用户名: 密码: 验证码:
热电纳米材料的液相法合成及物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寻找缓解能源危机的途径已经成为二十一世纪人类亟待解决的重大问题之一。热电材料具有将热能与电能直接相互转换的本领,基于该类材料的器件可有效地回收利用热能,提高能源利用效率,被视为能够有效缓解能源危机的有效手段之一。然而,目前热电领域的关键问题仍是如何提高材料的热电优值,实现其推广应用。理论研究表明,低维材料体系,特别是一维纳米结构材料的热电性能将能得到显著的提高。而实验结果也证实了超晶格薄膜、纳米晶镶嵌体以及纳米线等纳米结构的热电性能得到了有效的优化。然而,目前热电纳米材料的合成方法,特别是液相方法的发展仍不完善,导致了部分被理论预言具有巨大应用前景的热电纳米结构,包括核壳异质结纳米线和单晶纳米管等至今仍难以获得,这无疑将大大抑制热电领域的研究进展。本文围绕完善液相反应法合成热电纳米材料这一主旨,针对国际上关于热电纳米材料研究中的挑战性问题,开展了一系列研究工作并取得了一定的研究成果,其主要内容概括如下:
     第一章综述了热电材料的研究历史和研究进展及其相关器件应用的展望。主要分析了热电材料性能的影响因素及改进方法,介绍了块材热电材料的种类和基本性能以及纳米热电体系的近期重要进展,详细分析了纳米热电材料的合成途径及性能研究,并在此基础上总结了热电纳米材料研究中存在的一些问题。
     第二章中,我们发展了一种基于无毒有机溶剂乙二醇的简单液相方法,成功的实现了中温区热电材料PbTe花状等级结构、一维纳米线以及尺寸可调的纳米立方块这三种不同纳米结构的选择控制合成。通过详细研究体系中表面活性剂以及NaOH对产物形貌的影响,系统的分析了不同形貌的晶体的形成过程和可能的生长机理,并在此基础上,对实验结果给出了合理的解释。
     第三章发展了一种基于乙二醇的溶剂热方法,实现了Ⅴ-Ⅵ族A_2B_3型二元、三元化合物六角形片状纳米结构的普适合成。在详细研究有机添加剂PVP K-30和NaOH浓度对产物形貌的影响后,确定了PVP K-30的作用为稳定剂,而NaOH对六角形纳米片的形成起着关键作用。进一步细致研究六角形纳米片制备过程中各阶段中间产物的形貌、微结构与成分分析结果后,确定“定向附着”机理为单晶六角形纳米片形成的反应机理。该方法提供了一种设计并获得具有相似晶体结构的材料体系纳米结构的新思路,为纳米材料合成途径新方法探索提供一个很好的参考。
     第四章中,我们发展了一种基于乙二醇溶剂的简单液相外延方法,首次合成Ⅴ-Ⅵ族热电材料体系Te/Bi和Te/Bi_2Te_3核壳异质结纳米线。通过详细研究异质结纳米线的界面处的高分辨晶格条纹相结构得出,内核Te纳米线与包裹层Bi或Bi_2Te_3的外延关系可描述为:Te(100)//Bi或Bi_2Te_3(100),Te<100>//Bi或Bi_2Te_3<100>。热电性能研究表明,Te/Bi核壳异质结纳米线块材复合物的热导率和Seebeck系数都得到了大幅改善,有助于材料热电性能的优化。然而,其电阻率大大高于Bi块材样品,需要进一步改进块材复合物的质量。该方法中所涉及的合成思路可以推广应用到其它材料体系的核壳异质结纳米线结构。
     第五章中,我们将纳米尺度的Kirkendall效应引入了基于乙二醇为溶剂的简单液相方法当中,成功的合成了尺寸可调的PbSe、NiSe_2空心球结构以及Bi_2Te_3纳米管结构。通过细致研究这些空心纳米结构形成过程中不同反应时间的中间产物的形貌变化,确认了Kirkendall效应为导致空心结构形成的反应机理。相关性能研究表明,PbSe的光学带隙、目趋NiSe_2的磁性质均表现出明显的尺寸效应。而Bi_2Te_3纳米管块材复合物的Seebeck系数和热导率都得到了大幅度的优化,表明了一维空心纳米热电材料具有的优异热电性能。
     第六章中,发展了一种不同分布的外加磁场辅助下的简单液相方法,实现了具有“刺猬”状结构和一维链状纳米线结构的铁磁性金属Ni纳米晶体的控制合成。通过对中间产物的形貌变化分析,提出了“刺猬”状纳米结构的形成过程。对产物的磁性质研究表明,样品的微结构对其磁性质具有重要的影响。本章中首次研究了非均匀分布磁场对于铁磁性材料的生长过程的影响,将对磁场诱导合成方法的发展提供重要的参考。
     第七章中,基于Pechini过程,我们发展了一种改进的溶胶凝胶方法成功的降低了YBa_2Cu_3O_7的成相温度,根据对该溶胶-凝胶过程中的化学反应分析可知,所发展的溶胶凝胶方法具有很好的普适性,可拓展应用于降低其它材料体系的成相温度。在此基础上,结合多孔氧化铝模板合成了YBa_2Cu_3O_7纳米线阵列。在纳米线制备过程中,我们采用多次重复灌注有效的提高了填充效率。经退火后,YBa_2Cu_3O_7纳米线具有超导电性,其转变温度为92K。
How to release the energy crisis has been one of the most important problems for the 21~(st) century.Thermoelectric(TE) devices that can directly generate electric power by thermal energy and vice versa,have been considered as an efficient approach for improving the fuel efficiency and relieving the world's energy crisis.Nonetheless,the central issue in TE area is still to enhance the TE figure of merit(ZT) of the materials. Theoretical calculations indicate that the TE performance will be remarkably enhanced in low dimensional systems due to the sharper density and enhanced phonon scattering,which have been proved by studying the TE properties of superlattice films, bulk materials with embedded nanocrystals,nanowires and so on.However,it is still underdeveloped on the effective routes,especially the solution phase methods,for the synthesis of TE nanomaterials,therefore,it is still challenging works to obtain various promising TE nanostructures,including core/sheU heterostructure nanowires,large scale single crystalline nanotubes and so on,which will undoubtedly limit the advance of the TE area.This dissertation focuses on developing the solution phase synthesis of TE nanostructures and aims to solve some challenging topics in TE areas.The main contents in the dissertation are presented as follows:
     In chapter 1,we introduced the history and research progresses of TE materials, as well as the potential applications.The main contents include:the dominating factors and the possible routes for improving TE performance,the state-of-art bulk TE materials and the most important advances and synthetic routes for the TE nanostructures.According to the general analyses,several open questions are proposed at the end of this chapter.
     In chapter 2,we carried out the selective synthesis of PbTe hierarchical flower-like crystals,one-dimensional nanowires and size controllable nanocubes through a facile solution phase method using non-toxic ethylene glycol as solvent.On the basis of the research on the influence of NaOH concentration,surfactant and the systematic analysis on the shape evolution of the time-dependent products,we proposed a plausible growth mechanism of the products with different morphologies.
