用户名: 密码: 验证码:
WiMAX系统中基于跨层设计的QoS保证机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于IEEE 802.16标准的微波存取全球互通(WiMAX)是一种适用于无线城域网的新兴宽带接入技术,因其在接入效率、可扩展性、易安装性方面的优越特性,有望成为未来接入领域的主流技术之一。如何在时变无线环境中向众多用户提供高速高质的多媒体通信服务是WiMAX技术亟待解决的问题之一,通信环境的易变性和通信服务的多样性决定了采用跨层思想设计服务质量(QoS)保证机制的必要性。
     本论文采用跨层思想对WiMAX系统的QoS保证机制进行了深入研究,主要包括四个方面:协议体系结构模型、联合控制策略、调度算法和自适应调制编码(AMC)传输模式选择算法。主要研究内容和创新性成果如下:
     1.为解决传统无线网络分层结构在QoS保证方面面临的挑战性问题,在已有WiMAX基本分层结构基础上提出一种跨层架构。整个WiMAX协议体系结构模型被纵向划分为数据流递交子平面和QoS资源管理子平面:前者职能是遵循IEEE 802.16标准制定的规范,对多媒体通信服务流进行数据处理并实现逐层递交;后者职能是通过多种管理信令由低层到高层协调各管理模块运作,实施自适应地QOS联合控制。该架构结构简单,职能明确,是面向QoS保证的完全跨层架构,特别适用于实际工程设计中。
     2.在建议的WiMAX跨层架构基础上,提出一种QoS联合控制策略,并给出了适用于该策略的各种算法。还提出了一种适用于QoS优先级控制策略的QoS性能优先算法。仿真表明,基于WiMAX跨层架构的QoS联合控制策略能够根据实际需求提供灵活的QOS保证,与采用加权轮转算法的第一类QOS联合控制策略相比,在相同的QoS违反率限定下,采用QoS性能优先算法的第二类QoS联合控制策略能够为更多的用户提供多媒体通信服务。
     3.在建议的WiMAX跨层架构基础上,提出一种面向用户公平保证多媒体通信服务流QoS的二级调度算法。在QOS联合控制策略支持下,第一级调度实现QoS优先级控制,采用了已有的面向多媒体通信服务流QoS保证的QoS优先级算法,第二级调度实现子信道资源配置,采用了新提出的面向用户速率公平的调度算法。仿真表明,与多权重调度算法相比,该二级调度算法可在有效保证多媒体通信服务流满足各自不同QoS要求的同时更好地兼顾用户速率公平,并且在系统吞吐量、QoS业务流实际吞吐量和QoS违反率方面具有更好的低信噪比(SNR)特性,更适用于无线环境中。
     4.在建议的WiMAX跨层架构基础上,提出一种SNR切换阈值区间可变式AMC传输模式选择算法。当基站向用户站发送各种多媒体通信服务流时,建议算法对AMC传输模式的选择不仅取决于物理层信道状态信息,还与高层多媒体通信服务流的目标误包率这一重要QoS需求参数有关。通过性能评估表明,与传统型和改进型AMC传输模式选择算法相比,建议算法能够在满足各类QoS业务流目标误包率的同时获得更高的系统有效数据传输速率。
Worldwide interoperability for microwave access (WiMAX) based on IEEE 802.16 standards is a rising broadband wireless access technique for wireless metropolitan area networks. Due to its high performance of efficiency, flexibility and setting convenience, WiMAX will become one of the mainstream access technologies in the future. How to provide many subscribers with high speed and good quality of various multimedia communication services in time-varying wireless environment is one of the WiMAX technology problems needed to be solved urgently, and the volatility of communication conditions and diversity of communication services determine the necessity of adopting cross-layer ideology when designing quality of service (QoS) guarantee schemes.
