用户名: 密码: 验证码:
时变信道环境下基于IEEE802.16e协议的信道估计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
IEEE 802.16协议是IEEE 802工作组制定的宽带无线通信标准,目的在于解决城域网中用户站点和核心网间“最后一英里”的高速宽带无线接入问题。IEEE 802.16e是IEEE 802.16d的移动性增强版,它在2~6GHz的特许频段内支持终端移动性,提供了一种可为用户在快速移动条件下实现高速数据传输服务的宽带无线接入解决方案。
     OFDM/OFDMA因其抗频率选择性衰落好,频谱利用率高等优点成为包括IEEE802.16e移动通信网络在内的下一代宽带无线通信系统的物理层核心技术。随着载频及终端移动速度的提高,移动信道在一个OFDM符号间隔内拟平稳的假设不再成立。当信道在一个码元间隔内变化时,信道时变引起的多普勒频移将破坏子载波正交性,由此造成的子载波间干扰(ICI)将严重影响系统性能。传统的OFDM时变信道估计技术在时域进行,可对一个码元间隔内的信道的时变特性进行精确估计,获得信道频域矩阵,保证在均衡时较好的去除信道时变造成的ICI。
     但上述研究成果均基于理想的假设条件:信道为整数倍采样信道、导频分布满足采样定理要求的理想导频模式,利用理想的导频恢复的信道时域响应无能量泄露。在实际的OFDM/OFDMA系统中,无线信道一般为非整数倍采样信道,并且系统导频通常无法满足所要求的理想模式,造成现有算法的性能严重受限。
     本文针对以上问题,以IEEE802.16e协议为基础,分别对实际的OFDM及OFDMA系统下的时变信道估计技术进行研究,具体研究内容及创新成果如下:
     (1)针对现有OFDM时变信道估计算法的局限性,结合实际的IEEE802.16e OFDM系统,本文提出了一种基于分段线性模型的OFDM频域线性时变信道估计方法,利用线性模型拟合信道频域传输函数在一个符号内的线性时变,进而估计得到信道频域矩阵,能够保证在均衡时去除信道线性时变造成的ICI。所提频域时变信道估计方法在频域处理,不受信道时域响应能量泄露的影响,适用于实际的OFDM系统。
     (2)针对终端移动速度增加、信道在一个符号内时变加剧,影响信道估计的精度的问题。本文提出一种在时变信道估计中利用差分编码方法消除导频子载波上来自相邻数据子载波ICI干扰的方法,以有效降低导频子载波上的ICI污染的功率水平,保证时变信道估计算法的估计精度。
     (3)在一个IEEE802.16e OFDM实际系统中,随着车速的增大,信道在一个符号间隔内呈现非线性时变,针对这一问题,本文提出了一种基于基扩展模型的OFDM频域非线性时变信道估计方法,利用基扩展模型拟合信道在一个符号内的非线性时变。根据信道的非线性时变程度及所需的导频开销,分别提出了利用相邻符号内导频辅助估计及利用当前符号内导频辅助估计的方法,并给出各自的适用范围。
     (4)本文进一步结合IEEE802.16e OFDMA协议,针对实际的OFDMA系统中用户只能利用其占用的时频单元块内的导频完成信道估计的特点,分别提出了在实际的非整数倍采样信道下,信道在一个符号内呈现线性及非线性时变时,适用于实际OFDMA系统的频域快时变信道估计方法。该方法填补了目前现有OFDMA信道估计算法无法跟踪信道在各符号内时变的技术空白,可对信道在每个符号内的线性及非线性时变进行精确拟合,保证在均衡时较好的去除信道时变造成的ICI,可为系统支持120km/h~250km/h的车载移动通信提供可靠保证。
     (5)最后,对以上研究成果与多入多出多天线技术的结合进行了研究讨论。得到的结论为:在移动环境下,只要各天线的导频正交,OFDM系统中已有的时变信道估计方法均可以沿用至MIMO-OFDM系统中。但是,由于多天线系统需要估计的信道参数相对单天线系统成倍增加,需要的导频开销也应随之增加。当系统导频开销一定时,多天线系统的信道估计精度相对单天线系统必然有所降低。因此,在应用中应结合具体的信道特性及系统提供的导频开销综合考虑应用多天线是否能带来效益。
Broadband wireless access (BWA) based on the IEEE 802.16 standard is a promising technique for last-mile access. IEEE Std 802.16e is an enhancement to IEEE Std 802.16d to support subscriber stations moving at vehicular speeds and the operation is limited to licensed bands suitable for mobility between 2 to 6 GHz. Thereby, it specifies a system for combined fixed and mobile broadband wireless access.
