用户名: 密码: 验证码:
微区中分子束外延生长SiGe/Si异质结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文中我们研究微区中外延生长SiGe/Si异质结构,由于外延层和掩膜窗口的边缘效应所引起的应变的变化,并讨论此应变的变化对于材料物理性质的影响。此外,在上述研究工作的基础上,我们提出了一种生长高品质应变Si的新方法。它利用微区生长材料的边缘效应引发应变弛豫的原理,结合Ge组分台阶变化Si_(1-x)Ge_x外延层对于失配位错的限制作用,成功地生长了高品质的具有张应变Si材料。
     论文中各章讨论的内容如下:
     第一章,主要介绍SiGe/Si异质结构的基本性质和论文研究工作的目的和意义。第二章,介绍MBE生长SiGe/Si异质结构材料的生长技术,和材料的表征方法。
     第三章中,我们叙述了掩膜边缘及外延膜边缘效应,对于Si(100)衬底上微区生长的SiGe/Si异质结构中的应变和位错的影响的实验结果。研究了边缘效应对于共度生长材料和非共度生长材料的应变所产生的影响,并利用微区Raman光谱技术,研究了不同的掩模材料(SiO_2或Si_3N_4)的边缘效应对于微区中外延生长的SiGe/Si中的应变分布的影响。
     在第四章中我们研究了微区生长SiGe/Si材料,由于边缘效应引起的应变变化,导致材料物理性质的变化。主要讨论两方面的内容:一,不同掩膜的边缘效应引起的外延层表面形貌的改变。二,研究微区生长SiGe/Si异质结构中,边缘引起的应变弛豫对于材料的热稳定性影响。实验表明,与无边界约束的生长材料相比,微区生长SiGe/Si材料的应变具有远为良好的热稳定性。它表明利用微区生长材料研制器件,有利于提高器件的可靠性。
     第五章,我们利用外延薄膜边缘弛豫效应,研究外延生长SiGe薄膜表面纳米结构的密度和尺度随应变的变化,实验中观察到,由于Si_(1-x)Ge_x/Si层的部分应变通过外延膜的边缘释放后,导致Si_(1-x)Ge_x/Si表面的纳米结构的密度降低,同时横向尺度也发生变化。在外延纳米结构时通过外延区域尺寸的选择,可以在Ge组份不改变的情况下,实现对纳米结构密度及尺寸的改变。
     第六章,我们利用微区外延技术生长高品质的应变Si材料。主要包括下面几个方面:一,研制生长高Ge组份,低位错密度,高应变驰豫的Si_(0.45)G_(e0.55)膜虚拟衬底。在3微米的窗口内成功生长了应变弛豫达90%,穿透位错密度低于2×10~5cm~(-2)的Si_(0.5)Ge_(0.5)虚拟衬底,而整个虚拟衬底厚度仅为340nm。二,在Si_(0.5)Ge_(0.5)虚拟衬底上生长高品质的应变Si膜。其张应变达到1.5%,穿透位错密度低于2×10~5cm~2。
In this thesis the influence of the edge effect of the epitaxial film and the mask material on the strain of the SiGe/Si heterostructure grown in limited area is firstly studied.Further studies indicate that this kind of the edge induced strain relaxation will affect some properties of the epitaxial film in the window.In the experiments different morphologies of the SiGe film in the window with different mask materials are observed,we suggest this result originates from the different strain distribution caused by the edge effect of the mask material.The thermal stability of the SiGe/Si heterostructure is greatly improved by growing the SiGe film in the window.We attribute this result to the edge induced strain relaxation and the blocking effect for the propagation of the misfit dislocation by the edge of the window.Besides we have developed a new method for growing the strained Si film of high quality, which bases on the understanding of the experimental results.
     The thesis consists of six chapters.
     In chapter one,the basic properties of the SiGe heterostructure and the aim of the project are introduced.
     In chapter two,we will introduce the MBE technology for growing the SiGe/Si heterostructure,and the characterization for the SiGe/Si heterostructure.
     In chapter three,we will report the experimental results about the influence of the edge effect of the epitaxial film and the mask material on the strain and the dislocation density of the SiGe/Si structure grown in micron size windows.Using the Raman scattering technology,we observed the different strain distribution at the boundary area of the SiGe film grown in the window with different mask material(the SiO_2 film or the Si_3N_4 film).We suggest this result originates from the edge effect of the mask material.
