用户名: 密码: 验证码:
Nd:YAG脉冲激光熔凝AISI 304不锈钢表面氧化现象的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用Nd:YAG脉冲激光表面熔凝的方法对AISI 304奥氏体不锈钢的表面氧化进行了深入的研究,并在奥氏体不锈钢表面成功地制备了高性能的金属氧化物。
     通过简单的数学解析模型和具体实验研究了脉宽以及激光能量密度的变化对AISI 304奥氏体不锈钢表面氧化物形貌和性能的影响规律,得出了当脉宽>1ms、激光能量密度相对较高时可获得较好的奥氏体不锈钢表面改性效果,并指出脉宽的工艺控制是获得良好表面质量的必要条件。研究了不锈钢表面单个激光光斑内的形貌,发现在同一激光光斑内具有不同的物相组成和显微组织。光斑中心区域主要为纳米颗粒的Fe2O3,而在光斑边缘区域主要为六边形形貌的Cr2O3和MnO2等氧化物。同一光斑内形貌的不同主要是由于光斑中心区和边缘区凝固速率的巨大差异造成的,在光斑中心区凝固速率最大为89m/s,而在边缘区凝固速率近似于0。
     研究了激光工艺参数对奥氏体不锈钢的显微硬度、耐磨性以及腐蚀性能的影响规律,获得了具有实际应用价值的数据,为激光熔凝氧化处理不锈钢材料提供了实验数据与理论依据。
With the entrance to 21st century, the resource and environment problems have become the key problems in the survival and development of human beings. Therefore in the long term, the trends of the industrial development all over the world can be reduced to the saving of energy and resource, and what is more, the pursuit of natural production. The austenite stainless steel has been widely used because of its good mechanical property and the corrosion resistance performance. However, due to its low hardness and poor wear resistance, the use of austenite stainless steel is restricted under the application of friction. Through several years of numerous researchers’active explorations, great progress has been achieved on the surface treatment technique and method for enhancing the wear-resistant, corrosion resistance and oxidation resistance of the austenite stainless steel. And one of methods is to prepare one layer of compact oxide passive thin film on the material surface. This thin film can slow or prevent the further oxidation of material, and then enhances its anti-high temperature attrition and the corrosion properties.
     Previous reports about metal surface or metal film surface oxidation by pulsed laser were concerned with the resolution of laser beam and its thermal field, which are all important in laser oxidation. However, microstructure and oxidation kinetics of the oxides are seldom studied. In our study, scanning electron microscope (SEM), field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) are used to investigate the microstructure and mechanism of the growth about the different oxides on the stainless steel surface. The results show that the oxidation behaviors of oxides are influenced significantly by pulsed laser parameters. Through the experiment, we find that the different oxidation kinetics have played important roles in the formation of the surface oxide microstructure and metal oxide grain growth. Eventually, it leads to the formation of different oxide morphologies. The relationships among the oxide microstructure, microhardness, wear and corrosion on the stainless steel surface have also been studied. The main results are as follows:
     1. Study of the process parameters on laser melting oxidation stainless steel surface
     Assume that the temperature field of the pulsed laser acting on the metal surface is non-steady and transient, as well as the laser can be used as a surface heat source, so it can simulate and analysis the temperature field on the surface of the stainless steel during laser melting oxidation with different laser energy densities using simple mathematical models and the heat conduction law. The temperature field analysis indicates that the maximum temperatures of the stainless steel surface are far more than the melting point of the stainless steel Tm (1371~1398°C) when it is irradiated with the lower laser energy density (4.30×106 J/m2 ~ 6.20×106 J/m2) and smaller pulsed width (0.2 ms ~ 0.6 ms). (Under this condition, the laser power density is very high because laser power density is equal to the ratio of the laser energy density and pulsed width.) Then, it will induce strong melting and evaporation at the surface of stainless steel after laser irradiation. When the laser energy density is higher (1.90×107 J/m2 ~ 3.52×107 J/m2) and pulsed width is larger (10 ms ~ 20 ms) (the laser power density is lower), the maximum temperatures of the stainless steel surface are slightly higher than the melting point of the stainless steel. Thereafter, it will follow the melting and solidification process on the surface of the stainless steel which will have an important impact on the morphologies and properties of the stainless steel. If we continue to increase the laser energy density, the surface temperatures of the stainless steel will substantially increase which will be likely to make the sample surface gasification. Then, it will have an unfavorable effect on the surface of the stainless steel.
     In order to verify the practicality of the different laser processing parameters used in the mathematical model of the temperature field, the melting oxidation treatment of the stainless steel is carried out by the Nd:YAG pulsed laser beam. From the surface morphology observed by FESEM, it can be seen that: (1) When the pulsed width is smaller than 1 ms, there appear a lot of craters after each pulse, at the same time the stainless steel surface becomes rougher and is not extremely smooth; the XRD analysis indicates that the stainless steel surface does not produce oxide when the laser energy density is lower (4.30×106 J/m2 ~ 6.20×106 J/m2) and the pulsed width is smaller (0.2 ms ~ 0.6 ms). When the laser energy density is increased to 7.00×106 J/m2 (pulsed width is 1.0 ms), there form a small amount of oxides on the stainless steel surface. (2) When the pulsed width is larger than 1 ms, the craters are not found basically, and the specimen surface becomes smoother and there is no cracks, impurities and other defects; from the XRD analysis, it can be seen that the peak intensity ofγ-Fe the stainless steel first strengths then weakens, but the peak intensities of oxides (e.g. Cr2O3, Fe2O3 and MnO2) gradually strengthen with the increasing of the laser energy density. (3) From the optimized parameter of the laser energy density 3.52×107 J/m2 and pulsed width 20 ms, it can be observed that the cross-section of the stainless steel sample can be divided into three regions, i.e., melting zone, heat affected zone and the matrix. Then, the sample is carried out deep corrosion and it can be clearly seen that the cross-section is composed of oxide layer (about 4~8μm), melting layer and the matrix.