     Orthogonal frequency division multiplexing (OFDM) is one of the most important physical layer transmission techniques in future wireless communications due to its robustness to multi-path channel and high spectrum utilization. OFDMA is a strong candidate multi-access scheme for high-data-rate mobile wireless communications, due to its flexibility on sub-carrier allocation and multi-user diversity utilization over multi-path fading channels. Hence, OFDM and OFDMA techniques are defined as the main physical layer transmission techniques in IEEE Std 802.16e.
     In mobile communications, the high speed motion of subscribers give rise to Doppler effects that destroy orthogonality among sub-carriers, leading to Inter-Carrier Interference (ICI) which degrades performance of the OFDM/OFDMA receiver. Conventional OFDM time varying channel estimation methods have provided promising results, but are unavailable in practical OFMD/OFDMA systems. Because the time variations of channel impulse response (CIR) are tracked in the time-domain with an ideal assumption that pilots are evenly spaced through the whole frequency band and the channel is an ideal sample-spaced channel. But concerning a practical OFDM/OFDMA system where not noly the non-sample spaced multipath delay but also the unevenly distributed pilots will lead to CIR leakage, the perforamance of conventional algorithms will decrease rapidly.
     Based on analysis above, this dissertation investigate the frequency domain time varying channel estimation techniques for practical IEEE 802.16e OFDM/OFDMA systems over time varying channels. The main contributions are listed as follows:
     ( 1 ) According to practical IEEE 802.16e OFDM systems, a piece wise linear model based frequency domain time varying channel estimation method for practical OFDM system is proposed. The time variations of channel frequency transmission function are tracked by linear model using pilots in adjacent symbols. Then the channel matrix can be obtained and ICI is well migigated in equalization.
     ( 2 ) In high mobility applications, the ICI energy increased greatly. We find that ICI on pilots make the estimated channel frequency responses at pilot sub-carriers not accurate and inevitably lead to estimation errors. To further improve the estimation precision, this paper considers the use of frequency-domain correlative coding to compress the ICI from data to pilots. The proposed method makes pilots less sensitive to ICI from data sub-carriers, especially in high Doppler environments, more favorable benefits will be received.
     ( 3 ) With the user mobility increase, the channel varies non-linearly during one OFDM symbol period. We futher investigate a BEM based frequency domain time varying channl estimation method for practical OFDM systems. The non-linearly time variations of the channel frequency transmission function are model by BEM. According to the degree of channel variations and the pilot costs for channel estimation, two kinds of channel estimation methods are proposed respectively, which are the adjacent symbols assisted channel estimation method and the channel estimation method by using pilot clusters in the current symbol. Additionaly, their different application ranges are given.
     ( 4 ) Conventional time varying channel estimation methods for OFDMA systems assumed that the channel is constant in a symbol period and the ICI can be ignored. It is inappropriate for high mobile environments. In our dissertation, frequency domain time varying channel estimations methods for practical IEEE802.16e OFDMA systems are proposed, which are performed in each OFDMA time-frequency blocks and the channel variariations during one OFDMA symbol period are tracked well. Hence, ICI caused by channel variations can be mitigated after equalization.
     ( 5 ) Finally, the applicability of all above achievements in MIMO systems are discussed. Conclusions are as follows: If the pilots on different transmit antennas are orthogonal, channel estimation can be performed independently between a pair of transmit and receive antennas. Then, the above achievements will continue to apply in MIMO-OFDM/OFDMA systems. But for MIMO systems, the parameters to be estimated increase manyfold. On the premise of limited pilot overhead costs, compared to single transmit antenna systems, the eatimation performance will drop more or less. In practical applications, comprehensive considerations are necessary.
引文
[1] Ohmori S.; Yamao Y.; Nakajima N. The future generations of mobile communications based on broadband access technologies [J]. IEEE Communications Magazine, 2000, 38(12): 134-142.
    [2] Tachikawa K. A perspective on the evolution of mobile communications [J]. IEEE Communications Magazine, 2003, 41(10):66-73.
    [3] Miki, T.; Ohya, T.; Yoshino, H.; Umeda, N. The Overview of the 4th Generation Mobile Communication System [A]. Information, Fifth International Conference on Communications and Signal Processing[C]. Florida: IEEE, 2005:1600-1604.
    [4]王文博;郑侃.宽带无线通信OFDM技术[M].北京:人民邮电出版社, 2003.