     In chapter 3,we developed a facile solvothermal route for the general synthesis ofⅤ-Ⅵalloy hexagonal platelets.Based on various control experiments,it can be concluded that the organic additive acts as the stabilizing agent and the NaOH plays a critical role during the formation of hexagonal platelets.The formation mechanism can be confirmed as the oriented attachment aider the systematic analyses on the time-dependent products.This work may provide a new rationale pertaining to the design of the solution synthesis of nanoarchitectures for materials possessing similar intrinsic crystal symmetry and will contribute to the development on exploring the novel synthetic routes for nanostructures.
     In chapter 4,we obtained Te/Bi and Te/Bi2Te3 core/shell heterostructure nanowires,for the first time,through the epitaxial growth involved in an ethylene glycol mediated facile solution phase method.The epitaxial relationship between Te and Bi or Te and Bi_2Te_3 can be described as:Te(100)//Bi or Bi_2Te_3(100), Te<100>//Bi or Bi_2Te_3<100>.The largely enhanced Seebeck coefficient and greatly lowered thermal conductivity of the heterostructure nanowire composites strongly contribute to the improvement of the thermoelectric performances,while the electrical conductivity of the nanowire composites greatly reduced compared with that of bulk Bi,where much effort should be devoted to enhance the quality of the bulk composite. This facile and general strategy provides an alternative route to synthesize 1D core/shell heterostructures and could be extended to other material systems with low lattice mismatch.
     In chapter 5,by introducing the nanoscale Kirkendall effect into an ethylene glycol mediated facile solution phase method,we successfully obtained PbSe and NiSe_2 hollow spheres,and Bi2Te3 hollow tubular nanostructures.It is confirmed that the Kirkendall effect could be the involved formation mechanism during the formation of these hollow structure based on the observation of the time-dependent products.The optical band gap of the PbSe and the magnetic property of the NiSe_2 hollow spheres both exhibit notable size effect.In addition,the Seebeck coefficient and thermal conductivity of the Bi_2Te_3 nanotube composites are greatly optimized, which indicates that the one dimensional tubular structure may possess excellent TE performance.
     In chapter 6,we investigated the influence of the extemal magnetic field distribution on the morphology of the ferromagnetic Ni crystal during the growth based on a facile solution phase method and carried out the controllable synthesis of three dimensional urchin-like crystals and one dimensional chain-like nanowires. Through the analysis of the shape evolution process of the intermediate products,we proposed the formation process of the urchin-like Ni nanostructure.It is indicated that the magnetic properties are quite dependent on the microstructure of the products. This work figures out the effect of non-uniform magnetic field on the growth process of the ferromagnetic metal and may benefit the advance of the magnetic-field assisted synthetic approaches.
     In chapter 7,we developed an optimized sol-gel process based on Pechini method which successfully lowered the crystallization temperature of the YBa_2Cu_3O_7 phase.According to the chemical reaction involved in this sol-gel process,it could be extended to other material systems.Furthermore,we obtained the highly ordered YBa_2Cu_3O_7 nanowire arrays through the sol-gel template route with the multi-step evacuation perfusion process in order to enhance the filling efficiency.The superconducting transition temperature(T_c) of the YBa_2Cu_3O_7 nanowires annealed in oxygen is about 92 K.
引文
[1]江泽民,上海交通大学学报,2008,42,345.
    [2]A.I.Hochbaum,R.K.Chen,R.D.Delgado,W.J.Liang,E.C.Gamett,M.Najarian,A.Majumdar,P.D.Yang,Nature 2008,451,163.
    [3]G.J.T.Snyder,E.S.,Nature Materials 2008,7,105.
    [4]R.Venkatasubramanian,E.Siivola,T.Colpitts,B.O'Quirm,Nature 2001,413,597.
    [5]K.F.Hsu,S.Loo,F.Guo,W.Chen,J.S.Dyck,C.Uher,T.Hogan,E.K.Polychroniadis,M.G.Kanatzidis,Science 2004,303,818.
    [6]B.Poudel,Q.Hao,Y.Ma,Y.C.Lan,A.Minnich,B.Yu,X.Yan,D.Z.Wang,A.Muto,D.Vashaee,X.Y.Chen,J.M.Liu,M.S.Dresselhaus,G.Chen,Z.Ren,Science 2008,320,634.
    [7]H.J.Goldsmid,Applications of Thermoelectricity,Methuen,London 1960.
    [8]G.S.Nolas,G.A.Slack,J.L.Cohn,S.B.Schujman,The next generation of thermoelectric materials,in Proc.17th Int.Conf.on Thermoelectrics.Nagoya,Japan 1998,294.
    [9]D.M.Rowe,V.S.Shukla,N.Savvides,Nature 1981,290,765.
    [10]D.M.Rowe,C.M.Bhandari,Appl.Phys.Lett.1985,47,255.
    [11]G.A.Slack,Solid State Physics,Academic Press,New York 1979.
    [12]G.A.Slack,CRC Handbook of Thermoelectrics(CRC,Boca Raton) 1995,407.
    [13]W.M.Yim,A.Amith,SolidState Electronics 1972,15,1141.
    [14]G.E.Smith,E.Wolfe,J.Appl.Phys.1962,33,841.
    [15]B.Lenoir,M.Cassart,J.P.michenaud,H.Scherrer,S.Scherrer,J.Phys.Chem.Solids 1996,57,89.
    [16]R.R.Heikes,R.W.Ure,Thermoelectricity:Science and Engineering,Interscience,New York 1961.
    [17]G.S.Nolas,J.Sharp,H.J.Goldsmid,Thermoelectrics." Basic Principles and New Materials Developments,Springer:Berlin 2001.
    [18]C.Wood,Rep.Prog.Phys 1988,51,459.
    [19]D.M.Rowe,Thermoelectrics Handbook" Macro to Nano(CRC,Boca Raton) 2006.
    [20]F.D.Rosi,E.F.Hockings,N.E.Lindenblad,RCA Rev.1961,22,82.
    [21]I.B.Cadoff,E.Miller,Thermoelectric Materials and Devices(Reinhold,New York) 1960.
    [22]G.A.Slack,M.A.Hussain,J.Aplol.Phys.1991,70,2694.
    [23]G.E.Smith,R.Wolfe,Appl.Phys.Lett.1962,33,841.
    [24]R.Wolfe,G.E.Smith,Appl.Phys.Lett.1962,1,5.
    [25]S.Golin,Phys.Rev.1968,176,830.
    [26]E.J.Tichovolski,J.G.Mavroides,SolidState Commun.1969,7,927.
    [27]G.A.Mironova,M.V.Sudakaova,T.G.Ponomarev,Phys.Solid State 1980,22,2124.
    [28]A.L.Jain,Phys.Rev.1959,114,1518.
    [29]X.Devaux,F.Brochin,R.Martin-Lopez,H.Scherrer,Journal of Physics and Chemistry of Solids 2002,63,119.
    [30]L.W.Da Silva,M.Kaviany,C.Uher,Journal of Applied Physics 2005,97.