     In this dissertation, QoS guarantee schemes based on cross-layer design in WiMAX system is studied intensively in four aspects:protocol architecture model, joint control strategy, scheduling algorithm and adaptive modulation and coding (AMC) transmission mode selection algorithm. The main research contents and innovative results are listed as follows:
     1. In order to solve challenge problems on QoS guarantee caused by the traditional layering structure of wireless networks, this dissertation proposed a cross-layer architecture based on the existing WiMAX layering structure. The whole protocol structure model was divided into two sub-planes vertically:one was data flow delivery sub-plane which could provide data processing and delivering layer-by-layer for multimedia communication service flows based on IEEE 802.16 standards, the other was QoS resource management sub-plane which could cooperate all manage modules from low protocol layer to high protocol layer by various manage signalings and implement QoS joint control adaptively. This proposed architecture is full cross-layer architecture for QoS guarantee with simple structure and clearly defined functions, and very suitable for practical engineering design.
     2. Based on the proposed WiMAX cross-layer architecture, this dissertation provided a QoS joint control strategy and its proper algorithms. This dissertation also proposed a QoS performance priority algorithm for QoS priority control strategy. Simulation results show that the QoS joint control strategy based on the WiMAX cross-layer architecture can provide flexible QoS guarantees according to the practical requirements. On the constraints of the same QoS outage probability, the second QoS joint control strategy with QoS performance priority algorithm can provide multimedia communication services for more subscribers when compared with the first QoS joint control strategy with weighted round robin algorithm.
     3. This dissertation proposed a subscriber fair oriented two-level scheduling algorithm for QoS guarantee which could be used in the proposed WiMAX cross-layer architecture. On the support of the QoS joint control strategy, the first level scheduler adopted the existing QoS priority algorithm for QoS guarantee of multimedia communication service flows and implemented QoS priority control. The second level scheduler adopted the proposed subscriber rate fair oriented scheduling algorithm. Simulation results show that the proposed two-level algorithm can meet various QoS requirements of multimedia communication service flows well with better subscriber's rate fairness when compared with the multi-weight scheduling algorithm. Moreover, the proposed algorithm can obtain better performance in low signal-to-noise ratio (SNR) region in terms of system throughput, QoS service traffic throughput and QoS outage probability, which is more suitable for wireless communication environment.
     4. This dissertation proposed an AMC transmission mode selection algorithm with alterable SNR switch threshold intervals for the proposed WiMAX cross-layer architecture. When base station sent various multimedia communication service flows to subscriber station, the proposed algorithm made the decision of AMC transmission mode selection which was not only decided by channel state information from physical layer, but also related to an important QoS parameter, namely target packet error ratio provided by multimedia communication service flows from upper layer. Through performance evaluation, the results show that the proposed algorithm satisfies the target packet error ratio requirements of each class of multimedia service flow, and also obtains higher effective data transfer rate at the same time when compared with the traditional AMC transmission mode selection algorithm and its modified one.
引文
[1]张金文.802.16宽带无线城域网技术[M].北京:电子工业出版社,2006.
    [2]Westech Communications Inc. Can WiMAX Address Your Application [OL]. WiMAX Forum,2005. [20101226]. http://www.wimaxforum.org/technology/ downloads/Can_WiMAX_Address_Your_Applications_final.pdf.
    [3]李建东,盛敏.通信网络基础[M].北京:高等教育出版社,2004.
    [4]JURDARK R, LOPES C V, BALDI P. A Survey, Classification and Comparative Analysis of Medium Access Control Protocols for Ad Hoc Networks [J]. IEEE Communications Surveys and Tutorials,2004,6 (1):2-16.
    [5]ZHOU Ying, ANANDA A L, JACOB L. A QoS Enabled MAC Protocol for Multi-hop Ad Hoc Wireless Networks [C]//Proceedings of IEEE International Performance Computing and Communications Conference. Phoenix:IEEE, 2003:149-156.
    [6]SU Hang, ZHANG Xi. Clustering-Based Multichannel MAC Protocols for QoS Provisionings Over Vehicular Ad Hoc Networks [J]. IEEE Transactions on Vehicular Technology,2007,56(6):3309-3323.
    [7]EMAD F, LEE H-G, EYLEM E. MMSPEED:Multipath Multi-SPEED Protocol for QoS Guarantee of Reliability and Timeliness in Wireless Sensor Networks [J]. IEEE Transactions on Mobile Computing,2006,5(6):738-754.