    [5] Parsaee, G.; Yarali, A. OFDMA for the 4th generation cellular networks [A]. Canadian Conference on Electrical and Computer Engineering [C]. Ontario: IEEE, 2004 (4): 2325-2330.
    [6] Russell, M.; Stuber, G.L. Interchannel interference analysis of OFDM in a mobile environment [A]. 45th Vehicular Technology Conference [C]. Chicago: IEEE, 1995(2): 820-824.
    [7] Robertson, P.; Kaiser, S. Analysis of the loss of orthogonality through Doppler spread in OFDM systems [A]. Global Telecommunications Conference GLOBECOM '99 [C]. Rio de Janeiro: IEEE, 1999(1B): 701-706.
    [8] Li Y.; Cimini, L.J., Jr. Bounds on the interchannel interference of OFDM in time-varying impairments. IEEE Transactions on Communications [J], 2001, 49(3): 401-404.
    [9] Robertson, P.; Kaiser, S. The effects of Doppler spreads in OFDM (A) mobile radio systems [A]. 49th Vehicular Technology Conference [C]. Houston: IEEE, 1999(1): 329-333.
    [10] Li Y.; Cimini, L. J., Jr. Sollenberger N R. Robust channel estimation for OFDM systems with rapid dispersive fading channels [J]. IEEE Transactions on Communications, 1998, 46 (7): 902-915.
    [11] Liu H.; Xu G.; Tong L.; etc. Recent developments in blind equalizations: from cyclostationarity to subspaces [J]. Signal Processing, 1996, 50: 83-99.
    [12] Tong L.; Perreau A. S. Multichannel blind identification: from subspace to maximum likelihood methods [J]. Proceedings of the IEEE, 1998, 86(10): 1951-1968.
    [13] Meng-Han Hsieh; Che-Ho Wei. Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels [J]. IEEE Transactions on Consumer Electronics, 1998, 44(1): 217-225.
    [14] Coleri, S.; Ergen, M.; Puri, A.; Bahai, A. Channel estimation techniques based on pilot arrangement in OFDM systems [J]. IEEE Trans. Broadcasting, 2002, 48(3): 223-229.
    [15] Li Y. Pilot-symbol-aided channel estimation for OFDM in wireless systems [J]. IEEE Trans. Vehicular Technology, 2003, 49(7): 1207-1215.
    [16]张继东;郑宝玉.基于导频的OFDM信道估计及其研究进展[J].通信学报, 2003. 24 (11):116-124.
    [17] de Carvalho, E.; Slock, D.T.M. Blind and semi-blind FIR multichannel estimation (Global) idnetifiability conditions [J]. IEEE Transactions on Signal Processing, 2004, 52(4):1053-1064.
    [18]侯伟昆;叶梧;冯穗力;等.叠加训练序列OFDM系统的迭代最大似然信道估计[J].华南理工大学学报, 2007, 35(9):16-19.
    [19] Rappaport T. S. Wireless communications: principles and practice, second edition [M]. Prentice Hall PTR, 2002.
    [20]佟学俭;罗涛. OFDM移动通信技术原理与应用[M].北京:人民邮电出版社, 2003: 118-140.
    [21]谭泽富;聂祥飞;王海宝. OFDM的关键技术及应用[M].成都:西南交通大学出版社, 2005: 90-108.
    [22]汪裕民. OFDM关键技术与应用[M].北京:机械工业出版社, 2007: 95-111.
    [23] Van de Beek J-J; Edfors o; Sandell M. On channel estimation in OFDM systems [A]. In Proc. IEEE Vehicular Technology Conference [C]. Chicago: IEEE, 1995: 815-819.
    [24] P. Hoeher, S. Kaiser, and P. Robertson,“Two-dimensional pilot-symbol aided channel estimation by Wiener filtering [A]. IEEE International conference on Acoustics, Speech, and Signal Processing [C]. Munich: IEEE, 1997: 1845-1848.
    [25]朱琦;陆浩. 2×1-D_OFDM信道估计算法及其在IEEE_802.16e系统中的应用[J].南京邮电学院学报, 2005, 25(6): 7-11.
    [26]龚爱斐;陈发堂.一种基于IEEE802_16d系统的OFDM信道估计算法[J].重庆邮电大学学报(自然科学版)2009, 21(1): 27-30.
    [27] Hosseinnezhad, M.; Salahi, A. Low complexity MMSE based channel estimation algorithm for the IEEE802.16d WMAN standard [A]. International Symposium on Telecommunications [C]. Tehran: IEEE, 2008: 257-262.