     2. The oxides microstructure on the stainless steel surface by laser melting
     The morphologies in the central region and edge of the laser spot, the formation mechanism of microstructure evolution and the kinetic and thermodynamic behavior of the different morphologies on the surface of the stainless steel are discussed from the optimized parameter of the laser energy density 3.52×107 J/m2 and pulsed width 20 ms. Combination of XRD and XPS analysis, it can be seen that the main products on the surface of the stainless steel after laser melting oxidation treatment are the oxides of Cr2O3, Fe2O3 and MnO2. From the analysis of the temperature field during the laser melting, the temperature curve in one laser spot on the stainless steel surface can be obtained under the same laser energy density. With the increasing of the distance from the center r, the highest temperature in one laser spot on the stainless steel surface gradually decreases from 2165°C (r≈0μm) to 1503°C (r≈200μm). In the subsequent rapid cooling process, the highest solidification velocity in the central region of the laser spot can be up to 89 m/s; while in the edge, it is the smallest which is approximate to 0. Due to the great differences in the solidification velocity between the central region and the edge in one laser spot, it induces the difference on the morphologies between the central region and the edge.
     From the high magnification FESEM micrographs in accordance with the different distances from the center r in one laser spot, it can be seen that there are nano-particles in the central region. With the increasing of the r, there appear the hexagonal morphologies in the edge which are different from the nano-particles in the central region. From the XRD and EDS analysis, it can be speculated that the nano-particles in the central region are mainly Fe2O3. From the XRD and EDS analysis, it can be known that the hexagons in the edge are mainly Cr2O3. The hexagons of Cr2O3 in the edge show that the metal atoms diffuse from the inside of the oxide layer to the surface with the rich of the Cr elements, which will be favorable to the rich of the Cr elements in the oxide film. Hence, it will help to form the dense oxide film.
     The TEM analysis shows that the microstructure changes dramatically and nano-particles as well as the hexagonal structures have been found. In addition, the amorphous phase has been also found in the TEM analysis because of rapid cooling rate.
     3. The surface layer microhardness and the friction and wear properties on the stainless steel surface by laser melting oxidation
     The surface microhardness and cross-section microhardness, the wear loss, wear coefficient and wear morphologies are investigated after the laser melting oxidation treatment with different laser processing parameters.
     The results show that the microhardness on the surface and the cross-section has been obviously enhanced. The laser surface melting oxidation treatment with different laser parameters will induce the wear loss on the surface of stainless steel to reduce and the friction coefficient to decrease. In the range of these experimental parameters, with the increase of the applied load and sliding friction distance, the wear mechanism will change from the mild oxidation wear and abrasive wear mechanisms to severe oxidation wear, abrasive wear and delamination wear mechanism. After the laser melting oxidation treatment with different laser processing parameters, the adhesion and plastic flow on the worn surface of stainless steel significantly reduce. There mainly have three kinds of wear debris during the wear process: flake wear debris, massive wear debris and stripe wear debris.
     4. The corrosion properties on the stainless steel surface by laser melting oxidation The effects of the laser melting oxidation treatment on the corrosion resistance of the stainless steel surface are analyzed by adopting the chemical immersion corrosion weight loss and the electrochemical experimental methods. At the same time, the mechanism enhancing the corrosion resistance of the stainless steel surface after laser melting oxidation is also discussed.
     In the chemical immersion corrosion experiments, there appear a lot of etch pits on the untreated surface of the stainless steel. While after the laser melting oxidation treatment, the immersion corrosion resistance of stainless steel has a certain degree of improvement. In the electrochemical corrosion experiments, the corrosion current density after laser melting oxidation treatment on the surface of the stainless steel is much lower than that on the un-treated surface. The corrosion current density decreases with the laser energy density increasing in the range from 1.90×107 J/m2 to 3.52×107 J/m2. After the laser melting oxidation treatment, in the initial corrosion, there present the oxide film damage process and the filling process of corrosion products on the stainless steel surface under the erosive effects. And in the later corrosion, it is the anodic dissolution process of the fine grains on the subsurface. It may include the following several processes about the improvement of the corrosion resistance on the stainless steel surface after laser melting oxidation treatment: clean and smooth surface; homogenization and refining of the subsurface microstructure; low melting point, low gasified temperature impurity volatility and gasification, and so on.
     In a word, the research of the present study lies not only in the further investigation and broadening on the present laser oxidation technique, but also in the more embedded comprehension of the traditional oxidation technique. At the same time, it provides the reference ideas for the studies of in-situ oxidation on the metal material surface to fabricate oxides which are more prevailed internationally. Therefore, the work in this paper is of rather available values in theoretical and practical applications.
引文
[1]罗永赞.近代超级不锈钢的进展[J].特殊钢, 2000, 2: 5-8.
    [2] KANE R D. Super stainless steels resist hostile environments [J]. Advanced Materials & Processes, 1993, 144: 16-20.
    [3]李殿魁.不锈钢的工艺进步和功能不锈钢的发展[J].上海钢研, 2000, 1: 41-47.
    [4]张仲秋,李新亚,娄延春.含氮不锈钢研究的进展[J].铸造, 2002, 51: 661-665.
    [5] OH Y J, HONG J H. Nitrogen effect on precipitation and sensitization in cold-worked 316L stainless steels [J]. Journal of Nuclear Materials, 2000, 278: 242-250.
    [6]陆世英,张廷凯,康喜范.不锈钢[M].北京:原子能出版社, 1995.
    [7]李玉宝.生物医学材料[M].北京:化学工业出版社, 2003.
    [8]浦素云.金属植入材料及其腐蚀[M].北京:北京航空航天大学出版社, 1990.
    [9] (美)皮克纳,伯恩主编,顾守仁,周有德等译.不锈钢手册[M].北京:机械工业出版社, 1987.
    [10] REN Y B, YANG K, ZHAN B C. Nickel-free stainless steel for medical applications [J]. Journal of Materials Science and Technology, 2004, 20: 571-573.
    [11]任伊宾.新型医用无镍不锈钢的研究[D].沈阳:中国科学院金属研究所, 2004.
    [12] ZHANG H W, HEI Z K, LIU G, et al. Formation of nano-structured surface layer on AIS1 304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Materialia, 2003, 51: 1871-1881.
    [13] LIN Y M, LU J, WANG L P, et al. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel [J]. Acta Materialia, 2006, 54: 5599-5605.
    [14] NI Z C, WANG X W, WANG J Y, et al. Characterization of the phase transformation in a nanostructured surface layer of 304 stainless steel induced by high-energy shot peening [J]. Physica B: Condensed Matter, 2003, 334: 221-228.
    [15] WANG X, LEI M K, ZHANG J S. Surface modification of 316L stainless steel with high-intensity pulsed ion beams [J]. Surface and Coatings Technology, 2007, 201: 5884-5890.
    [16] WANG X, HAN X G, LEI M K, et al. Effect of high-intensity pulsed ion beamsirradiation on corrosion resistance of 316L stainless steel [J]. Materials Science and Engineering A, 2007, 457: 84-89.