    [31]Z.H.Zhou,M.Zabeik,P.Lostak,C.Uher,Journal of Applied Physics 2006,99.
    [32]C.Drasar,A.Hovorkova,P.Lostak,H.Kong,C.P.Li,C.Uher,Journal of Applied Physics 2008,104.
    [33]T.M.Tritt,Science 1999,283,804.
    [34]W.M.Yim,F.D.Rosi,Solid State Electron.1972,15,1121.
    [35]R.Ionesou,J.Jaklovszky,N.Nistor,A.Chiculita,Phys.Stat.Sol.1975,27,27.
    [36]J.Q.Yu,W.Z.Yi,B.D.Chen,H.J.Chen,A Collection of the Binary alloy Sates;Shanghai Science and Technology Press:Shanghai,China 1987.
    [37]D.Y.Chung,T.Hogan,P.Brazis,M.Rocci-Lane,C.Kannewurf,M.Bastea,C.Uher,M.G Kanatzidis,Science 2000,287,1024.
    [38]P.Larson,S.D.Mahanti,D.Y.Chung,M.G.Kanatzidis,Physical Review B 2002,65.
    [39]D.Y.Chung,T.P.Hogan,M.Rocci-Lane,P.Brazis,J.R.Ireland,C.R.Kannewurf,M.Bastea,C.Uher,M.G.Kanatzidis,Journal of the American Chemical Society 2004,126,6414.
    [40]Z.H.Dughaish,Physica B-Condensed Matter 2002,322,205.
    [41]Y.Gelbstein,Z.Dashevsky,M.P.Dariel,Journal of Applied Physics 2008, 104.
    [42]M.S.E1-Genk,H.S.Hamed,Energy Conversion and Management 2003,44,1069.
    [43]M.Orihashi,Y.Nioda,L.D.Chen,Proceedings of the 4th International symposium on Functionally Graded Materials 1996,569.
    [44]J.P.Heremans,C.M.Thrush,D.T.Morelli,Journal of Applied Physics 2005,98.
    [45]S.Yoneda,E.Ohta,H.T.Kaibe,I.J.Ohsugi,K.Miyamoto,I.A.Nishida,Journal of Crystal Growth 1999,204,229.
    [46]Z.Dashevsky,S.Shusterman,M.P.Dariel,I.Drabkin,Journal of Applied Physics 2002,92,1425.
    [47]Y.Gelbstein,Z.Dashevsky,M.P.Dariel,Physica B-Condensed Matter 2005,363,196.
    [48]P.W.Zhu,Y.Imai,Y.Isoda,Y.Shinohara,X.P.Jia,G.T.Zou,Journal of Physics-Condensed Matter 2005,17,7319.
    [49]J.P.Dismukes,L.Ekstrom,E.E.Steigeier,J.Appl.Phys.,(35):2899-2907,J.Appl.Phys.1964,35,2899.
    [50]高敏,D.M..Rowe,半导体学报 1990,11,713.
    [51]J.Schilz,M.Rifel,K.Pixus,H.J.Meyer,Powder Techonology 1 999,105,149.
    [52]T.Noguchi,16th International Conference on Thermoelectrics 1997,4,207.
    [53]I.Terasaki,Y.Sasago,K.Uchinokura,Physical Review B 1997,56,12685.
    [54]T.Nagira,M.Ito,S.Katsuyama,20th International Conference on Thermoelectrics,China:Beijing,164.
    [55]Y.Ando,N.Miyamoto,K.Segawa,T.Kawata,I.Terasaki,Physical Review B 1999,60,10580.
    [56]I.Terassaki,proc.18th Int.Conf.Thermoelectrics(ICT'99),Baltimore,USA 1999,569.
    [57]A.C.Masset,C.Michel,A.Maignan,M.Hervieu,O.Toulemonde,F.Studer,B.Raveau,J.Hejtmanek,Physical Review B 2000,62,166.
    [58]Y.Miyazaki,K.Kudo,M.Akoshima,Y.Ono,Y.Koike,T.Kajitani,Japanese Journal of Applied Physics Part 2-Letters 2000,39,L531.
    [59]I.Matsubara,R.Funahashi,T.Takeuchi,20th International Conference on Thermoelectrics,China:Beijing,172.
    [60]Y.Kawaharada,K.Kuroaski,M.Uno,S.Yamanaka,Journal of Alloys and Compounds 2001,315,193.
    [61]B.C.Sales,D.Mandrus,R.K.Williams,Science 1996,272,1325.
    [62]J.W.Sharp,E.C.Jones,R.K.Williams,P.M.Martin,B.C.Sales,Journal of Applied Physics 1995,78,1013.
    [63]B.C.Sales,D.Mandrus,B.C.Chakoumakos,V.Keppens,J.R.Thompson,Physical Review B 1997,56,15081.
    [64]M.Chitroub,F.Besse,H.Scherrer,Journal of Alloys and Compounds 2009,467,31.
    [65]H.Li,X.F.Tang,Q.J.Zhang,C.Uher,Applied Physics Letters 2008,93.
    [66]W.S.Liu,B.P.Zhang,L.D.Zhao,J.F.Li,Chemistry of Materials 2008,20,7526.
    [67]J.L.Mi,X.B.Zhao,T.J.Zhu,J.P.Tu,Applied Physics Letters 2008,92.
    [68]X.F.Tang,H.Li,Q.J.Zhang,M.Niino,T.Goto,Journal of Applied Physics 2006,100.
    [69]S.Q.Bao,J.Y.Yang,J.Y.Peng,W.Zhu,X.A.Fan,X.L.Song,Journal of Alloys and Compounds 2006,421,105.
    [70]L.D.Hicks,T.C.Harman,M.S.Dresselhaus,Applied Physics Letters 1993,63,3230.
    [71]L.D.Hicks,M.S.Dresselhaus,Physical Review B 1993,47,16631.
    [72]L.D.Hicks,M.S.Dresselhaus,Physical Review B 1993,47,12727.
    [73]R.G.Yang,G.Chen,M.S.Dresselhaus,Physical Review B 2005,72.
    [74]R.G.Yang,G.Chen,M.S.Dresselhaus,Nano Letters 2005,5,1111.
    [75]A.P.Li,F.Muller,A.Birner,K.Nielsch,U.Gosele,Advanced Materials 1999,11,483.
    [76]W.Lee,K.Schwirn,M.Steinhart,E.Pippel,R.Scholz,U.Gosele,Nature Nanotechnology 2008,3,234.
    [77]B.Yan,H.T.M.Pham,Y.Ma,Y.Zhuang,P.M.Sarro,Applied Physics Letters 2007,91.
    [78]W.Lee,R.Ji,U.Gosele,K.Nielsch,Nature Materials 2006,5,741.
    [79]Y.Lei,W.K.Chim,Chemistry of Materials 2005,17,580.
    [80]Z.X.Luo,Y.Y.Liu,L.T.Kang,Y.B.Wang,H.B.Fu,Y.Ma,J.N.Yao,B.H. Loo,Angewandte Chemie-lnternational Edition 2008,47,8905.