    [28] Fukuhara, T.; Hao Yuan; Takeuchi, Y. etc. A novel channel estimation method for OFDM transmission technique under fast time-variant fading channel [A]. The 57th IEEE Semiannual Vehicular Technology Conference [C]. Jeju: IEEE, 2003, 4: 2343-2347.
    [29]苏岚;曹雪虹;郭士伟.一种新的基于判决反馈的OFDM系统信道估计方法[J].南京邮电大学学报(自然科学版), 2008, 28(3): 38-43.
    [30] Akino, T.K. Optimum-weighted RLS channel estimation for rapid fading MIMO channels [J]. IEEE Transactions on Wireless Communications, 2008, 7(11): 4248-4260.
    [31]陈晖;陈晓光.基于直接判决和导频跟踪的OFDM系统快时变信道估计[J].通信学报, 2006, 27(9): 1-6.
    [32]师小琳.一种新的基于导频的MIMO-OFDM信道估计方法[J].西安邮电学院学报, 2008, 13(3): 5-8.
    [33]何婷玉;邱玲;朱近康. MIMO系统中基于LMS处理的自适应时变信道跟踪算法[J].中国科学技术大学学报, 2006,36(8): 801-805.
    [34] Han K Y.; Lee S W.; Lim Y S. etc. Channel estimation for OFDM with fast fading channels by modified Kalman filter [J]. IEEE Transactions on Consumer Electronics, 2004, 50(2): 443 -449.
    [35] Chen W.; Zhang R. Kalman-filter channel estimator for OFDM systems in time and frequency selective fading environment [A]. IEEE International Acoustics, Speech, and Signal Processing (ICASSP '04) [C]. Mont real: IEEE, 2004: 377-380.
    [36]郭长玉;徐友云;杨峰.基于卡尔曼滤波器的OFDM系统时变信道估计[J].移动通信, 2008,2 :82-85.
    [37] Robertson P.; Kaiser S. Analysis of the loss of orthogonality through Doppler spread in OFDM systems [A]. Global telecommunications Conference (GLOBECOM’99) [C]. Riode Janeiro: IEEE, 1999: 701-706.
    [38] Stamoulis A., Diggavi S N.; A1-Dhahir N. Intercarrier interference in MIMO OFDM [J]. IEEE Transactions on Signal Processing, 2002, 50(10): 2451-2464.
    [39] Li Y.; Cimini L. J. Jr. Bounds on the inter channel interference of OFDM in time-varying impairments [J]. IEEE Transactions on Communications, 2001, 49(3): 401-404.
    [40] Cai Xiaodong; Giannakis G.B. Bounding performance and suppressing intercarrier interference in wireless mobile OFDM [J]. IEEE Transactions on Communications, 2003, 51(12): 2047-2056.
    [41] Tomasin S., Gorokhov A.; Yang H.; Linnartz JP. Iterative interference cancellation and channel estimation for mobile OFDM [J]. IEEE Transactions on Wireless Communications, 2005, 4(1):238-245.
    [42] Zhao Y.; H?ggman S.G.; Sensitivity to Doppler shift and carrier frequency errors in OFDM systems-the consequences and solutions [A]. The 46th Vehicular Technology Conference [C]. Atlanta: IEEE, 1996(3): 1564-1568.
    [43] Armstrong J.; Grant P.M.; Povey G. Polynomial cancellation coding of OFDM to reduce intercarrier interference due to Doppler spread [A]. Global Telecommunications Conference (GLOBECOM’98) [C]. Sydney: IEEE, 1998(5): 2771-2776.
    [44] Zhao Y.; H?ggman S.G. Intercarrier interference compression in OFDM communication systems by using correlative coding [J]. IEEE Communications Letters, 1998, 2(8): 214-216.
    [45] Zhang H.; Li Y. Optimum frequency-domain partial response encoding in OFDM system [J]. IEEE Transactions on Communications, 2003, 51(7), 1064-1068.
    [46] Zhang Yu.; Liu H. Frequency-domain correlative coding for MIMO-OFDM systems over fast fading channels [J]. IEEE Communications Letters, 2006, 10(5): 347-349.
    [47] Choi Yang-Seok; Voltz P.J.; Cassara F.A. On channel estimation and detection for multicarrier signals in fast and selective Rayleigh fading channels [J]. IEEE Transactions on Communications, 2001, 49(8): 1375-1387.
    [48] Cai Xiaodong; Giannakis G.B. Low-complexity ICI suppression for OFDM over time- and frequency-selective Rayleigh fading channels [A]. The Thirty-Sixth Asilomar Conference on Signals, Systems and Computers[C]. Pacific Grove: IEEE, 2002(2):1822-1826.