    [17] ZHAO Q, LIU Y, WANG C, et al. Bacterial adhesion on ion-implanted stainless steel surfaces [J]. Applied Surface Science, 2007, 253: 8674-8681.
    [18] LIANG J H, WANG C S, TSAI W F, et al. Parametric study of nitrided AISI 304 austenite stainless steel prepared by plasma immersion ion implantation [J]. Surface and Coatings Technology, 2007, 201: 6638-6642.
    [19] CUI C Y, HU J D, LIU Y H, et al. Microstructure and mechanical properties of stainless steel under Nd:YAG pulsed laser irradiation [J]. Materials Science and Technology, 2008, 24: 964-968.
    [20] VISWANATHAN A, SASTIKUMAR D, RAJARAJAN P, et al. Laser irradiation of AISI 316L stainless steel coated with Si3N4 and Ti [J]. Optics and Laser Technology, 2007, 39: 1504-1513.
    [21] INGELGEM Y V, VANDENDAEL I, BROEK D V, et al. Influence of laser surface hardening on the corrosion resistance of martensitic stainless steel [J]. Electrochimica Acta, 2007, 52: 7796-7801.
    [22] GARZóN C M, ALFONSO J E, CORREDOR E C, et al. Hardness and structure characterization of Ti6Al4V films produced by reactive magnetron sputtering on a conventional austenitic stainless steel [J]. Microelectronics Journal, 2008, 39: 1329-1330.
    [23] NATALI M, CARTA G, RIGATO V, et al. Chemical, morphological and nano-mechanical characterizations of Al2O3 thin films deposited by metal organic chemical vapour deposition on AISI 304 stainless steel [J]. Electrochimica Acta, 2005, 50: 4615-4620.
    [24] LI H, STOLK R L, WERF C H, et al. Thin film micro- and polycrystalline silicon nip cells on stainless steel made by hot-wire chemical vapour deposition [J]. Thin Solid Films, 2006, 501: 276-279.
    [25]李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社, 2003.
    [26]王怡德.溅射技术发展的历程[EB/OL]. (2005-01-21). http://www.chinesevacuum.com/ShowArticle.aspx?id=1558
    [27] SUZUKI T, KANNO I, LOVERICH J J, et al. Characterization of Pb(Zr, Ti)O3 thin films deposited on stainless steel substrates by RF-magnetron sputtering for MEMS applications [J]. Sensors and Actuators A, 2006, 125: 382-386.
    [28] JOHNSON C, GEMMENA R, ORLOVSKAYA N. Nano-structured self-assembled LaCrO3 thin film deposited by RF-magnetron sputtering on a stainless steel interconnect material [J]. Composites: Part B, 2004, 35: 167-172.
    [29]杨和梅,姚正军.衬底温度对Al2O3薄膜微观组织和电阻率的影响[J].江苏冶金, 2005, 33: 1-3.
    [30]庞晓露.氧化铬薄膜的生长机理及力学性能表征[D].北京:北京科技大学材料学院, 2008.
    [31]杨光, SANTOS V P.磁控溅射制备ZnO薄膜及其声表面波特性[J].物理学报, 2007, 56: 3515-3520.
    [32]俞振南,姜乐,熊志华,等.磁控溅射技术制备ZnO透光薄膜[J].南昌大学学报(理科版), 2007, 31: 452-455.
    [33]孟广耀.化学气相沉积与无机新材料[M].北京:科学出版社, 1984.
    [34]曾晓雁,吴懿平.表面工程学[M].北京:机械工业出版社, 2001.
    [35] COTE D R, NGUYEN S V, STAMPER A K, et al. Plasma-assisted chemical vapor deposition of dielectrics thin films for ULSI semiconductor circuits [J]. IBM Journal of Research and Development, 1999, 43: 5-29.
    [36] NGUYEN S V. High-density plasma chemical vapor deposition of silicon-based dielectric films for integrated circuits [J]. IBM Journal Research and Development, 1999, 43: 109-126.
    [37] CARLSON D E, MAGEE C W, TRIANO A R. The effect of hydrogen content on the photovoltaic properties of amorphous silicon [J]. Journal of the Electrochemistry Society, Solid-State Science and Technology, 1979, 126: 688-691.
    [38] SALEH B, ADLI A. Characterization of SiOxNy anti-reflective coatings using SIMS and RBS/HFS [J]. Thin Solid Films, 1999, 355: 363-366.
    [39] JUNG W Y, JUN B H, PARK H W, et al. Deposition of Yb2O3 buffer films using H2O vapor by MOCVD method [J]. Physica C, 2007, 463-465: 202-206.
    [40] DUMINICA F D, MAURY F, HAUSBRAND R. Growth of TiO2 thin films by AP-MOCVD on stainless steel substrates for photocatalytic applications [J]. Surface and Coatings Technology, 2007, 201: 9304-9308.
    [41]张际亮,郦剑,沃银花,等.铝表面化学气相沉积SiOx膜层的显微结构和性能[J].中国有色金属学报, 2004, 14: 961-966.
    [42] XUE W B, WANG C, CHEN R Y, et al. Structure and properties characterization ofceramic coatings produced on Ti-6Al-4V alloy by microarc oxidation in aluminate solution [J]. Materials Letters, 2002, 52: 435-441.
    [43] XUE W B, WANG C, LI Y L, et al. Effect of microarc discharge surface treatment on the tensile properties of Al-Cu-Mg alloy [J]. Materials Letters, 2002, 56: 737-743.
    [44] KRYSMANN W, KURZE P, DITTRICH K H, et al. Structure and properties of ANOF layers [J]. Crystal Research and Technology, 1984, 19: 973-979.
    [45] RUDNEV V S, GORDIENKO P S. Dependence of the Coating Thickness on the Micro Oxidation (MAO) Potential [J]. Zashch Met, 1993, 29: 304-307.
    [46]张欣宇.铝及铝合金表面的等离子微弧氧化及膜层性能研究[D].青岛:青岛科技大学材料学院, 2002.
    [47] VOEVODIN A A, YEROKHIN A L, LYUBIMOV V V. Characterization of wear protective Al-Si-O coatings formed on Al-based alloys by micro-arc discharge treatment [J]. Surface and Coatings Technology, 1996, 86-87: 516-521.
    [48] ZHU M H, CAI Z B, LIN X Z, et al. Fretting wear behaviour of ceramic coating prepared by micro-arc oxidation on Al-Si alloy [J]. Wear, 2007, 263: 472-480.