    [8]YUECHUN C, GANZ A. Adaptive MAC Protocol for QoS support in UWB-based Wireless Networks Communications [C]//Proceedings of IEEE International Conference on Communications. Istanbul:IEEE,2006:4040-4045.
    [9]LONG Le, HOSSAIN E, A MAC Protocol for Opportunistic Spectrum Access in Cognitive Radio Networks [C]//Proceedings of IEEE Wireless Communications and Networking Conference. Las Vegas:IEEE,2008:1426-1430.
    [10]MANGOLD S, CHOI S, HIERTZ G R, KLEIN O, et al. Analysis of IEEE 802.11e for QoS Support in Wireless LANs [J]. Wireless Communications,2003,10 (6):40-50.
    [11]IEEE 802.11 WG. IEEE 802.11e/D12.0 Draft, Supplement to Standard for Telecommunications and Information Exchange between Systems - LAN/MAN Specific Requirements-Part 11:Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications:Medium Access Control (MAC) Enhancements for Quality of Service (QoS) [S]//IEEE,2004.
    [12]LI Bo, BATTITI R. Achieving Maximum Throughput and Service Differentiation by Enhancing the IEEE 802.11 MAC Protocol. Wireless On-Demand Network Systems [M]. Trento:Springer,2004.
    [13]ROBINSON J W, RANDHAWA T S. Saturation Throughput Analysis of IEEE 802.11e Enhanced Distributed Coordination Function [J]. Selected Areas in Communications,2004,6 (5):917-928.
    [14]PERKINS C E, BHAGWAT P. Highly Dynamic Destination-Sequenced Distance Vector Routing [C]//Proceedings of the Conference on Communications Architectures, Protocols and Applications. London:ACM,1994:234-244.
    [15]JOHNSON D B, MALTZ D A. Dynamic Source Routing in Ad Hoc Wireless Networks, A Chapter in Mobile Computing [M]. Edited by Imielinski T and Korth H, Kluwer Academic Publishers,1996.
    [16]PERKINS C E, ROYER E M. Ad-Hoc on-Demand Distance Vector Routing [C]// Proceedings of IEEE Workshop on Mobile Computing Systems and Applications. New Orleans:IEEE,1999:90-100.
    [17]CHAKRABARTI S, MISHRA A. Quality of Service in Mobile Ad Hoc Networks [M]. The Handbook of Ad Hoc Wireless Networks, CRC Press,2003.
    [18]CHAKRABARTI S, MISHRA A. QoS Issues in Ad Hoc Wireless Networks [J]. IEEE Communications Magazine,2001,2 (2):142-148.
    [19]ZHANG Baoxian, MOUFTAH H T. QoS Routing for Wireless Ad hoc Networks: Problems, Algorithms, and Protocols [J]. IEEE Communications Magazine,2005: 43(10):110-117.
    [20]XAVI M-B, MARCELO Y, RENE S-G, etc. The EuQoS System:A Solution for QoS Routing in Heterogeneous Networks [J]. IEEE Communications Magazine,2007: 45(2):96-103.
    [21]GELENBE E, NGAI E C-H. Adaptive QoS Routing for Significant Events in Wireless Sensor Networks [C]//Proceedings of IEEE International Conference on Mobile Ad Hoc and Sensor Systems. Atlanta:IEEE,2008:410-415.
    [22]张琰.无线多媒体业务QoS性能优化[J].电信快报.2008,(2):39-42.
    [23]HAAS Z J. Design Methodologies for Adaptive and Multimedia Networks [J]. IEEE Communications Magazine,2001,39(11):106-107.
    [24]SHAKKOTTAI S, RAPPAPORT T S, KARLSSON P. Cross-Layer Design for Wireless Networks [J]. IEEE Communications Magazine,2003,41(10):74-80.
    [25]RAISINGHANI V T, LYER S. Cross-layer design Optimizations in Wireless Protocol Stacks [J]. Computer Communications.2004,27(8):720-724.