    [49] Stamoulis A.; Diggavi S.N.; A1-Dhahir N. Intercarrier interference in MIMO OFDM [J]. IEEE Transactions on Signal Processing, 2002, 50(10): 2451-2464.
    [50] Schniter P. Low-complexity equalization of OFDM in doubly selective channels [J]. IEEE Transactions on Signal Processing [see also IEEE Transactions on Acoustics, Speech, and Signal Processing], 2004, 52, (4):1002-1011.
    [51] Tsatsanis M.K, Giannakis G.B. Modelling and equalization of rapidly fading channels [J]. International Journal of Adaptive Control and Signal Processing, 1996, 10: 159-176.
    [52] Won Gi Jeon; Kyung Hi Chang; Yong Soo Cho. An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels [J]. IEEE Transactions on Communications, 1999, 47(1): 27-32.
    [53] Won-Gyu Song; Jong-Tae Lim. Pilot-symbol aided channel estimation for OFDM with fast fading channels [J]. IEEE Transactions on Broadcasting, 2003, 49, (4): 398-402.
    [54] Mostofi Y.; Cox D C.; Bahai A.ICI mitigation for mobile OFDM receivers [A]. IEEE International Conference on Communications [C]. Anchorage: IEEE, 2003: 3351-3355.
    [55] Chen Shaoping; Yao Tianren. Intercarrier interference suppression and channel estimation for OFDM systems in time-varying frequency-selective fading channels [J]. IEEE Transactions on Consumer Electronics, 2004, 50(2): 429-435.
    [56] Chi Kuo; Jin-Fu Chang; Equalization and channel estimation for OFDM systems in time-varying multipath channels [A]. 15th International Symposium on Personal, Indoor and Mobile Radio Communications[C]. Barcelona: IEEE, 2004: 474-478.
    [57] Mostofi Y.; Cox D.C. ICI mitigation for pilot-aided OFDM mobile systems [J]. IEEE Transactions on Wireless Communications, 2005, 4(2):765-774.
    [58] Wu Xiaoguang; Kang Guixia; Tang Tian; etc. A pilot-assisted channel estimation method for OFDM system in time-varying channels [A]. IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications [C]. Athens: IEEE, 2007: 1-6.
    [59] Borah D. K.; Hart B. D. Frequency-selective fading channel estimation with a polynomial time-varying channel model [J]. IEEE Transactions on Communicaitons, 1999, 47(6): 862-873.
    [60] Linnartz J.-P.M.G.; Gorokhov A. New equalization approach for OFDM over dispersive and rapidly time varying channel [A]. The 11th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2000 [C]. London: IEEE, 2000, 2: 1375-1379.
    [61] Zemen T.; Mecklenbr?uker C. F. Time-variant channel estimation using discrete prolate spheroidal sequences [J]. IEEE Transactions on Signal Processing, 2005, 53(9): 3597-3607.
    [62]任大孟;张曙.基于椭球基扩展模型的OFDM快变信道估计仿真[J].计算机仿真, 2008, 25(12): 175-179.
    [63] Visintin M. Karhunen-Loeve expansion of a fast Rayleigh fading process [J]. IEEE Electronic Letters, 1996, 32(8): 1712–1713.
    [64] Teo K.A.D.; Ohno S. Optimal MMSE finite parameter model for doubly-selective channels [A]. Global Telecommunications Conference (GLOBECOM '05) [C]. St. Louis: IEEE, 2005: 3503-3507.
    [65] Giannakis G.B.; Tepedelenlioglu C. Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels [J]. Proceedings of the IEEE,1998,86(10):1969-1986.
    [66] Ma X.; Giannakis G.B.; Ohno S. Optimal training for block transmissions over doubly-selective fading channels [J]. IEEE Transactions on Signal Processing, 2003, 51(5):1351-1366.
    [67] Leus G. On the estimation of rapidly time-varying channels [A] European Signal Processing Conference (EUSIPCO) [C]. Vienna, Austria: IEEE, 2004: 2227-2230.
    [68] Barhumi I.; Leus G.; Moonen M. Equalization for OFDM over doubly selective channels [J]. IEEE Transactions on Signal Processing, 2006, 54(4):1445-1458.
    [69] Dai X. Optimal training design for linearly time-varying MIMO/OFDM channels modeled by a complex exponential basis expansion [J]. IET Communications, 2007, 1(5):945-953.
    [70] Qi Jiang; Speidel J.; Zhao Chunming. Pilot-Assisted OFDM Channel Estimation and ICI Cancellation for Double Selective Channels [A]. IEEE Global Telecommunications Conference [C]. Washington D.C.: IEEE, 2007: 150-4154.