    [81]Y.Yang,H.L.Chen,Y.F.Mei,J.B.Chen,X.L.Wu,X.M.Bao,Solid State Communications 2002,123,279.
    [82]K.Liu,J.Nogues,C.Leighton,H.Masuda,K.Nishio,I.V.Roshchin,I.K.Schuller,Applied Physics Letters 2002,81,4434.
    [83]T.Zhang,C.G.Jin,J.Zhang,X.L.Lu,T.Qian,X.G.Li,Nanotechnology 2005,16,2743.
    [84]G.Q.Zhang,X.L.Lu,T.Zhang,J.F.Qu,W.Wang,X.G.Li,S.H.Yu,Nanotechnology 2006,17,4252.
    [85]X.L.Lu,T.Zhang,J.F.Qu,C.G.Jin,X.G.Li,Advanced Functional Materials 2006,16,1754.
    [86]T.Shimizu,T.Xie,J.Nishikawa,S.Shingubara,S.Senz,U.Gosele,Advanced Materials 2007,19,917.
    [87]D.D.Li,R.S.Thompson,G.Bergmann,J.G.Lu,Advanced Materials 2008,20,4575.
    [88]S.A.Sapp,B.B.Lakshmi,C.R.Martin,Advanced Materials 1999,11,402.
    [89]A.L.Prieto,M.S.Sander,M.Martin-Gonzalez,R.Gronsky,T.Sands,A.M.Stacy,Journal of the American Chemical Society 2001,123,7160.
    [90]M.S.Sander,A.L.Prieto,R.Gronsky,T.Sands,A.M.Stacy,Advanced Materials 2002,14,665.
    [91]M.Martin-Gonzalez,A.L.Prieto,R.Gronsky,T.Sands,A.M.Stacy,Journal of the Electrochemical Society 2002,149,C546.
    [92]M.S.Sander,R.Gronsky,T.Sands,A.M.Stacy,Chemistry of Materials 2003,15,335.
    [93]A.L.Prieto,M.Martin-Gonzalez,J.Keyani,R.Gronsky,T.Sands,A.M.Stacy,Journal of the American Chemical Society 2003,125,2388.
    [94]M.Martin-Gonzalez,A.L.Prieto,R.Gronsky,T.Sands,A.M.Stacy,Advanced Materials 2003,15,1003.
    [95]M.Martin-Gonzalez,G.J.Snyder,A.L.Prieto,R.Gronsky,T.Sands,A.M.Stacy,Nano Letters 2003,3,973.
    [96]C.G.Jin,G.W.Jiang,W.F.Liu,W.L.Cai,L.Z.Yao,Z.Yao,X.G.Li,Journal of Materials Chemistry 2003,13,1743.
    [97]C.G.Jin,X.Q.Xiang,C.Jia,W.F.Liu,W.L.Cai,L.Z.Yao,X.G.Li, Journal of Physical Chemistry B 2004,108,1844.
    [98]C.Jia,C.G.Jin,W.F.Liu,W.L.Cai,L.Z.Yao,X.G.Li,Acta Physico-Chimica Sinica 2004,20,240.
    [99]C.G.Jin,G.Q.Zhang,T.Qian,X.G.Li,Z.Yao,Journal of Physical Chemistry B 2005,109,1430.
    [100]O.Jessensky,F.Muller,U.Gosele,Applied Physics Letters 1998,72,1173.
    [101]L.Li,Y.H.Xiao,Y.W.Yang,X.H.Huang,G.H.Li,L.D.Zhang,Chemistry Letters 2005,34,930.
    [102]L.Li,Y.W.Yang,X.H.Huang,G.H.Li,R.Ang,L.D.Zhang,Applied Physics Letters 2006,88.
    [103]D.C.Yang,G.W.Meng,Q.L.Xu,F.M.Han,M.G.Kong,L.D.Zhang,Journal of Physical Chemistry C 2008,112,8614.
    [104]X.H.Li,B.Zhou,L.Pu,J.J.Zhu,Crystal Growth & Design 2008,8,771.
    [105]F.H.Xue,G.T.Fei,B.Wu,P.Cui,L.D.Zhang,Journal of the American Chemical Society 2005,127,15348.
    [106]W.Wang,G.Q.Zhang,X.G.Li,Journal of Physical Chemistry C 2008,112,15190.
    [107]B.Yoo,F.Xiao,K.N.Bozhilov,J.Herman,M.A.Ryan,N.V.Myung,Advanced Materials 2007,19,296.
    [108]X.C.Dou,G.H.Li,H.C.Lei,Nano Letters 2008,8,1286.
    [109]A.M.Morales,C.M.Lieber,Science 1998,279,208.
    [110]Y.Y.Wu,R.Fan,P.D.Yang,Nano Letters 2002,2,83.
    [111]H.Yu,P.C.Gibbons,W.E.Buhro,Journal of Materials Chemistry 2004,14,595.
    [112]F.D.Wang,R.Tang,H.Yu,P.C.Gibbons,W.E.Buhro,Chemistry of Materials 2008,20,3656.
    [113]W.D.Shi,J.B.Yu,H.S.Wang,H.J.Zhang,Journal of the American Chemical Society 2006,128,16490.
    [114]F.Xiao,B.Yoo,K.H.Lee,N.V.Myung,Journal of the American Chemical Society 2007,129,10068.
    [115]W.Z.Wang,B.Poudel,J.Yang,D.Z.Wang,Z.F.Ren,Journal of the American Chemical Society 2005,127,13792.
    [116]J.P.Zhu,S.H.Yu,Z.B.He,J.Jiang,K.Chen,X.Y.Zhou,Chemical Communications 2005,5802.
    [117]L.Shi,C.H.Yu,J.H.Zhou,Journal of Physical Chemistry B 2005,109,22102.
    [118]J.H.Zhou,C.G.Jin,J.H.Seol,X.G.Li,L.Shi,Applied Physics Letters 2005,87.
    [119]A.I.Boukai,Y.Bunimovich,J.Tahir-Kheli,J.K.Yu,W.A.Goddard,J.R.Heath,Nature 2008,451,168.
    [120]Y.S.Ju,K.E.Goodson,Applied Physics Letters 1999,74,3005.
    [121]K.Q.Peng,Y.J.Yan,S.P.Gao,J.Zhu,Advanced Materials 2002,14,1164.
    [122]K.Q.Peng,Y.J.Yan,S.P.Gao,J.Zhu,Advanced Functional Materials 2003,13,127.
    [123]K.Q.Peng,Y.Wu,H.Fang,X.Y.Zhong,Y.Xu,J.Zhu,Angewandte Chemie-International Edition 2005,44,2737.
    [124]L.Weber,E.Gmelin,Applied Physics a-Materials Science & Processing 1991,53,136.
    [125]J.H.Lee,G.A.Galli,J.C.Grossman,Nano Letters 2008,8,3750.
    [126]T.Markussen,A.P.Jauho,M.Brandbyge,Nano Letters 2008,8,3771.
    [127]E.B.Ramayya,D.Vasileska,S.M.Goodnick,I.Knezevic,Journal of Applied Physics 2008,104.