    [49] DWAIN M. A global review of magnesium parts in automobile [J]. Light Metal Age, 1996, 8: 60-67.
    [50] WANG Y Q, ZHENG M Y, WU K. Microarc oxidation coating formed on SiCw/AZ91 magnesium matrix composite and its corrosion resistance [J]. Materials Letters, 2005, 59: 1727-1731.
    [51] CHEN F, ZHOU H, YAO B, et al. Corrosion resistance property of the ceramic coating obtained through micro-arc oxidation on the AZ31 magnesium alloy surfaces [J]. Surface and Coatings Technology, 2007, 201: 4905-4908.
    [52] LIANG J, GUO B G, TIAN J, et al. Effects of NaAlO2 on structure and corrosion resistance of microarc oxidation coatings formed on AM60B magnesium alloy in phosphate-KOH electrolyte [J]. Surface and Coatings Technology, 2005, 199: 121-126.
    [53] WANG Y M, JIANG B L, LEI T Q, et al. Microarc oxidation coatings formed on Ti6Al4V in Na2SiO3 system solution: Microstructure, mechanical and tribological properties [J]. Surface and Coatings Technology, 2006, 201: 82-89.
    [54]薛文斌,王超,马辉. TA2纯钛表面微弧氧化膜的成分和相结构分析[J].稀有金属材料与工程, 2002, 5: 345-348.
    [55]杜继红,李争显,慕伟意.不锈钢-铝复合材料表面微弧氧化陶瓷膜的研究[J].表面技术, 2004, 33: 35-37.
    [56]张宇,闫康平,王伟,等.热浸镀铝工艺对不锈钢微弧氧化陶瓷膜厚度的影响[J].材料与表面处理技术, 2007, 10: 103-105.
    [57]刘福春,石玉敏,韩恩厚.不锈钢表面处理方法的进展[J].沈阳工业大学学报, 2001, 23: 7-11.
    [58] WANG J H, DUH J G, SHIH H C. Corrosion characteristics of colored films on stainless steel formed by chemical INCO and a.c. process [J]. Surface and Coatings Technology, 1996, 78: 248-254.
    [59]王先友,蒋汉瀛.彩色不锈钢研究现状及发展前景[J].材料保护, 1996, 29: 1-3.
    [60]张碧泉,卢兆忠.不锈钢上紫红色铬酸盐转化膜的研究[J].材料保护, 1999, 32: 27-29.
    [61]周青.不锈钢着色工艺及彩色不锈钢的应用[J].材料保护, 1994, 27: 1-6.
    [62]窦光宇.本领不凡的彩色不锈钢[J].科技信息, 2001, 6: 22-23.
    [63] GILLET E, MA?EK K, LOLLMAN D, et al. Evolution of the oxidation states at the WO3 thin film surface during annealing in gases [J]. Vacuum, 2008, 82: 261-265.
    [64]范丽.应用氧化退火法挽救脱碳层超标的轴承钢[J].一重技术, 2005, 3: 30-31.
    [65]吕亚平,毛卫民,何业东,等.退火工艺对低压铝箔氧化膜和比电容的影响[J].材料热处理学报, 2007, 28: 78-81.
    [66]马静,何业东,胡建文,等.退火处理对喷丸处理1Cr18Ni9Ti合金选择氧化的影响[J].材料热处理学报, 2004, 25: 46-49.
    [67]董奇志. Cr膜Nd-YAG激光表面氧化机理[D].长春:吉林大学材料学院,2003.
    [68] MAIMAN T H. Stimulated optical radiation in Ruby [J]. Nature, 1960, 187: 493-494.
    [69] BALCHEV I, MINKOVSKI N, MARINOVA T, et al. Composition and structure characterization of aluminum after laser ablation [J]. Materials Science and Engineering B, 2006, 135: 108-112.
    [70] LASAGNI A, MüCKLICH F. Study of the multilayer metallic films topography modified by laser interference irradiation [J]. Applied Surface Science, 2005, 240: 214-221.
    [71] GUO W, KAR A. Interfacial instability and microstructural growth due to rapid solidification in laser processing [J]. Acta Materialia, 1998, 46: 3485-3490.
    [72] KIM J, NA S. Metal thin film ablation with femtosecond pulsed laser [J]. Optics and Laser Technology, 2007, 39: 1443-1448.
    [73] ZHANG Y K, ZHANG X R, WANG X D, et al. Elastic properties modification inaluminum alloy induced by laser-shock processing [J]. Materials Science and Engineering A, 2001, 297: 138-143.
    [74] LIU J L, LUO Q Q, ZOU Z R. Laser alloying on a cast iron surface with W-V-Co-Cr alloying powder [J]. Surface and Coatings Technology, 1992, 56: 47-50.
    [75] HENLEY S J, CAREY J D, SILVA S R. Metal nanoparticle production by pulsed laser nanostructuring of thin metal films [J]. Applied Surface Science, 2007, 253: 8080-8085.
    [76] CUI C Y, HU J D, LIU Y H, et al. Microstructure evolution on the surface of stainless steel by Nd:YAG pulsed laser irradiation [J]. Applied Surface Science, 2008, 254: 3442-3448.
    [77] ZHANG H Y, DING Y, WU C Y, et al. The effect of laser power on the formation of carbon nanotubes prepared in CO2 continuous wave laser ablation at room temperature [J]. Physica B, 2003, 325: 224-229.
    [78]高亚丽,王存山,刘红宾. AZ91HP镁合金真空激光熔凝晶粒细化[J].材料热处理学报, 2006, 27: 92-95.
    [79] CUI C Y, GUO Z X, LIU Y H, et al. Characteristics of cobalt-based alloy coating on tool steel prepared by powder feeding laser cladding [J]. Optics and Laser Technology, 2007, 39: 1544-1550.
    [80] DUBOURG L, HLAWK F, CORNET A. Study of aluminium-copper-iron alloys application for laser cladding [J]. Surface and Coatings Technology, 2002, 151: 329-332.
    [81] CULTRERA L, PEREIRA A, RISTOSCU C, et al. Pulsed laser deposition of Mg thin films on Cu substrates for photocathode applications [J]. Applied Surface Science, 2005, 248: 397-401.
    [82] ANDREW J P, LIN L. The effect of laser pulse width on multiple-layer 316L steel cladding microstructure and surface finish [J]. Applied Surface Science, 2003, 208-209: 411-416.