    [26]CHEN JIE, LV Tiejun, ZHENG Haitao. Cross-layer Design for QoS Wireless Communications [C]//Proceedings of the International Symposium on Circuits and Systems. Vancouver:IEEE,2004:23-26.
    [27]SRIVASTAVA V, MOTANI M, Cross-layer Design:a Survey and the Road Ahead [J]. Communications Magazine,2005,43(12):112-119.
    [28]LIN Xiaojun, SHROFF N B, SRIKANT R. A Tutorial on Cross-layer Optimization in Wireless Networks [J]. IEEE Journal on Seclected Areas in Communications.2006,24(8):1452-1463.
    [29]RAISINGHANIA V T, IYERB S. Cross-layer Design Optimizations in Wireless Protocol Stacks [J]. Computer Communications.2004,27(8):720-724.
    [30]KAWADIA V, KUMAR P R. A Cautionary Perspective on Cross-layer Design [J]. IEEE Wireless Communications,2005,12(1):3-11.
    [31]PAREEK D. The Business of WiMAX [M]. England:John Wiley& Sons Ltd, 2007.
    [32]ANDREWS J, GHOSH A, MUHAMED R. Fundamentals of WiMAX: Understanding Broadb and Wireless Networking [M]. New Jersey:Prentice Hall, 2007.
    [33]WiMAX Forum. Mobile WiMAX-Part I:A Technical Overview and Performance Evaluation [OL]. [2010-12-26]. http://www.wimaxforum.org/technology/downloads/ Mobile_WiMAX_Partl_Overview_and_Performance.pdf.
    [34]WiMAX Forum. Mobile WiMAX-Part II:A Comparative Analysis [OL]. [2010-12-26]. http://www.wimaxforum.org/technology/downloads/Mobile_WiMAX_Part2_Comparative_Analysis.pdf.
    [35]IEEE 802.16-2001. IEEE Standard for Local and Metropolitan Area Networks Part 16:Air Interface for Fixed Broadband Wireless Access Systems [S]. New York: IEEE,2001.
    [36]IEEE 802.16c-2002. IEEE Standard for Local and metropolitan area networks-Part 16:Air Interface for Fixed Broadband Wireless Access Systems-Amendment 1: Detailed System Profiles for 10-66 GHz [S]. New York:IEEE,2002.
    [37]IEEE 802.16a-2003. IEEE Standard for Local and metropolitan area networks Part 16:Air Interface for Fixed Broadband Wireless Access Systems-Amendment 2: Medium Access Control Modifications and Additional Physical Layer Specifications for 2-11 GHz [S]. New York:IEEE,2003.
    [38]IEEE 802.16-2004. IEEE Standard for Local and Metropolitan Area Networks Part 16:Air Interface for Fixed Broadband Wireless Access Systems [S]. New York: IEEE,2004.
    [39]IEEE 802.16e-2005. IEEE Standard for Local and metropolitan area networks Part 16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands [S]. New York:IEEE,2006.
    [40]中华人民共和国信息产业部.移动宽带无线接入系统接口技术要求:基于802.16的空中接口(初稿)[S].2005.
    [41]YAGOOBI H. Scalable OFDMA Physical Layer in IEEE 802.16 WirelessMAN [J]. Intel Technology,2004,8(3):201-212.
    [42]Bains R. The Roadmap to Mobile Wimax[J]. IEEE Communications Engineer, 2005,3(4):30-34.
    [43]CIMINI L J. Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing [J]. IEEE Transactions on Communications,1985,33(7):665-675.
    [44]NEE R V, PRASAD R. OFDM for Wireless Multimedia Communications [M]. Boston:Artech House,2000.
    [45]GOLDSMITH A J. Wireless Communications [M]. Cambridge:the Press of the University of Cambridge,2005:282-283.
    [46]GOLDSMITH A J, CHUA S-G Adaptive Coded Modulation for Fading Channels [J]. IEEE Transactions on Communications,1998,46(5):595-602.