    [128]J.Mallet,M.Molinari,F.Martineau,F.Delavoie,P.Fricoteaux,M.Troyon,Nano Letters 2008,8,3468.
    [129]Y.Wu,J.Xiang,C.Yang,W.Lu,C.M.Lieber,Nature 2004,430,61.
    [130]Y.Wu,Y.Cui,L.Huynh,C.J.Barrelet,D.C.Bell,C.M.Lieber,Nano Letters 2004,4,433.
    [131]C.M.Lieber,Z.L.Wang,Mrs Bulletin 2007,32,99.
    [132]F.Qian,Y.Li,S.Gradecak,H.G.Park,Y.J.Dong,Y.Ding,Z.L.Wang,C.M.Lieber,Nature Materials 2008,7,701.
    [133]J.Xiang,W.Lu,Y.J.Hu,Y.Wu,H.Yan,C.M.Lieber,Nature 2006,441,489.
    [134]Y.M.Lin,M.S.Dresselhaus,Physical Review B 2003,68.
    [135]W.Wang,X.L.Lu,T.Zhang,G.Q.Zhang,W.J.Jiang,X.G.Li,Journal of the American Chemical Society 2007,129,6702.
    [136]D.Y.Li,Y.Wu,R.Fan,P.D.Yang,A.Majumdar,Applied Physics Letters 2003,83,3186.
    [137]Y.Li,J.Xiang,F.Qian,S.Gradecak,Y.Wu,H.Yan,H.Yan,D.A.Blom,C.M.Lieber,Nano Letters 2006,6,1468.
    [138]A.Javey,S.Nam,R.S.Friedman,H.Yan,C.M.Lieber,Nano Letters 2007,7,773.
    [139]G.C.Liang,J.Xiang,N.Kharche,G.Klimeck,C.M.Lieber,M.Lundstrom,Nano Letters 2007,7,642.
    [140]X.C.Jiang,Q.H.Xiong,S.Nam,F.Qian,Y.Li,C.M.Lieber,Nano Letters 2007,7,3214.
    [141]Y.J.Dong,G H.Yu,M.C.McAlpine,W.Lu,C.M.Lieber,Nano Letters 2008,8,386.
    [142]W.X.Tian,R.G.Yang,Journal of Applied Physics 2007,101.
    [143]R.G Yang,G.Chen,Physical Review B 2004,69.
    [144]M.S.Dresselhaus,G Chen,M.Y.Tang,R.G Yang,H.Lee,D.Z.Wang,Z.F.Ren,J.P.Fleurial,P.Gogna,Advanced Materials 2007,19,1043.
    [145]P.F.P.Poudeu,J.D'Angelo,H.J.Kong,A.Downey,J.L.Short,R.Pcionek,T.P.Hogan,C.Uher,M.G Kanatzidis,Journal of the American Chemical Society 2006,128,14347.
    [146]J.Androulakis,C.H.Lin,H.J.Kong,C.Uher,C.I.Wu,T.Hogan,B.A.Cook,T.Caillat,K.M.Paraskevopoulos,M.G Kanatzidis,Journal of the American Chemical Society 2007,129,9780.
    [147]Y Ma,Q.Hao,B.Poudel,Y C.Lan,B.Yu,D.Z.Wang,G Chen,Z.F.Ren,Nano Letters 2008,8,2580.
    [148]T.C.Harman,P.J.Taylor,M.P.Walsh,B.E.LaForge,Science 2002,297,2229.
    [149]L.E.Bell,Science 2008,321,1457.
    [150]C.B.Vining,Nature Materials 2009,8,83.
    [1]C.B.Murray,C.R.Kagan,M.G.Bawendi,Annual Review of Materials Science 2000,30,545.
    [2]S.H.Sun,C.B.Murray,D.Weller,L.Folks,A.Moser,Science 2000,287,1989.
    [3]X.G.Peng,L.Manna,W.D.Yang,J.Wickham,E.Scher,A.Kadavanich,A.P.Alivisatos,Nature 2000,404,59.
    [4]C.Burda,X.B.Chen,R.Narayanan,M.A.E1-Sayed,Chemical Reviews 2005,105,1025.
    [5]X.Wang,J.Zhuang,Q.Peng,Y.D.Li,Nature 2005,437,121.
    [6]Y.G.Sun,Y.N.Xia,Science 2002,298,2176.
    [7]Z.H.Dughaish,Physica B-Condensed Matter 2002,322,205.
    [8]S.Yoneda,E.Ohta,H.T.Kaibe,I.J.Ohsugi,K.Miyamoto,I.A.Nishida,Journal of Crystal Growth 1999,204,229.
    [9]W.G.Lu,J.Y.Fang,K.L.Stokes,J.Lin,Journal of the American Chemical Society 2004,126,11798.
    [10]X.F.Qiu,Y.B.Lou,A.C.S.Samia,A.Devadoss,J.D.Burgess,S.Dayal,C.Burda,Angewandte Chemie-International Edition 2005,44,5855.
    [11]L.Z.Zhang,J.C.Yu,M.S.Mo,L.Wu,K.W.Kwong,Q.Li,Small 2005,1,349.
    [12]J.P.Zhu,S.H.Yu,Z.B.He,J.Jiang,K.Chen,X.Y.Zhou,Chemical Communications 2005,5802.
    [13]W.Z.Wang,B.Poudel,D.Z.Wang,Z.F.Ren,Advanced Materials 2005,17,2110.
    [14]C.J.Murphy,Science 2002,298,2139.
    [15]Z.L.Wang,Journal of Physical Chemistry B 2000,104,1153.
    [16]S.M.Lee,S.N.Cho,J.Cheon,Advanced Materials 2003,15,441.
    [17]G.Zhang,X.Lu,W.Wang,X.Li,Chemistry of Materials 2007,19,5207.
    [1]G.A.Slack,CRC Handbook of Thermoelectrics(CRC,Boca Raton) 1995,407.
    [2]L.W.Da Silva,M.Kaviany,C.Uher,Journal of Applied Physics 2005,97.
    [3]Z.H.Zhou,M.Zabeik,P.Lostak,C.Uher,Journal of Applied Physics 2006,99.
    [4]T.M.Tritt,Science 1999,283,804.
    [5]W.M.Yim,E D.Rosi,Solid State Electron.1972,15,1121.
    [6]R.Ionesou,J.Jaklovszky,N.Nistor,A.Chiculita,Phys.Star.Sol.1975,27,27.
    [7]M.S.Dresselhaus,G.Chen,M.Y.Tang,R.G.Yang,H.Lee,D.Z.Wang,Z.F.Ren,J.P.Fleurial,P.Gogna,Advanced Materials 2007,19,1043.
    [8]L.D.Hicks,M.S.Dresselhaus,Physical Review B 1993,47,12727.
    [9]Y.M.Lin,M.S.Dresselhaus,Physical Review B 2003,68.
    [10]A.Purkayastha,S.Kim,D.D.Gandhi,P.G.Ganesan,T.Borca-Tasciuc,G.Ramanath,Advanced Materials 2006,18,2958.