    [83] KLINGER D, LUSAKOWSKA E, ZYMIERSKA D. Nano-structure formed by nanosecond laser annealing on amorphous Si surface [J]. Materials Science in Semiconductor Processing, 2006, 9: 323-326.
    [84] CHOI Y, YAMAMOTO S, UMEBAYASHI T, et al. Fabrication and characterization of anatase TiO2 thin film on glass substrate grown by pulsed laser deposition [J]. Solid State Ionics, 2004, 172: 105-108.
    [85] CONDE A, ZUBIRI F, DAMBORENEA J. Cladding of Ni-Cr-B-Si coatings with ahigh power diode laser [J]. Materials Science and Engineering A, 2002, 334: 233-238.
    [86] WANG X B, LIANG Y, YANG S L. Formation of TiB2 whiskers in laser cladding Fe-Ti-B coatings [J]. Surface and Coatings Technology, 2001, 137: 209-217.
    [87] YUE T M, YAN L J, CHAN C P, et al. Excimer laser surface treatment of aluminum alloy AA7075 to improve corrosion resistance [J]. Surface and Coatings Technology, 2004, 179: 158-164.
    [88] GEORGES C, SANCHEZ H, SEMMAR N, et al. Laser treatment for corrosion prevention of electrical contact gold coating [J]. Applied Surface Science, 2002, 186: 117-123.
    [89] COLA?O R, VILAR R. Stabilisation of retained austenite in laser surface melted tool steels [J]. Materials Science and Engineering A, 2004, 385: 123-127.
    [90] CAPELLO E, CHIARELLO P, PREVITALI B, et al. Laser welding and surface treatment of a 22Cr-5Ni-3Mo duplex stainless steel [J]. Materials Science and Engineering A, 2003, 351: 334-343.
    [91] CARPENE E, SCHAAF P. Laser nitriding of iron and aluminum [J]. Applied Surface Science, 2002, 186: 100-104.
    [92] DUFFET G, SALLAMAND P, VANNES A B. Improvement in friction by cw Nd:YAG laser surface treatment on cast iron cylinder bore [J]. Applied Surface Science, 2003, 205: 289-296.
    [93] KULKA M, PERTEK A. Microstructure and properties of borided 41Cr4 steel after laser surface modification with re-melting [J]. Applied Surface Science, 2003, 214: 278-288.
    [94]肖爱红,邱长军,李学兵.激光表面改性技术及其应用综述[J].机械制造, 2006, 44: 59-61.
    [95] Li Y X, Hu J D, Liu Y H, et al. Effect of C/Ti ratio on the laser ignited self-propagating high-temperature synthesis reaction of Al-Ti-C system for fabricating TiC/Al composites [J]. Materials Letters, 2007, 61: 4366-4369.
    [96] OLIVEIRA U, OCELíK V, HOSSON J T. Analysis of coaxial laser cladding processing conditions [J]. Surface and Coatings Technology, 2005, 197: 127-136.
    [97] LI S, HU Q W, ZENG X Y, et al. Effect of carbon content on the microstructure and the cracking susceptibility of Fe-based laser-clad layer [J]. Applied Surface Science, 2005, 240: 63-70.
    [98] YANG Y, HU J D, WANG H Y, et al. Ni-P amorphous phases obtained by Nd-YAGpulsed laser alloying of deposited Ni-P coating with aluminum [J]. Materials Letters, 2006, 60: 1128-1130.
    [99] NG K W, MAN H C, CHENG F T, et al. Laser cladding of copper with molybdenum for wear resistance enhancement in electrical contacts [J]. Applied Surface Science, 2007, 253: 6236-6241.
    [100] CUI C Y, HU J D, LIU Y H, et al. Formation of nano-crystalline and amorphous phases on the surface of stainless steel by Nd:YAG pulsed laser irradiation [J]. Applied Surface Science, 2008, 254: 6779-6782.
    [101] BANERJEE R, COLLINS P C, GENC A, et al. Diret laser deposition of in situ Ti-6Al-4V-TiB composites [J]. Materials Sience and Engineering A, 2003, 358: 343-349.
    [102] ZHANG K, LIU W J, SHANG X F. Research on the processing experiments of laser metal deposition shaping [J]. Optics and Laser Technology, 2007, 39: 549-557.
    [103] WU X, LIANG J, MEI J F, et al. Microstructures of laser-deposited Ti-6Al-4V [J]. Materials and Design, 2004, 25: 137-144.
    [104]徐向阳,钟敏霖,刘文今.激光合成NiAl金属间化合物的研究[J].应用激光, 2002, 22: 97-108.
    [105] TRTICA M, GAKOVIC B, BATANI D, et al. Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm [J]. Applied Surface Science, 2006, 253: 2551-2556.
    [106] WANG X C, LIM G C, NG F L, et al. Femtosecond pulsed laser-induced periodic surface structures on GaN/sapphire [J]. Applied Surface Science, 2005, 252: 1492-1497.
    [107] KATHURIA Y P. Laser microprocessing of metallic stent for medical therapy [J]. Journal of Materials Processing Technology, 2005, 170: 545-550.
    [108] TRTICA M S, GAKOVIC B M, RADAK B B, et al. Periodic surface structures on crystalline silicon created by 532 nm picosecond Nd:YAG laser pulses [J]. Applied Surface Science, 2007, 254: 1377-1381.
    [109] WANG Y C, LI Y M, YU H L, et al. In situ fabrication of bioceramic composite coatings by laser cladding [J]. Surface and Coatings Technology, 2005, 200: 2080-2084.
    [110] DUBE D, FISET M, COUTURE A. Characterization and performance of laser melted AZ91D and AM60B [J]. Materials Science and Engineering A, 2001, 299: 38-45.
    [111] KWOK C T, CHENG F T, MAN H C. Interfacial instability and microstructural growth due to rapid solidification in laser processing [J]. Acta Materialia, 1998, 46: 3485-3496.
    [112] TUE T M, WANG A H, MAN H C. Improvement in the corrosion resistance of magnesium AK60SiC composite by excimer laser surface treatment [J]. Scripta Materialia, 1998, 38: 191-198.
    [113] ZHANG Y K, ZHANG X R, ZHANG S Y, et al. Investigation of the effect of laser treatment on the longitudinal and transverse velocity of an aluminum alloy [J]. Journal of Applied Physics, 2002, 91: 5775-5781.
    [114] TRTICA M S, GAKOVIC B M. Surface modification of stainless steels by TEA CO2 laser [J]. Applied Surface Science, 2001, 177: 48-57.