    [47]ALOUINI M-S, GOLDSMITH A J. Adaptive Modulation over Nakagami Fading Channels [J]. Kluwer Journal on Wireless Communication,2000,13(1-2):119-143.
    [48]YANG J, TIN N, KHANDANI A K. Adaptive Modulation and Coding in 3G Wireless Systems [C]//Proceedings of IEEE Vehicular Technology Conference. Birmingham:IEEE,2002:544-548.
    [49]PENG Fei, ZHANG Jinyun, RYAN W E. Adaptive Modulation and Coding for IEEE 802.11n [C]//Proceedings of IEEE Wireless Communications and Networking Conference. Kowloon,2007:656-661.
    [50]STRINATI E C, SHENG Yang, BELFIORE J C. Adaptive Modulation and Coding for Hybrid Cooperative Networks [C]//Proceedings of IEEE International Conference on Communications. Glasgow:IEEE,2007:4191-4195.
    [51]XIAO W, RATASUK R. Analysis of Hybrid ARQ with Link Adaptation [C]// Proceedings of the Annual Allerton Conference on Communications, Control, and Computing,2002:1618-1619.
    [52]CARNEIRO G, RUELA J, RICARDO M. Cross-layer Design in 4G Wireless Terminals Wireless Communications [J]. IEEE Wireless Communications,2004,11(4): 7-13.
    [53]KWON T. Design and Implementation of a Simulator Based on a Cross-Layer Protocol between MAC and PHY Layers in a WiBro Compatible IEEE802.16e OFDMA System [J]. IEEE Communications Magazine,2005,43(12):136-146.
    [54]MAI Y T, YANG C C, LIN Y H. Design of the Cross-Layer QoS Framework for the IEEE 802.16 PMP Networks [J]. IEICE Transactions on Communications.2005, E91-B(5):1360-1369.
    [55]RONG Bo, QIAN Yi. Adaptive Power Allocation and Call Admission Control in Multiservice WiMAX Access Networks [J]. IEEE Wireless Communications,2007, 14(1):14-19.
    [56]NOORDIN K A, MARKARIAN G. Cross-Layer Optimization Architecture for WiMAX Systems [C]//Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Athens:IEEE,2007:1-4.
    [57]CICCONETTI C, LENZINI L, MINGOZZI E, etc. Quality of Service Support in IEEE 802.16 Networks [J]. IEEE Network,2006,20(2):50-55.
    [58]SO-IN C, JAIN R, TAMIMI A-K. Scheduling in IEEE 802.16e Mobile WiMAX Networks:Key Issues and a Survey [J]. IEEE Journal on Selected Areas in Communications archive,2009,27(2):156-171.
    [59]SAYENKO A, ALANEN O, KARHULA J, etc. Ensuring the QoS Requirements in 802.16 Scheduling [C]//Proceedings of the Wrokshop on Modeling Analysis and Simulation Wireless and Mobile Systems. Terromolinos:ACM,2006:108-117.
    [60]SAYENKO A, ALANEN O, HAMAAINEN·T. Scheduling Solution for the IEEE 802.16 Base Station [J]. Journal of Computer and Telecommunications Networking, 2008,52(1),96-115.
    [61]STOLYAR A L, RAMANAN K. Largest Weighted Delay First Scheduling:Large Deviations and Optimality [J]. Annals of Applied Probability,2001,11(1):1-48.
    [62]KIM D H, KANG C G. Delay Threshold-based Priority Queueing Packet Scheduling for Integrated Services in Mobile Broadband Wireless Access System [C]// Proceedings of the International Conforence on High Performance Computing and Communications. Kemer-Antalya:ACM,2005:305-314.
    [63]WANG Y, CHAN S, ZUKERMAN, etc. Priority-based Fair Scheduling for Multimedia WiMAX Uplink Traffic [C]//Proceedings of the IEEE Conforence on Communications. Beijing:IEEE,2008:301-305.
    [64]MORAES L F M, MACIEL P D J. Analysis and Evaluation of a New MAC Protocol for Broadband Wireless Access [C]//Proceedings of the International Conforence on Wireless Networks, Communications, and Mobile Computing. Hawaii: ACM,2005:107-112.
