarrd H.M.Water pressures on dams during earthquakes.Trans.Amer.Soc.Civ.Eng.1933,98:418-433
    [18]田野正.地震力对重力坝的影响,水利译丛,第三期,1957.
    [19]小坪清真.不规则地震力所引起坝上的动水压力,水利译丛,第九期,1958.
    [20]钱令希,邱大洪.利用电模拟法计算挡水坝在满库时的自振频率.土木工程学报,1958,5(2):12-18.
    [21]刘恢先,王孝信.挡水坝地震荷载,地震工程研究报告集,第一集,1962:140-153.
    [22]郑哲敏.平板在流体作用下的振动.力学学报,1958,2(1):11-16.
    [23]郑哲敏等.悬臂梁在一侧受有液体作用下的振动.力学学报,1959,3(2):111-119.
    [24]王前信,王孝信.在不规则地震作用下刚性坝面动水压力的探讨,地震工程研究报告集,第一集,1962:153-161.
    [25]王前信,王孝信.悬臂梁在一侧有水时的自振特性与地震荷载,地震工程研究报告集,第一集,1962:161-172.
    [26]居荣初,黄振平,杜瑞明.水中圆柱体结构的自由振动,地震工程研究报告集,第一集,1962:173-181.
    [27]Hosldns L.M,Jacobsen L.S.Water pressure in a tank caused by simulated earthquake,Bulletin of the Seismological of America,1934,24(1):1-32.
    [28]Housner G.W.The dynamic pressure on accelerated fluid containers,Bulletin of the Seismological of America,1957,47(1):15-35.
    [29]李宏男等.利用多个调液阻尼器减少高层建造地震反应的研究,地震工程与工程振动,1997,17(1):23-31.
    [30]刘云贺等.顶部设置水箱的建筑结构抗震研究.西安理工大学学报.1999,15(4):71-75.
    [31]宋金峰,陈厚群.水体对渡槽结构地震空间响应的计算,第五届全国地震工程会议论文集,1998:143-161.
    [32]张俊发,刘云贺等.渡槽-水体系统的地震反应分析.西安理工大学学报.1999,15(4):46-51.
    [33]Newmark.地震工程学原理,北京:中国建筑工业出版社,1986.
    [34]Zienkiewicz,Bettess.Fluid-structure dynamic interaction and wave force:An introduction to numerical treatment.International Journal for Numerical Methods in Engineering,1978,13(1):1-16.
    [35]Vaish A.K,Chopra A.K.Earthquake finite element analysis of structure foundation systems.Journal of Engineering Mechanics Division,ASCE,1974,100:1101-1116.
    [36]Fok K.L,Chopra A.K.Earthquake analysis of arch dams including Dam-Water-Interaction reservoir boundary absorption and foundation flexibility.Earthquake Engineering and Structure Dynamics,1986,14(2):155-184.
    [37]陆鑫森,Colugh R.W.流体-结构相互作用的杂交子结构法,振动与冲击.1995,15(3):99-109.
    [38]Bathe K.J,Hahn W.F.On transient analysis of fluid-structure systems.Computer &Structures,1979,10:383-391.
    [39]Chwang A.T.Nonlinear hydrodynamic pressure on an accelerating plate.Physics of Fluids,1983,26(2):283-387.
    [40]李遇春,楼梦麟.强震下流体对渡槽槽身的作用,水利学报,2000,3:46-52.
    [41]Tsai C.S,Lee G C.et al.A semi-analytical method for time-domain analyses of dam-reservoir interactions.International Journal for Numerical Methods in Engineering, 1990,29(5):913-933.
    [42]Yang R,Tsai C.S,Lee G.C.Procedure for time-domain seismic analysis of concrete dams.Journal of the Engineering Mechanics,ASCE,1996,122(2):116-122.
    [43]张建海,陈大鹏.考虑固体与几何非线性的固液耦合系统瞬态有限元分析,计算结构力学及其应用,1995,12(4):451-461.
    [44]Donea J,Giuliani S.Prediction of the nonlinear dynamic response of structural components using finite element,Nuclear Engineering Design,1976,37:95-114.