    [115] KWOK C T, CHENG F T, MAN H C. Microstructure and corrosion behavior of laser surface-melted high-speed steels [J]. Surface and Coatings Technology, 2007, 202: 336-348.
    [116] WANG A A, SIRCAR S, MAZUMDA J. Laser cladding of Mg-Al alloys [J]. Journal of Materials Science, 1993, 28: 5113-5122.
    [117] TUE T M, WANG A H, MAN H C. Corrosion resistant enhancement of magnesium AZ60/SiC composite by Nd:YAG laser cladding [J]. Scripta Materialia, 1999, 40: 303-311.
    [118] STAIA M H, CRUZ M, DAHOTRE N B. Microstructural and tribological characterization of an A-356 aluminum alloy superficially modified by laser alloying [J]. Thin Solid Films, 2000, 377-378: 665-674.
    [119] MAJUMDAR J D, GALUN R, MORDIKE B L, et al. Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy [J]. Materials Science and Engineering A, 2003, 361: 119-129.
    [120] JUNG H S, PARK H H, PANG S S, et al. The structural and electron field emission characteristics of pulsed laser deposited diamond-like carbon films with thermal treatment [J]. Thin Solid Films, 1999, 355-356: 151-156.
    [121]张光钧,李军,李文戈.激光表面改性的发展趋势[J].金属热处理, 2006, 31: 1-7.
    [122]姜节俭.光电物理基础[M].成都:成都电讯工程学院出版社, 1986.
    [123]陆建等.激光与材料相互作用物理学[M].北京:机械工业出版社, 1996.
    [124]王家金.激光加工技术[M].北京:中国计量出版社, 1992.
    [125] MAN H C, ZHANG S, CHENG F T, et al. Microstructure and formation mechanismof in situ synthesized TiC/Ti surface MMC on Ti-6Al-4V by laser cladding [J]. Scripta Materialia, 2001, 44: 2801-2807.
    [126] YANG X Y, PENG X, CHEN J, et al. Effect of a small increase in the Ni content on the properties of a laser surface clad Fe-based alloy [J]. Applied Surface Science, 2007, 253: 4420-4426.
    [127] WU P, ZHOU C Z, TANG X N. Microstructural characterization and wear behavior of laser cladded nickel-based and tungsten carbide composite coatings [J]. Surface and Coatings Technology, 2003, 166: 84-88.
    [128] ISSHIKI Y J, KAZUNARI M, MITURU H. Synthesis of iron-tungsten alloy on mild steel by laser surface alloying [J]. Thin Solid Films, 1998, 317: 468-470.
    [129] ZHU Q J, QU S Y, WANG X H, et al. Synthesis of Fe-based amorphous composite coatings with low purity materials by laser cladding [J]. Applied Surface Science, 2007, 253: 7060-7064.
    [130] GRUM J, SLABE J M. Effect of laser-remelting of surface cracks on microstructure and residual stresses in 12Ni maraging steel [J]. Applied Surface Science, 2006, 252: 4486-4492.
    [131] HüGEL H. New solid-state lasers and their application potentials [J]. Optics and Lasers in Engineering, 2000, 34: 213-229.
    [132] PETER S. Laser nitriding of metals [J]. Progress in Materials Science, 2002, 47: 1-161.
    [133] ZHONG Z C, CHENG R H, BOSLEY J, et al. Fabrication of chromium oxide nanoparticles by laser-induced deposition from solution [J]. Applied Surface Science, 2001, 181: 196-200.
    [134] URSU I, BIRJEGA M I, DINESCU M, et al. Excimer laser induced crystallization and oxidation of amorphous Cr thin films [J]. Applied Surface Science, 1989, 36: 640-647.
    [135] NáNAI L, VAJTAI R, BELEZNAI C, et al. Nonlinear aspects of laser-driven oxidation of metals [J]. Applied Surface Science, 1996, 106: 247-257.
    [136] NáNAI L, VAJTAI R, GEORGE T F. Laser-induced oxidation of metals: state of the art [J]. Thin Solid Films, 1997, 298: 160-164.
    [137] GY?RGY E, MIHAILESCU I N, SERRA P, et al. Single pulse Nd:YAG laser irradiation of titanium: influence of laser intensity on surface morphology [J]. Surface and Coatings Technology, 2002, 154: 63-67.
    [138] PINO A P, SERRA P, MORENZA J L. Oxidation of titanium through Nd:YAG laserirradiation [J]. Applied Surface Science, 2002, 197-198: 887-890.
    [139] LAVISSE L, GREVEY D, LANGLADE C, et al. The early stage of the laser-induced oxidation of titanium substrates [J]. Applied Surface Science, 2002, 186: 150-155.
    [140] HUBER M, DEUTSCHMANN R A, NEUMANN R, et al. Local laser induced rapid thermal oxidation of SOI substrates [J]. Applied Surface Science, 2000, 168: 204-207.
    [141] ANTONOV V, IORDANOVA I, GURKOVSKY S. Investigation of surface oxidation of low carbon sheet steel during its treatment with Nd:Glass pulsed laser [J]. Surface and Coatings Technology, 2002, 160: 44-53.
    [142] BONELLI M, MIOTELLO A, MOSANER P. Morphological changes induced on aluminum surfaces by excimer laser irradiation [J]. Applied Surface Science, 2002, 186: 211-215.
    [143] NàNAI L, VAJTAI R, GEORGE T F. Nonlinear dynamic of IR laser-induced surface processes [J]. Infrared Physics and Technology, 1995, 36: 281-296.
    [144] METEV S M, SAVTCHENKO S K, STAMENOV K V. Pattern generation by laser-induced oxidation of thin metal films (microcircuit fabrication) [J]. Journal of Physics D: Applied Physics, 1980, 13: 75-76.
    [145] GERASSIMOV R B, METEV S M, SAVTCHENKO S K. Optimisation of the process of laser-induced thermochemical image recording [J]. Journal of Physics D: Applied Physics, 1984, 17: 1671-1677.
    [146] VERNOLD C L, MILSTER T D. Non-photolithographic fabrication of large computer-generated diffractive optical elements [J]. Proceedings of SPIE-The International Society for Optical Engineering, 1994, 2263: 125-133.
    [147] CASTELL R, REIFF S, DRACHSEL W, et al. Influence of laser-induced defects on catalytic CO oxidation on Pt (111) [J]. Surface Science, 1997, 377-379: 770-774.