    [65]WANG Lilei, XU Huimin. A New Management Strategy of Service Flow in IEEE 802.16 systems [C]//Proceedings of the IEEE Conforence on Industrial Electronics and Applicaitions. Harbin:IEEE,2008:1716-1719.
    [66]LIU Qingwen, WNAG Xin, GIANNAKIS G B. A Cross-Layer Scheduling Algorithm with QoS Support in Wireless Networks [J]. IEEE Transactions on Vehicular Technology,2006,55(3):839-847.
    [67]WAN L, MA W, GUO Z. A Cross-layer Packet Scheduling and Subchannel Allocation Scheme in 802.16e OFDMA System [C]//Proceedings of IEEE WCNC. Hong Kong:IEEE,2007:1865-1870.
    [68]LIU Qingwen, WANG Xin, GIANNAKIS G B. Cross-layer Combining of Adaptive Modulation and Coding with Truncated ARQ over Wireless Links [J]. IEEE Transactions on Wireless Communications,2004,3(5):1746-1755.
    [69]程鹏,张朝阳,黄慧,等.结合自适应调制和ARQ的跨层最优联合设计[J].西安电子科技大学学报,2008,35(1):171-174.
    [70]Wu Dalei, Song Ci. Cross-Layer Combining of Adaptive Modulation and Coding With Hybrid ARQ [C]//Proceedings of the International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks. Waterloo:ACM,2006:147-152.
    [71]WANG Jianfeng, VENKATACHALAM M, FANG Yuguang. System Architecture and Cross-Layer Optimization of Video Broadcast over WiMAX [J]. IEEE Journal on Seclected Areas in Communications,2007,25(4):712-721.
    [72]TRIANTAFYLLOPOULOU D, PASSAS N, KALOXYLOS A. Cross-layer Adaptation for Real-time Broadband Multimedia over IEEE 802.16e Networks Broadband Multimedia Systems and Broadcasting [C]//proceedings of IEEE International Symposium on Broadband Multimedia Systems and Broadcasting. Las Vegas:IEEE,2008:1-6.
    [73]JUAN H H, HUANG H C, HUANG C Y, etc. Cross-layer System Designs for Scalable Video Streaming over Mobile WiMAX [C]//Proceedings of Wireless Communications and Networking Conference. Kowloon:IEEE,2007:1860-1864.
    [74]CHIANG C-H, LIAO W, LIU T. Adaptive Downlink/Uplink Bandwidth Allocation in IEEE 802.16 (WiMAX) Wireless Networks:A Cross-Layer Approach [C]// Proceedings of IEEE Global Telecommunications Conference. Washington, DC:IEEE, 2007:4775-4779.
    [75]ALI-YAHIYA T, BEYLOT A-L, PUJOLLE G. Radio Resource Allocation in Mobile WiMax Networks Using Service Flows [C]//Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Athens:IEEE, 2007:1-5.
    [76]ZHU Xinning, HUO Jiachuan, ZHAO Song. An Adaptive Resource Allocation Scheme in OFDMA Based Multiservice WiMAX Systems [C]//Proceedings of IEEE International Conference on Advanced Communication Technology. Gangwon-Do: IEEE,2008:593-597.
    [77]WANG Qi, ABU-RGHEFF M A. Cross-layer Signaling for Next-generation Wireless Systems[C]//Proceedings of IEEE WCNC. Louisiana:IEEE,2003: 1084-1089.
    [78]WU G, BAI Y, LAI J, etc. Interactions between TCP and RLP in Wireless Internet [C]//Proceedings of IEEE GLOBECOM. Rio de Janeiro:IEEE,1999:115-120.
    [79]BALAKRISHNAN H. Challenges to Reliable Data Transport over Heterogeneous Wireless Networks [D]. USA:The University of California at Berkeley,1998.
    [80]SUDAME P, BADRINATH B R. On Providing Support for Protocol Adaptation in Mobile Wireless Networks [J]. Mobile Networks and Applications,2001,6(1):43-55.