    [11]B.Poudel,Q.Hao,Y.Ma,Y.C.Lan,A.Minnich,B.Yu,X.Yan,D.Z.Wang,A.Muto,D.Vashaee,X.Y.Chen,J.M.Liu,M.S.Dresselhaus,G.Chen,Z.Ren,Science 2008,320,634.
    [12]M.Martin-Gonzalez,A.L.Prieto,R.Gronsky,T.Sands,A.M.Stacy,Advanced Materials 2003,15,1003.
    [13]A.L.Prieto,M.S.Sander,M.Martin-Gonzalez,R.Gronsky,T.Sands,A.M.Stacy,Journal of the American Chemical Society 2001,123,7160.
    [14]B.Yoo,F.Xiao,K.N.Bozhilov,J.Herman,M.A.Ryan,N.V.Myung,Advanced Materials 2007,19,296.
    [15]W.Wang,X.L.Lu,T.Zhang,G.Q.Zhang,W.J.Jiang,X.G.Li,Journal of the American Chemical Society 2007,129,6702.
    [16]W.G.Lu,Y.Ding,Y.X.Chen,Z.L.Wang,J.Y.Fang,Journal of the American Chemical Society 2005,127,10112.
    [17]B.Zhou,Y.Ji,Y.F.Yang,X.H.Li,J.H.Zhu,in 12th International Conference on Crystalization of Biological Macromolecules,Cancun City, MEXICO,2008,pp.4394.
    [18]Y.B.Xu,Z.M.Ren,W.L.Ren,G.H.Cao,K.Deng,Y.B.Zhong,Materials Letters 2008,62,4273.
    [19]W.D.Shi,L.Zhou,S.Y.Song,J.H.Yang,H.J.Zhang,Advanced Materials 2008,20,1892.
    [20]X.A.Fan,J.Y.Yang,Z.Xie,K.Li,W.Zhu,X.K.Duan,C.J.Xiao,Q.Q.Zhang,Journal of Physics D-Applied Physics 2007,40,5975.
    [21]W.Z.Wang,B.Poudel,J.Yang,D.Z.Wang,Z.F.Ren,Journal of the American Chemical Society 2005,127,13792.
    [22]G.Q.Zhang,W.Wang,X.L.Lu,X.G.Li,Crystal Growth & Design 2009,9,145.
    [23]Z.Y.Tang,N.A.Kotov,M.Giersig,Science 2002,297,237.
    [24]C.Pacholski,A.Komowski,H.Weller,Angewandte Chemie-International Edition 2002,41,1188.
    [25]B.A.Korgel,D.Fitzmaurice,Advanced Materials 1998,10,661.
    [26]K.S.Cho,D.V.Talapin,W.Gaschler,C.B.Murray,Journal of the American Chemical Society 2005,127,7140.
    [27]X.Y.Liu,J.H.Zeng,S.Y.Zhang,R.B.Zheng,X.M.Liu,Y.T.Qian,Chemical Physics Letters 2003,374,348.
    [28]B.Mayers,Y.N.Xia,Journal of Materials Chemistry 2002,12,1875.
    [1]G.C.Liang,J.Xiang,N.Kharche,G.Klimeck,C.M.Lieber,M.Lundstrom,Nano Letters 2007,7,642.
    [2]J.Xiang,W.Lu,Y.J.Hu,Y.Wu,H.Yan,C.M.Lieber,Nature 2006,441,489.
    [3]B.Z.Tian,X.L.Zheng,T.J.Kempa,Y.Fang,N.F.Yu,G.H.Yu,J.L.Huang,C.M.Lieber,Nature 2007,449,885.
    [4]Y.Li,J.Xiang,F.Qian,S.Gradecak,Y.Wu,H.Yan,H.Yan,D.A.Blom,C.M.Lieber,Nano Letters 2006,6,1468.
    [5]C.M.Lieber,Z.L.Wang,Mrs Bulletin 2007,32,99.
    [6]X.C.Jiang,Q.H.Xiong,S.Nam,F.Qian,Y.Li,C.M.Lieber,Nano Letters 2007,7,3214.
    [7]Y.M.Lin,M.S.Dresselhaus,Physical Review B 2003,68.
    [8]R.G.Yang,G.Chen,M.S.Dresselhaus,Nano Letters 2005,5,1111.
    [9]Y.Wu,J.Xiang,C.Yang,W.Lu,C.M.Lieber,Nature 2004,430,61.
    [10]Y.Y.Wu,R.Fan,P.D.Yang,Nano Letters 2002,2,83.
    [11]W.Wang,G.Q.Zhang,X.G.Li,Journal of Physical Chemistry C 2008,112,15190.
    [12]F.H.Xue,G.T.Fei,B.Wu,P.Cui,L.D.Zhang,Journal of the American Chemical Society 2005,127,15348.
    [13]L.Ouyang,K.N.Maher,C.L.Yu,J.McCarty,H.Park,Journal of the American Chemical Society 2007,129,133.
    [14]A.G.Dong,F.D.Wang,T.L.Daulton,W.E.Buhro,Nano Letters 2007,7,1308.
    [15]B.Mayers,B.Gates,Y.D.Yin,Y.N.Xia,Advanced Materials 2001,13,1380.
    [16]B.Mayers,Y.N.Xia,Advanced Materials 2002,14,279,
    [17]B.Mayers,Y.N.Xia,Journal of Materials Chemistry 2002,12,1875.
    [18]V.D.Das,N.Soundararajan,Physical Review B 1987,35,5990.
    [19]Y.-M.Lin,X.Sun,M.S.Dresselhaus,Physical Review B 2000,62,4610.
    [20]A.Boukai,K.Xu,J.R.Heath,Advanced Materials 2006,18,864.
    [21]G.A.Slack,CRC Handbook of Thermoelectrics(CRC,Boca Raton) 1995,407.
    [22]G.Q.Zhang,W.Wang,X.G.Li,Advanced Materials 2008,20,3654.
    [1]S.H.Joo,J.Y.Park,C.K.Tsung,Y.Yamada,P.D.Yang,G.A.Somorjai,Nature Materials 2009,8,126.
    [2]H.B.Zeng,W.P.Cai,P.S.Liu,X.X.Xu,H.J.Zhou,C.Klingshim,H.Kalt,Acs Nano 2008,2,1661.
    [3]J.Lee,J.C.Park,H.Song,Advanced Materials 2008,20,1523.
    [4]X.W.Lou,L.A.Archer,Z.C.Yang,Advanced Materials 2008,20,3987.
    [5]J.H.Gao,G.L.Liang,J.S.Cheung,Y.Pan,Y.Kuang,F.Zhao,B.Zhang,X.X.Zhang,E.X.Wu,B.Xu,Journal of the American Chemical Society 2008,130,11828.
    [6]X.B.Zhao,X.H.Ji,Y.H.Zhang,T.J.Zhu,J.P.Tu,X.B.Zhang,Applied Physics Letters 2005,86.
    [7]J.Y.Chen,B.Wiley,Z.Y.Li,D.Campbell,F.Saeki,H.Cang,L.Au,J.Lee,X.D.Li,Y.N.Xia,Advanced Materials 2005,17,2255.