    [148] GY?RGY E, PINO A P, SERRA P, et al. Growth of surface structures on titanium through pulsed Nd:YAG laser irradiation in vacuum [J]. Applied Surface Science, 2002, 197-198: 851-855.
    [149] BEKE S, K?R?SI L, PAPP S, et al. Nd:YAG laser synthesis of nanostructural V2O5 from vanadium oxide sols: Morphological and structural characterizations [J]. Applied Surface Science, 2007, 254: 1363-1368.
    [150] PéREZ J L, SAKANAKA P H, ALGATTI M A, et al. An improved three-dimensional model for growth of oxide films induced by laser heating [J]. Applied Surface Science, 2001, 175-176: 703-708.
    [151] PéREZ J L, SAKANAKA P H, ALGATTI M A, et al. One-dimensional analytical model for oxide thin film growth on Ti metal layers during laser heating in air [J]. Applied Surface Science, 2001, 175-176: 709-714.
    [152] CONDE J C, LUSQUI?OS F, GONZáLEZ P, et al. Temperature distribution in a material heated by laser radiation: modelling and application [J]. Vacuum, 2002, 64: 359-366.
    [153]吴长春.冶金热力学[M].北京:机械工业出版社, 1993.
    [154] KUBASCHEWSKI O, HOPKINS B E. Oxidation of metals and alloys [M]. Butterworths, Science Publish London, 1962.
    [155]刘国军.铜合金高温抗氧化性的研究[D].长春:吉林大学材料学院, 2008.
    [156] ALMAN D E, JABLONSKI P D. Effect of minor elements and a Ce surface treatment on the oxidation behavior of an Fe-22Cr-0.5Mn (Crofer 22 APU) ferritic stainless steel [J]. International Journal of Hydrogen Energy, 2007, 32: 3743-3753.
    [157]龙剑平,胤驰,邓苗,等. 1Cr18Ni9Ti高温氧化行为研究[J].材料热处理技术, 2008, 37: 1-3.
    [158]刘建华,李明,陶斌武,等. 0Cr15Ni5Cu2Ti钢的高温氧化行为[J].航空学报, 2008, 29: 221-226.
    [159] HONES P, DISERENS M, LEVY F. Characterization of sputter-deposited chromium oxide thin films [J]. Surface and Coatings Technology, 1999, 120-121: 277-283.
    [160] THEUMISSEN G. Wear coatings for magnetic thin film magnetic recording heads [J]. Tribology International, 1998, 31: 519-523.
    [161] YANG J, LIAN J S, BAI H Z, et al. Cr2O3 film formed by surface oxidation of stainless steel irradiated by a Nd-YAG plulsed laser [J]. ISIJ International, 2005, 45: 730-735.
    [162]王明耀.不锈钢表面激光制造彩色氧化膜的机制研究[D].武汉:武汉科技大学物理学院, 2006.
    [163]张彰.非水介质中电解氧化法合成制备纳米Fe2O3的研究[D].上海:上海大学材料学院, 2006.
    [164]邵贝羚,刘安生,王晓华,等.超音速喷涂界面的微结构与界面结合强度[J].电子显微学报, 1997, 16: 271-276.
    [165]李月英.表面强化铁基粉末冶金材料的摩擦磨损特性研究[D].长春:吉林大学材料学院, 2004.
    [166]陈光南.毛化轧辊的新方法及其应用[J].应用激光, 1996, 16: 155-158.
    [167] (苏)柯瓦林科等著,郭东仁,胡隆庆译.零件的激光强化[M].北京:国防工业出版社, 1985.
    [168]安中胜,王会才,赵亦兵.脉冲激光导致不锈钢表层温度场演化的模拟[J].中国科学院研究生院学报, 2003, 20: 309-315.
    [169]陈钰清,王静环.激光原理[M].杭州:浙江大学出版社, 1992.
    [170] GERMAN R M. Super solidus liquid phase sintering, Part I: Process review [J]. International Journal of Powder Metalluegy, 1990, 26: 23-34.
    [171]李俊昌.激光热处理优化控制研究[M].北京:冶金工业出版社, 1995.
    [172]李俊昌.激光的衍射及热作用计算[M].北京:科学出版社, 2002.
    [173]孙承伟.激光辐照效应[M].北京:国防工业出版社, 2002.
    [174] OHRING M. The materials science of thin films, Modification of surfaces and films [M]. Academic Press, 2002.
    [175] QIN Y, DONG C, WANG X G, et al. Temperature profile and crater formation induced in high-current pulsed electron beam processing [J]. Journal of Vacuum Science Technology A, 2003, 21: 1934-1938.
    [176]秦颖,王晓钢,董闯,等.强流脉冲电子束诱发温度场及表面熔坑的形成[J].物理学报, 2003, 52: 3043-3048.
    [177]王旭.强流脉冲离子束辐照316L不锈钢结构及性能研究[D].大连:大连理工大学材料学院, 2007.
    [178] HOADLEY A F, RAPPAZ M A. Thermal model of laser cladding by powder injection [J]. Metallurgical Transactions B, 1992, 23: 631-642.
    [179]周尧和,胡壮麒,乔万奇.凝固技术[M].北京:机械工业出版社, 1998.
    [180]胡钢,许淳淳,张新生. 304不锈钢在闭塞区溶液中钝化膜组成和结构性能[J].北京化工大学学报, 2003, 30: 20-23.
    [181]汪鹰,史苑芗.用XPS研究钢筋钝化膜和Cl-对钝化膜的影响[J].中国腐蚀与防护学报, 1998, 18: 107-112.
    [182] MAURICE V, YANG W P, MARCUS P. X-ray photoelectron spectroscopy and scanning tunneling microscopy study of passive films formed on (100) Fe-18Cr-13Ni single-crystal surface [J]. Journal of the Electrochemical Society, 1998, 145: 909-920.
    [183]刘世宏,王当憨,潘承璜. X射线光电子能谱分析[M].北京:科学出版社, 1988.
    [184] YANG Y, HU J D, WANG H Y, et al. Surface modification of a Ni-P layer deposited on an aluminum substrate by Nd-YAG pulsed laser irradiation [J]. Lasers in Engineering, 2005, 15: 147-155.
    [185] LIU S Y, HU J D, YANG Y, et al. Microstrucure analysis of magnesium alloy melted by laser irradiation [J]. Applied Surface Science, 2005, 252: 1723-1731.
    [186] YANG J, LIAN J S, DONG Q Z, et al. Nano-structured films formed on the AISI 329 stainless steel by Nd-YAG pulsed laser irradiation [J]. Applied Surface Science, 2004, 229: 2-8.