    [71] Cui T.; Tellambura C.; Wu Y. Low-complexity pilot-aided channel estimation for OFDM systems over doubly-selective channels [A]. 2005 IEEE International Conference on Communications [C]. Seoul: IEEE, 2005:1980-1984.
    [72] Tang Zijian; Cannizzaro R.C.; Leus G.; etc. Pilot-Assisted Time-Varying Channel Estimation for OFDM Systems [J].IEEE Transactions on Signal Processing, 2007, 55(5): 2226-2238.
    [73] Tang Zijian; Leus G. Pilot-assisted time varying OFDM channel estimation based on multiple OFDM symbols [A]. IEEE 7th Workshop on Signal Processing Advances in Wireless Communications [C]. Cannes: IEEE, 2007: 1-5.
    [74] Shin, C.; Andrews J.G.; Powers E.J. An Efficient Design of Doubly Selective Channel Estimation for OFDM Systems [J]. IEEE Transactions on Wireless Communications, 2007, 6(10): 3790-3802.
    [75] Wu Xiaoguang; Kang Guixia. Pilot Sequence Design Scheme for MIMO OFDM Systems under Time-Varying Channels [A]. 67th Vehicular Technology Conference [C]. Singapore: IEEE, 2008: 777-781.
    [76] Chen Shaoping; Dai Guangfa; Rao Wengui. A BEM for Estimation of Time-varying Channels in OFDM [A]. WRI International Conference on Communications and Mobile Computing [C]. China: IEEE, 2009: 256-259.
    [77]于晓燕;王加庆;杨绿溪;等. MIMO-OFDM系统中时间-频率双选择性衰落信道的信道估计[J],中国科学E辑,信息科学, 2005, 35(8): 875-886.
    [78]蝴蝶;何良华;杨绿溪.快时变环境下OFDM系统中的信道估计[J].电子与信息学报, 2007, 29(1):113-116.
    [79]刘英男;蒋伟;任术波;等.时间_频率双选择性衰落信道的最小二乘估计方法[J].电子与信息学报, 2008,30(9): 2186-2188.
    [80]刘英男;蒋伟;姚春光等.基于分数倍基扩展模型的双选信道估计方法[J].北京大学学报, 2008, 44(1):87-92.
    [81]秦文,彭启琮.利用ICI自消除改善OFDM系统时变信道估计与均衡的性能[J].电子与信息学报,2008, 30(9): 2189-2192.
    [82] Whitworth T.; Ghogho M.; McLernon D. Optimized training and basis expansion model parameters for doubly-selective channel estimation [J]. IEEE Transactions on Wireless Communications, 2009, 8(3): 1490-1498.
    [83] Junghoon Lee; Jaewon Chang; Wonjin Sung. Performance improvement of channel estimation based on pilot structure variations for cellular OFDMA systems [A]. IEEE 60th Vehicular Technology Conference, VTC2004-Fall [C]. Los Angeles:IEEE, 2004(2): 989-993.
    [84] Yucek T.; Ozdemir M.K.; Arslan H.; etc. A comparative study of initial downlink channel estimation algorithms for mobile WiMAX [A]. Mobile WiMAX Symposium [C]. Orlando: IEEE, 2007: 32-37.
    [85] Zhou Xiangwei; Zhang Zhaoyang; Cheng Peng. A Practical Cluster-Based Channel Estimation Method for IEEE 802.16e [A]. The 8th International Conference on Signal Processing [C]. Guilin: IEEE, 2006: 1-4.
    [86] Mohamad M.F.; Saeed M.A.; Priantoro A.U. Downlink channel estimation and tracking in mobile WiMAX systems [A]. International Conference on Computer and Communication Engineering. [C]. Kuala Lumpur: IEEE, 2008:1340-1343.
    [87] Wu Wen-Rong; Lin Wan-Yi; Kao Shiang-Lun. A low complexity channel estimation method for IEEE 802.16e Systems [A]. Asia-Pacific Conference on Communications APCC 2007 [C]. Bangkok: IEEE, 2007: 85-88.
    [88]储珊;张朝阳. IEEE802_16e系统中的空时编码OFDM技术研究[D].杭州:浙江大学, 2006.
    [89] Liu Hongju; Ma Yi; Tafazolli R. Optimum Pilot Placement for Chunk-Based OFDMA Uplink Time Direction Scenario [A]. 2008 IEEE 67th Vehicular Technology Conference. 2008 VTC [C]. Marina Bay: IEEE, 2008: 2547-2551.