    [8]H.Cang,T.Sun,Z.Y.Li,J.Y.Chen,B.J.Wiley,Y.N.Xia,X.D.Li,Optics Letters 2005,30,3048.
    [9]H.J.Fan,U.Gosele,M.Zacharias,Small 2007,3,1660.
    [10]K.An,S.G.Kwon,M.Park,H.Bin Na,S.I.Baik,J.H.Yu,D.Kim,J.S.Son,Y.W.Kim,I.C.Song,W.K.Moon,H.M.Park,T.Hyeon,Nano Letters 2008,8,4252.
    [11]J.D.Feng,Q.W.Wang,Journal of the American Ceramic Society 2009,92,235.
    [12]F.Niu,A.M.Cao,W.G.Song,L.J.Wan,Journal of Physical Chemistry C 2008,112,17988.
    [13]K.M.Nam,J.H.Shim,H.Ki,S.I.Choi,G.Lee,J.K.Jang,Y.Jo,M.H.Jung,H.Song,J.T.Park,Angewandte Chemic-International Edition 2008,47,9504.
    [14]U.Jeong,J.U.Kim,Y.N.Xia,Nano Letters 2005,5,937.
    [15]Y.D.Yin,R.M.Rioux,C.K.Erdonmez,S.Hughes,G.A.Somorjai,A.P.Alivisatos,Science 2004,304,711.
    [16]Y.D.Yin,C.K.Erdonmez,A.Cabot,S.Hughes,A.P.Alivisatos,Advanced Functional Materials 2006,16,1389.
    [17]Y.J.Xiong,B.T.Mayers,Y.N.Xia,Chemical Communications 2005,5013.
    [18]H.C.Zeng,in ICMAT Symposium on Porous Materials for Emerging Applications,Singapore,SINGAPORE,2005,pp.649.
    [19]E.Q.Kirkendall,Trans.AIME.1942,147,104.
    [20]A.D.Smigelskas,E.Q.Kirkendall,Trans.AIME.1947,171,130.
    [21]H.J.Fan,M.Knez,R.Scholz,K.Nielsch,E.Pippel,D.Hesse,M.Zacharias,U.Gosele,Nature Materials 2006,5,627.
    [22]H.J.Fan,M.Knez,R.Scholz,K.Nielsch,E.Pippel,D.Hesse,U.Gosele,M.Zacharias,Nanotechnology 2006,17,5157.
    [23]X.Liang,X.Wang,Y.Zhuang,B.Xu,S.M.Kuang,Y.D.Li,Journal of the American Chemical Society 2008,130,2736.
    [24]M.L.Tian,S.Y.Xu,J.G.Wang,N.Kumar,E.Wertz,Q.Li,P.M.Campbell,M.H.W.Chan,T.E.Mallouk,Nano Letters 2005,5,697.
    [25]C.H.B.Ng,H.Tan,W.Y.Fan,Langmuir 2006,22,9712.
    [26]K.Raidongia,C.N.R.Rao,Journal of Physical Chemistry C 2008,112,13366.
    [27]J.M.Shin,R.M.Anisur,M.K.Ko,G.H.Im,J.H.Lee,I.S.Lee,Angewandte Chemie-International Edition 2009,48,321.
    [28]W.Zhu,W.Z.Wang,J.L.Shi,Journal of Physical Chemistry B 2006,110,9785.
    [29]V.Luca,S.Djajanti,R.F.Howe,Journal of Physical Chemistry B 1998,102,10650.
    [30]E.A.Streltsov,N.P.Osipovich,L.S.Ivashkevich,A.S.Lyakhov,V.V.Sviridov,Electrochimica Acta 1998,43,869.
    [31]A.P.Alivisatos,Science 1996,271,933.
    [32]H.Du,C.L.Chen,R.Krishnan,T.D.Krauss,J.M.Harbold,F.W.Wise,M.G.Thomas,J.Silcox,Nano Letters 2002,2,1321.
    [33]J.P.Ge,Y.X.Hu,M.Biasini,W.P.Beyermann,Y.D.Yin,Angewandte Chemie-International Edition 2007,46,4342.
    [34]J.P.Ge,Y.X.Hu,Y.D.Yin,Angewandte Chemie-International Edition 2007,46,7428.
    [35]T.Zhang,T.F.Zhou,T.Qian,X.G.Li,Physical Review B 2007,76.
    [36]S.Ogawa,J.Appl.Phys.1979,50,2308.
    [37]N.Inoue,H.Yasuoka,S.Ogawa,J.Phys.Soc.Jpn 1980,48,850.
    [38]S.Waki,N.Kasai,S.Ogawa,Solid State Commun.1982,41,835.
    [39]R.G.Yang,G.Chen,M.S.Dresselhaus,Nano Letters 2005,5,1111.
    [40]G.A.Slack,CRC Handbook of Thermoelectrics(CRC,Boca Raton) 1995,407.
    [41]G.Q.Zhang,W.Wang,Q.X.Yu,X.G.Li,Chemistry of Materials 2009,21,969.
    [42]G.Q.Zhang,Q.X.Yu,Z.Yao,X.G.Li,Chemical Communications 2009,2317.
    [1]C.T.Black,C.B.Murray,R.L.Sandstrom,S.H.Sun,Science 2000,290,1131.
    [2]H.Zeng,P.M.Rice,S.X.Wang,S.H.Sun,Journal of the American Chemical Society 2004,126,11458.
    [3]M.Chen,J.Kim,J.P.Liu,H.Y.Fan,S.H.Sun,Journal of the American Chemical Society 2006,128,7132.
    [4]G.S.Chaubey,C.Barcena,N.Poudyal,C.B.Rong,J.M.Gao,S.H.Sun,J.P.Liu,Journal of the American Chemical Society 2007,129,7214.
    [5]Z.C.Xu,Y.L.Hou,S.H.Sun,Journal of the American Chemical Society 2007,129,8698.
    [6]J.Xie,K.Chen,H.Y.Lee,C.J.Xu,A.R.Hsu,S.Peng,X.Y.Chen,S.H.Sun,Journal of the American Chemical Society 2008,130,7542.
    [7]C.J.Xu,B.D.Wang,S.H.Sun,Journal of the American Chemical Society 2009,131,4216.
    [8]S.H.Sun,C.B.Murray,D.Weller,L.Folks,A.Moser,Science 2000,287,1989.
    [9]S.Sarkar,S.Pande,S.Jana,A.K.Sinha,M.Pradhan,M.Basu,S.Saha,S.M.Yusuf,T.Pal,Journal of Physical Chemistry C 2009,113,6022.
    [10]V.F.Puntes,K.M.Krishnan,A.P.Alivisatos,Science 2001,291,2115.
    [11]V.F.Puntes,D.Zanchet,C.K.Erdonmez,A.P.Alivisatos,Journal of the American Chemical Society 2002,124,12874.
    [12]V.F.Puntes,K.M.Krishnan,P.Alivisatos,Applied Physics Letters 2001,78,2187.