    [187]薛春芳,戴耀,王丹杰,等.金属粉末激光熔覆成形温度场的数值分析[J].装甲兵工程学院学报, 2006, 20: 93-96.
    [188] ROLAND T, RETRAINT D, LU K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment [J]. Scripta Materialia, 2006, 54: 1949-1954.
    [189] PDF Cards #06-0694, #34-0396, #38-1479PCPDFWIN, Version 2.02, JCPDS-ICDD, 1999.
    [190] GLEITER H. Nanostructured materials: basic concepts and microstructures [J]. Acta Materialia, 2000, 48: 1-29.
    [191]钟敏霖,刘文今,任家烈,等. FeCSiB合金连续激光非晶化的研究[J].金属热处理学报, 1998, 19: 42-47.
    [192] KERR H W, KURZ W. Solidification of peritectic alloys [J]. International Materials Reviews, 1996, 41: 129-164.
    [193]潘金生,仝键民,田民波.材料科学基础[M].北京:清华大学出版社, 1998.
    [194] LIAN J S, VALIEV R, BAUDELET B. On the enhanced grain-growth in ultrafine grained metals [J]. Acta Metallurgica Material, 1995, 43: 4165-4170.
    [195]沈嘉年,周龙江,李铁藩.水蒸气加速Fe-Cr合金高温氧化的作用[J].材料研究学报, 1998, 12: 128-132.
    [196] SEAKI I, KONNO H, FURUICHI R, et al. The effect of the oxidation atmosphere on the initial oxidation of type 430 stainless steel at 1273 K [J]. Corrosion Science, 1998, 40: 191-200.
    [197]栾卫志. 1Cr17不锈钢表面纳米化组织耐高温氧化性研究[D].大连:大连交通大学材料学院, 2005.
    [198] OLSSON C O, LANDOLT D. Passive films on stainless steels chemistry, structureand growth [J]. Electrochimica Acta, 2003, 48: 1093-1104.
    [199] SAEKI I, KONNO H, FURICHI R. The initial oxidation of type 430 stainless steel in O2-H2O-N2 atmospheres at 1273 K [J]. Corrosion Science, 1996, 38: 19-31.
    [200] KUROKAWA H, KAWAMURA K, MARUYAMA T. Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient [J]. Solid State Ionics, 2004, 168: 13-21.
    [201] BRYLEWSKI T, NANKO M, MARUYAMA T, et al. Application of Fe-16Cr ferritic alloy to interconnector for a solid oxide fuel cell [J]. Solid State Ionics, 2001, 143: 131-150.
    [202]刘江龙,邹至荣,苏宝榕.高能束热处理[M].北京:机械工业出版社, 1997.
    [203]刘江龙,刘朝.激光作用下合金熔池内的熔体流动[J].重庆大学学报, 1993, 16: 109-114.
    [204]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社, 1993.
    [205]叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社, 1981.
    [206] HALL E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proceedings of the Physical Society London B, 1951, 64: 747-753.
    [207] PETCH N J. The cleavage strength of polycrystals [J]. Journal of Iron and Steel Research International, 1953, 174: 25-28.
    [208]庞佑霞,黄伟九,谭援强.工程摩擦学基础[M].北京:煤炭工业出版社, 2004.
    [209] PEYRE P, SCHERPEREEL X, BERTHE L. Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance [J]. Materials Science and Engineering A, 2000, 280: 294-302.
    [210] PERTEK A, KULKA M. Characterization of single tracks after laser surface modification of borided 41Cr4 steel [J]. Applied Surface Science, 2003, 205: 137-142.
    [211] PANTELIS D I, BOUYIOURI E, KOULOUMBI N, et al. Wear and corrosion resistance of laser surface hardened structural steel [J]. Surface and Coatings Technology, 2002, 298: 125-134.
    [212] SAGARO R, CEBALLOS J S, BLANCO A. Tribological behaviour of line hardening of steel U13A with Nd:YAG laser [J]. Wear, 1999, 225-229: 575-580.
    [213]孙茅才.金属力学性能[M].哈尔滨:哈尔滨工业大学出版社, 2003.
    [214]吴钢,刘宝,宋光明.激光工艺参数对表面硬度影响规律的研究[J].研究与应用, 1: 59-61.
    [215]马壮,李应红,张永康,等.激光冲击处理对304不锈钢力学性能的影响[J].材料热处理学报, 2007, 28: 102-105.
    [216] KULKA M, PERTEK A. Microstructure and properties of borocarburized 15CrNi6 steel after laser surface modification [J]. Applied Surface Science, 2004, 236: 98-105.
    [217]孙希泰.材料表面强化技术[M].北京:化学工业出版社, 2005.
    [218] POGREBNJAK A D, LADYSEV V S, POGREBNJAK N A. A comparison of radiation damage and mechanical and tribological properties ofα-Fe exposed to intense pulsed electron and ion beams [J]. Vacuum, 2000, 58: 45-52.
    [219]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社, 1984.
    [220]刘道新.材料的腐蚀与防护[M].西安:西北工业大学出版社, 2006.
    [221]吕战鹏,黄德伦,杨武,等.重铬酸根与磁场对铁在硫酸溶液中阳极极化行为的影响[J].中国腐蚀与防护学报, 2001, 21: 1-9.
    [222] YUN H, LI J, CHEN H B, et al. A study on the N-, S- and Cl-modified nano-TiO2 coatings for corrosion protection of stainless steel [J]. Electrochimica Acta, 2007, 52: 6679-6685.
    [223] ZHANG X Y, SHI M H, LI C, et al. The influence of grain size on the corrosion resistance of nanocrystalline zirconium metal [J]. Materials Science and Engineering A, 2007, 448: 259-263.
    [224] LI N, LI Y, WANG S G, et al. Electrochemical corrosion behavior of nanocrystallized bulk 304 stainless steel [J]. Electrochimica Acta, 2006, 52: 760-765.
    [225] PATIL R C, RADHAKRISHNAN S. Conducting polymer based hybrid nano-composites for enhanced corrosion protective coatings [J]. Progress in Organic Coatings, 2006, 57: 332-336.
    [226] YE W, LI Y, WANG F H. Effects of nanocrystallization on the corrosion behavior of 309 stainless steel [J]. Electrochimica Acta, 2006, 51: 4426-4432.
    [227]李瑛,王福会.表面纳米化对金属材料电化学腐蚀行为的影响[J].腐蚀与防护, 2003, 24: 6-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700