    [45]Liu W.K,Belytschko T,Herman C.An arbitrary Lagrangian-Eulerian finite element method for path-dependent materials.Computer Methods in Applied Mechanics And Engineering,1986,58:227-245.
    [46]Howdn F.H.Near-field fluid-structure interaction using Lagrangian fluid finite elements.Computers and Structures,1999,71:123-141.
    [47]Hu,H.H,Patankar N.A,Zhu M.Y.Direct numerical simulation of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique.Journal of Computational Physics.2001,169:427-462.
    [48]Choi H.G,Joseph D.D.Fluidizaion by lift of 300 circular particles in plane Poiseuille flow by direct numerical simulation.Journal of Fluid Mechanics.2001,438:101-128.
    [49]黄玉盈.复杂外形薄浮板谐耦振问题的边界元.有限元混合解,固体力学学报,1991,12(3):255-260.
    [50]傅作新等.水库的库底条件和挡水结构的动水压力,水利学报,第五期,1987.
    [51]杜力修,陈厚群,侯顺载.拱坝系统三维非线性地震波动分析,地震工程与工程振动.1996,16(3):39-47.
    [52]张立翔,杨柯.结构互动理论及其应用.北京,科学出版社,2004.
    [53]张升明,吴士冲.流固耦合有限元及储液容器振动问题研究.船舶结构力学论文集(二),1990.
    [54]吴一红,谢省宗.水工结构流固耦合动力特性分析.水利学报,第一期,1995,27-33.
    [55]刘云贺,俞茂宏,陈厚群.流体固体动力耦合分析的有限元法.工程力学,2005,22(6):1-6.
    [56]叶正寅,王刚,杨永年.非流线体分离流动态载荷的数值模拟方法研究.应用力学学报(增刊),2001,18(9):69-74.
    [57]Jameson N,Schmidt W,Turkel E.Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes,AIAA-81-1259,Reno:AIAA 1981.
    [58]Venkatakrishnan V.Perspective on unstructured grid flow solvers,AIAA Journal,1996,34(3):533-547.
    [59]Levy D.W,Thacker M.D.Comparison of unstructured cell- and node-based schemes for the Euler equations.AIAA-99-3185,Reno:AIAA 1999.
    [60]王勖成.有限单元法基本原理,第二版.北京:清华大学出版社,1997.
    [61]李人宪.有限体积法基础.北京:国防工业出版社,2005.
    [62]李万平.计算流体力学.武汉:华中科技大学出版社,2004.
    [63]Hirt G.W,Amsden A.A,Cook J.L.An arbitrary Lagrangian-Eulerian computing method for all flow speeds.Journal of Computational Physics.1974,14(3):227-253.
    [64]李开泰,黄艾香.张量分析及其应用.北京:科学出版社,2004:90-91.
    [65]王福军.计算流体动力学分析--CFD软件原理与应用.北京:清华大学出版社,2004:1-112.
    [66]Deng Jian,Shao Xue-ming,Ren An-lu.Numerical study on propulsive performance of fish-like swimming foils,Journal of Hydrodynamics.2006,18(6):681-687.
    [67]Atsushi Okajima.Strouhal numbers of rectangular cylinders.Journal of Fluid Mechanics,1982.123:379-398.
    [68]邓见,任安禄,皱建锋.方柱绕流横向驰振及涡致振动数值模拟.浙江大学学报(工学版),2005,4(39):595-599.
    [69]W.A.Wall,E.Ramm.Fluid-structure interaction based upon a stabilized(ALE)finite element method,in:S.R.Idelsohn,E.Onate(Eds.),4~(th)World Congress on Computational Mechanics,CIMNE,Barcelona,Spain,Computational mechanics-New trends and applications,Buenos Aires,Argentina,1998.
    [70]B.Hubner,E.Walhom,D.Dinkier.A monolithic approach to fluid-structure interaction using space-time finite elements,Comput.Methods Appl.Mech.Engrg.2004,193:2087-2104.
    [71]J.Steindorf.Partitionierte verfahren fur problem der fluid-struktur wechselwirkung,Ph.D.thesis,Technische Univeritat Braunschweig,Mechanik-Zentrum,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700