    [81]KIM B-J. A Network Service Providing Wireless Channel Information for Adaptive Mobile Applications:Part I:Proposal [C]//Proceeding of IEEE ICC. Helsinki: IEEE,2001:1345-1351.
    [82]CHEN K, SHAN S H, NAHRSTEDT K. Cross-layer Design for Data Accessibility in Mobile Ad Hoc Networks [J]. Wireless Personal Communications,2002,21(1): 49-76.
    [83]CHEN J, WANG C, TSAI F, et al. The Design and Implementation of WiMAX Module for NS-2 Simulator [C]//Proceeding of the workshop on ns-2:the IP network simulator. Pisa:ICST,2006:1-8.
    [84]LIU P, BERRY R, HONIG M L. Delay-Sensitive Packet Scheduling in Wireless Networks [C]//Proceedings of IEEE WCNC. New Orleans:IEEE,2003:1627-1632.
    [85]RHEE J, HOLTZMAN J M, KIM D. Scheduling of Real/Non-Real Time Services: Adaptive EXP/PF Algorithm [C]//Proceedings of IEEE VTC. Orlando:IEEE,2003: 462-466.
    [86]SONG G, LI Y. Adaptive Resource Allocation Based on Utility Optimization in OFDM [C]//Proceedings of IEEE GLOBECOM. San Francisco:IEEE,2003:586-590.
    [87]ALOUINI M S, GOLDSMITH A J. Adaptive Modulation over Nakagami Fading Channels [J]. Kluwer Journal on Wireless Communications,2000,13 (1-2):119-143.
    [88]SONG Ping, HU Aiqun. Link Adaptation Technology and its Application in IEEE802.16 System [J]. Journal of PLA University of Science and Technology (Natural Science Edition),2006,7 (6):511-514.
    [89]QIN Zhongbin, KUO Gengsheng. Cross-layer Design for QoS-oriented Resource Allocation with Fairness Provision in IEEE 802.16 OFDMA Networks [C]//Next Generation Mobile Applications, Services and Technologies,2007. Wales:IEEE,2007: 287-291.
    [90]JAKES W C, Microwave Mobile Communications [M]. New York:Wiley,1994.
    [91]SONG Guocong, LI Ye (G). Cross-layer Optimization for OFDM Wireless Networks-Part I:Theoretical Framework [J]. IEEE Transactions on Wireless Communications,2005,4(2):614-624.
    [92]SONG Guocong, LI Ye (G). Cross-layer Optimization for OFDM Wireless Networks-Part Ⅱ:algorithm development [J]. IEEE Transactions on Wireless Communications,2005,4(2):625-634.
    [93]IBARAKI T, KATOH N. Resource Allocation Problems:Algorithmic Approaches [M]. Massachusetts:the Press of MIT,1988.
    [94]WONG I C, SHEN Zukang, EVANS B L, et al. A Low Complexity Algorithm for Proportional Resource Allocation in OFDMA Systems [C]//IEEE Workshop on Signal Processing Systems,2004. Texas:IEEE,2004:1-6.
    [95]JAIN R, DURRESI A, BABIC G. Throughput Fairness Index:an Explanation [OL]. ATM Forum/990045,1999. [20080609]. http://www.cse.wustl.edu/~jain/atmf/ ftp/af_fair/index.htm.
    [96]ARMOUR S, DOUFEXI A, BUTLER M, and etc. A Comparison of the HIPERLAN/2 and IEEE 802.11a Wireless LAN Standards [J]. IEEE Communications Magazine,2002,40(5):172-180.
    [97]KARAOGUZ J. High-rate Wireless Personal Area Networks [J]. IEEE Communications Magazine,2001,39(12):96-102.
    [98]Tarhini C, Chahed T. AMC-Aware QoS Proposal for OFDMA-Based IEEE802.16 WiMAX Systems [C]//Proc of the Global Telecommunications Conf. Washington DC, USA:IEEE,2007:4780-4784.
    [99]Stuber G L, Principles of Mobile Communication [M]. Massachusetts:Kluwer Academic Publishers,2nd Edition,2001:53-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700