    [13]Q.Liu,H.J.Liu,M.Han,J.M.Zhu,Y.Y.Liang,Z.Xu,Y.Song,Advanced Materials 2005,17,1995.
    [14]Z.P.Liu,S.Li,Y.Yang,S.Peng,Z.K.Hu,Y.T.Qian,Advanced Materials 2003,15,1946.
    [15]N.Cordente,M.Respaud,F.Senocq,M.J.Casanove,C.Amiens,B.Chaudret,Nano Letters 2001,1,565.
    [16]S.H.Sun,H.Zeng,D.B.Robinson,S.Raoux,P.M.Rice,S.X.Wang,G.X.Li,Journal of the American Chemical Society 2004,126,273.
    [17]S.H.Sun,H.Zeng,Journal of the American Chemical Society 2002,124,8204.
    [18]L.Zhang,A.Manthiram,Applied Physics Letters 1997,70,2469.
    [19]P.Fulmer,M.M.Raja,A.Manthiram,Chemistry of Materials 2001,13,2160.
    [20]M.Tanase,L.A.Bauer,A.Hultgren,D.M.Silevitch,L.Sun,D.H.Reich,P.C.Searson,G.J.Meyer,Nano Letters 2001,1,155.
    [21]J.C.Love,A.R.Urbach,M.G.Prentiss,G.M.Whitesides,Journal of the American Chemical Society 2003,125,12696.
    [22]H.L.Niu,Q.W.Chen,H.F.Zhu,Y.S.Lin,X.Zhang,Journal of Materials Chemistry 2003,13,1803.
    [23]J.Wang,Q.W.Chen,C.Zeng,B.Y.Hou,Advanced Materials 2004,16,137.
    [24]A.Boukai,K.Xu,J.R.Heath,Advanced Materials 2006,18,864.
    [25]K.Shafi,A.Gedanken,R.Prozorov,J.Balogh,Chemistry of Materials 1998,10,3445.
    [26]Z.X.Ma,T.Kyotani,Z.Liu,O.Terasaki,A.Tomita,Chemistry of Materials 2001,13,4413.
    [27]S.H.Wu,D.H.Chen,Journal of Colloid and Interface Science 2003,259,282.
    [28]D.Ung,G.Viau,C.Ricolleau,F.Warmont,P.Gredin,F.F.Fievet,Advanced Materials 2005,17,338.
    [29]D.A.Vanleeuwen,J.M.Vanruitenbeek,L.J.Dejongh,A.Ceriotti,G.Pacchioni,O.D.Haberlen,N.Rosch,Physical Review Letters 1994,73,1432.
    [30]J.H.Hwang,V.P.Dravid,M.H.Teng,J.J.Host,B.R.Elliott,D.L.Johnson,T.O.Mason,Journal of Materials Research 1997,12,1076.
    [31]G.Q.Zhang,T.Zhang,X.L.Lu,W.Wang,J.F.Qu,X.G.Li,Journal of Physical Chemistry C 2007,111,12663.
    [1]C.R.Martin,Science 1994,266,1961.
    [2]C.R.Martin,Chemistry of Materials 1996,8,1739.
    [3]A.L.Prieto,M.S.Sander,M.Martin-Gonzalez,R.Gronsky,T.Sands,A.M.Stacy,Journal of the American Chemical Society 2001,123,7160.
    [4]A.L.Prieto,M.Martin-Gonzalez,J.Keyani,R.Gronsky,T.Sands,A.M.Stacy,Journal of the American Chemical Society 2003,125,2388.
    [5]C.G.Jin,G.W.Jiang,W.F.Liu,W.L.Cai,L.Z.Yao,Z.Yao,X.G.Li,Journal of Materials Chemistry 2003,13,1743.
    [6]C.G.Jin,W.F.Liu,C.Jia,X.Q.Xiang,W.L.Cai,L.Z.Yao,X.G.Li,Journal of Crystal Growth 2003,258,337.
    [7]C.G.Jin,X.Q.Xiang,C.Jia,W.F.Liu,W.L.Cai,L.Z.Yao,X.G.Li,Journal of Physical Chemistry B 2004,108,1844.
    [8]C.G.Jin,G.Q.Zhang,T.Qian,X.G.Li,Z.Yao,Journal of Physical Chemistry B 2005,109,1430.
    [9]F.H.Xue,G.T.Fei,B.Wu,P.Cui,L.D.Zhang,Journal of the American Chemical Society 2005,127,15348.
    [10]B.Yoo,F.Xiao,K.N.Bozhilov,J.Herman,M.A.Ryan,N.V.Myung,Advanced Materials 2007,19,296.
    [11]W.Wang,G.Q.Zhang,X.G.Li,Journal of Physical Chemistry C 2008,112,15190.
    [12]J.C.Hulteen,C.R.Martin,Journal of Materials Chemistry 1997,7,1075.
    [13]G.B.Ji,S.L.Tang,B.L.Xu,B.X.Gu,Y.W.Du,Chemical Physics Letters 2003,379,484.
    [14]J.L.Zhang,G.Y.Hong,Journal of Solid State Chemistry 2004,177,1292.
    [15]X.X.Li,F.Y.Cheng,B.Guo,J.Chen,Journal of Physical Chemistry B 2005,109,14017.
    [16]M.C.Hsu,I.C.Leu,Y.M.Sun,M.H.Hon,Journal of Solid State Chemistry 2006,179,1421.
    [17]Z.H.Hua,P.Yang,H.B.Huang,J.G.Wan,Z.Z.Yu,S.G.Yang,M.Lu,B.X. Gu,Y.W.Du,Materials Chemistry and Physics 2008,107,541.
    [18]Y.Xu,H.Wei,J.Yao,J.Fu,D.Xue,Materials Letters 2008,62,1403.
    [19]L.Yang,Y.H.Tang,Z.Yang,Q.Wang,Journal of Sol-Gel Science and Technology 2008,45,23.
    [20]Z.H.Hua,D.Li,H.Fu,Acta Physico-Chimica Sinica 2009,25,145.
    [21]M.P.Pechini,US Patent Specification 1967,3,330,697.
    [22]B.L.Cushing,V.L.Kolesnichenko,C.J.O'Connor,Chemical Reviews 2004,104,3893.
    [23]T.Zhang,C.G.Jin,J.Zhang,X.L.Lu,T.Qian,X.G.Li,Nanotechnology 2005,16,2743.
    [24]X.L.Lu,W.Wang,G.Q.Zhang,X.G.Li,Advanced Functional Materials 2007,17,2198.
    [25]H.Masuda,K.Fukuda,Science 1995,268,1466.
    [26]J.A.Bonetti,D.S.Caplan,D.J.Van Harlingen,M.B.Weissman,Physical Review Letters 2004,93.
    [27]P.Mikheenko,X.Deng,S.Gildert,M.S.Colclough,R.A.Smith,C.M.Muirhead,P.D.Prewett,J.Teng,Physical Review B 2005,72.
    [28]G.Q.Zhang,X.L.Lu,T.Zhang,J.F.Qu,W.Wang,X.G.Li,S.H.Yu,Nanotechnology 2006,17,4252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700