    [90] Pun M.-O.; Morelli M.; Kuo C.-C.J. Maximum-likelihood synchronization and channel estimation for OFDMA uplink transmissions [J]. IEEE Transactions on Communications, 2006, 56(4): 726-736.
    [91] IEEE Std. 802.16e-2005. Air interface for fixed and mobile broadband wireless access systems [S]. USA: IEEE, 2005.
    [92] Zhang Jianhua; He Xueqi; Bai Jie; etc. A design for OFDMA receiver [A]. 2005 IEEE 61st Vehicular Technology Conference. 2005 VTC [C]. Dallas: IEEE, 2005, 2: 1268-1272.
    [93] Fertl P.; Matz G. Multi-User Channel Estimation in OFDMA Uplink Systems Based on Irregular Sampling and Reduced Pilot Overhead [A]. 2007 IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP 2007[C]. Honolulu, Hawaii: IEEE, 2007, 3: III-297-III-300.
    [94] Wang Qing; Fan Da; Lin Yong Hua; etc. Design of BS transceiver for IEEE 802.16E OFDMA mode [A]. IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP 2008 [C]. Las Vegas: IEEE, 2008: 1513- 1516.
    [95] Fan Da; Wang Qing; Lin Yonghua; etc. Design and simulation of the BS transceiver for IEEE 802.16e OFDMA mode [A]. 2008 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting [C]. Las Vegas: IEEE, 2008:1-5.
    [96] Grandmaison M.-E.; Gagnon F. Channel Estimation Algorithms for Uplink OFDMA Tiles [A]. 2nd International Symposium on Wireless Pervasive Computing ISWPC '07. [C]. San Juan: IEEE, 2007: 5-7.
    [97] Bonnet J.; Auer G. Chunk-based Channel Estimation for Uplink OFDM [A]. The 63th Vehicular Technology Conference, 2006. Melbourne: IEEE, 2006, 4: 1555-1559.
    [98] Liu Hongju; Yi Ma; Tafazolli R. Sub-Optimum Pilot Placement for Chunk-based OFDMA Uplink Consecutive Chunks Scenario [A]. The18th International Symposium on Personal, Indoor and Mobile Radio Communications [C]. Athens: IEEE, 2007: 1-5.
    [99] Hongju Liu; Yi Ma; Tafazolli, R. Optimum Pilot Placement for Chunk-Based OFDMA Uplink: Single Chunk Scenario [A]. The 66th Vehicular Technology Conference [C], Baltimore IEEE, 2007: 2194– 2198.
    [100] Yi Ma; Tafazolli R. Channel Estimation for OFDMA Uplink a Hybrid of Linear and BEM Interpolation Approach [J]. IEEE Transactions on Signal Processing, [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on]. 2007, 55(4):1568-1573.
    [101] Kyeong Jin Kim; Man-On Pun; Reid T.; etc. Joint Frequency Offset and Channel Estimation for UL-MIMO-OFDMA Systems using the Parallel Schmidt Kalman Filters [A]. IEEE International Conference on Acoustics, Speech and Signal Processing [C]. Honolulu, Hawai'i:IEEE, 2007, 3: III-205 -III-208.
    [102] Sezgin A.; Jung P.; Schellmann M; etc. On the impact of mobility on the channel estimation in wimax [A]. 17th International Symposium on Personal, Indoor and Mobile Radio Communications [C]. Helsinki: IEEE, 2006:1-5.
    [103] Negi R.; Cioffi J. Pilot tone selection for channel estimation in a mobile OFDM system [J]. IEEE Transactions on Consumer Electronics, 1998, 44(3). pp: 1122-1128.
    [104] Clarke R.H. A statistical theory of mobile-radio reception [J]. Bell system technical journal, 1968, 47: 957-1000.
    [105] Jakes W.; Cox D. Microwave Mobile Communications [M]. NewYork: Wiley-IEEE Press, 1994.
    [106] Bello P. Characterization of Randomly Time-Variant Linear Channels [J]. IEEE transactions on Communications Systems, 1963, 11(4): 360-393.
    [107] Dent P, Bottomley GE, Croft T. Jakes Fading Model Revisited [J]. Electronics Lett., 1993, 29(13):1162-1163.
    [108] Ahmadi, S.An overview of next-generation mobile WiMAX technology. IEEE Communications Magazine [J], 2009, 47(6): 84-98.
    [109] Koffman, I.; Roman, V. Broadband wireless access solutions based on OFDM access in IEEE 802.16. IEEE Communications Magazine [J], 2002, 40(4): 96-103.
    [110] Jiang Jun; Tang Tian; Zhang Yongjing; etc. A Channel Estimation Algorithm for OFDM Based on PCC training Symbols and Frequency Domain Windowing [A]. International Symposium on Communications and Information Technologies, ISCIT '06 [C]. Bangkok: IEEE, 2006:629-632.
    [111] Kyungchul Kwak, Sungeun Lee, Jihyung Kim and Daesik Hong. A New DFT-Based channel estimation approach for OFDM with virtual subcarriers by leakage estimation [J].IEEE Transactions on Wireless Communications, 2008, 7(6): 2004-2008.
    [112] Zheng Kan; Su Jian; Wang Wenbo. DFT-bsaed channel estimation in comb-type pilot-aided OFDM systems with virtual carriers [A]. IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications [C]. Athens: IEEE, 2007: 1-5.
    [113] Minn H.; Dong In Kim; Bhargava V.K. A reduced complexity channel estimation for OFDM systems with transmit diversity in mobile wireless channels [J]. IEEE Transactions on Communications. 2002, 50(5): 799-807.
    [114] Wang Y.; Li L.; Zhang P. ect. Channel eatimation for OFDM systems in non-sample-spaced multipath channels [J]. Electronics Letters. 2009, 45(1): 66-68.
    [115]邝育军;李云;隆科平;等.能量泄露对OFDM系统LS信道估计性能影响分析[J].通信学报, 2004, 25(12): 89-96.
    [116]刘解华;杨东凯;常青;等.基于差分编码的OFDM系统ICI消除方法的研究[J].电子与信息学报, 2007, 29(7): 1529-1532.
    [117] Savitri Galih; Riafeni Karlina; Fifin Nugroho; etc. High Mobility Data Pilot Based Channel Estimation for Downlink OFDMA System Based on IEEE 802.16e Standard [A]. International Conference on Electrical Engineering and Informatics [C]. Selangor, Malaysia: IEEE, 2009: 478-483.
    [118] Rabbi M.F.; Shengwei Hou; Ko C.C. Basis Expansion Model (BEM) based Channel Estimation for OFDMA Uplink Transmission [A]. 11th IEEE Singapore International Conference on Communication Systems[C]. Guangzhou: IEEE, 2008: 1101-1105.
    [119] Rabbi M.F.; Shengwei Hou; Ko C.C. Highly Time Varying Channel Estimation for OFDMA Uplink Transmission in IEEE 802.16e Network [A]. Communications Theory Workshop. AusCTW 2009. [C]. Sydney: IEEE: 2009: 6-11.
    [120] Goldsmith A, Ali Jafar S, Jindal N, Vishiwanath S. Capacity limits of MIMO channels [J] IEEE Journal on Selected Areas in Communications, 2003, 21(5): 684-701.
    [121] Paulraj A J; Gore D A; Nabar R U. etc. An overview of MIMO communications-a key to gigabit wireless [J]. Proceedings of the IEEE, 2004, 92(2): 198-217.
    [122] Alamouti S.M. A simple transmit diversity technique for wireless communications [J]. IEEE Journal on Selected Areas in Communications, 1998, 16(8): 1451–1458.
    [123] Barhumi I.; Leus G.; Moonen M. Optimal training design for MIMO OFDM systems in mobile wireless channels. IEEE Transactions on Signal Processing [J]. [see also IEEE Transactions onAcoustics, Speech, and Signal Processing] 2003, 51 (6): 1615-1624.
    [124]池连刚;吴迪;张欣等. V-BLAST OFDM系统的信道估计方法[J].吉林大学学报. 2007, 25(4): 379-384.
    [125]董艳男;酆广增;朱琦.基于IEEE 802.16a MIMO-OFDM系统的信道估计方法研究[J].南京邮电学院学报. 2005, 25(2): 62-66.
    [126] Won-Gyu Song; Jong-Tae Lim. Channel Estimation and Signal Detection for MIMO-OFDM with Time Varying Channels [J]. IEEE communications letters. 2006, 10(7): 540-542.
    [127]王晗;汪晋宽. MIMO-OFDM时域信道估计中的最优导频设计算法研究[J].系统仿真学报. 2009, 21(2): 514-517.
    [128] Hsiao C.; Chi-Yun Chen; Chiueh T.-D. Design of a Dual-Mode Baseband Receiver for 802.11n and 802.16e MIMO OFDM/OFDMA [A]. International Symposium on VLSI Design, Automation and Test. VLSI-DAT '09 [C]. Hsinchu: IEEE, 2009: 331-334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700