     Chapter four contains two parts.In the first part we will report the experimental results that the different morphology of the SiGe film was observed for the SiGe/Si heterostructure grown in the windows with different mask materials,and we attribute this result to the different strain distribution in the SiGe film,which is discussed in chapter three.In the second part we discuss the thermal stability of the SiGe/Si heterostructure in the micron-size window.Experiments showed that the thermal stability of the SiGe/Si heterostructure in the window is greatly improved.This result may be caused by the edge induced strain relaxation and the blocking effect for the misfit dislocation propagation by the edge of mask.
     Chapter 5 concems the SiGe film edge induced strain relaxation effect on density and lateral dimension of the nanostructures(quantum dot molecule) grown in micron-size windows.The experimental data showed that the density of the nanostructures decreased along with the reducing of the window size and that the lateral dimension of nanostructures increased along with the decreasing of the window size.It indicated that density and size of nanostructures could be modulated by choosing the window size,when the Ge fraction was fixed in SiGe films.
     Chapter six includes the following three sections.In the first section,MBE growth of highly relaxed Si_(0.45)Ge_(0.55) virtual substrate with very low dislocation density was studied.By using the Si_3N_4 film as the mask material,Si_(0.45)Ge_(0.55) film was grown on a compositionally stepwise graded SiGe buffer layer in 3μm×3μm windows on Si(001) substrate.The results showed that more than 90%strain of the Si_(0.45)Ge_(0.55) film relaxed,and threading dislocation density is lower than 2×10~5cm~(-2), which is less than that of the film grown on the unpattemed area by a factor of 20.In the second part,we will study the strained Si film,which was grown on the virtual substrate described above.The result showed that for the strained Si layer grown in the window of 3×3μm~2,the tense strain reached 1.5%,and no misfit dislocations could be observed,as the sample was etched by the modified Schimmel etchant.We suggest that the strain relaxation and the suppression for the misfit dislocation in the virtual substrate are caused by the combined contribution of the edge effect of the epitaxial film and the compositionally stepwise graded SiGe buffer layer.
引文
[1]R.People,J.C.Bean,D.V.Lang,A.M.Sergent,H.L.St(o|¨)rmer,K.W.Wecht,R.T.Lynch,and K.Baldwin,Appl phys Lett.45,1231(1984)
    [2]H.Daenbkes.IEEE Trans Electron Devices,ED-33,663(1986)
    [3]L.Minjoo.Lee and A.Fitzgerald,Appl.Phys.Lett.83,4202(2003)
    [4]Π.C.基耶夫,半导体物理学,王家俭,丛树福,马洪磊等译.山东:山东电子学会出版,162(1978).
    [5]S.C.Jain,R.Bullough,and J.Willis,Adv.Phys.39,127(1990)
    [6]J.Weber,M.I.Alonso,Phys Rev.B 40,5683(1989)
    [7]R.People,J.C.Bean,Appl phys Lett.48,538(1986)
    [8]D.J.Robbins,L.T.Canham,S.L.Barnett.J.Appl.Phys.71,1407(1992)
    [9]D.Dutartre,G.Bremond,A.Souifi.Phys Rev.B 44,11525(1991)
    [10]C.G.Van de Walle,R.M.Martin.Phys Rev.B 34,5621(1986)
    [11]J.H.Van der Merwe,N.G.Van der Berg.Surf.Sci 32,4(1972)
    [12]J.W.Matthews,S.Mader,T.B.Light.J Appl Phys.41,3800(1970)
    [13]J.W.Matthews,A.E.Blakeslee.J Crys Growth 32,265(1976)
    [14]E.Kasper,H.J.Herzog,H.Daembkes,et al.MRS Symposium Proceedings.56,347(1986)
    [15]S.C.Jain,H.E.Maes,K.Pinardi,and I.De Wolf,J.Appi.Phys.79,8145(1996)
    [16]W.B.Dodson and J.Y.Tsao,Appl.Phys.Lett.51,1325(1987)
    [17]J.Y.Tsao,B.W.Dodson,S.T.Picraux,and D.M.Comelison,Phys.Rev.Lett.59,2455(1987)
    [18]R.Hull,J.C.Bean,and C.Buescher,J.Appl.Phys.66,5837(1989)
    [19]D.C.Houghton,J.Appl.Phys.70,2136(1991)
    [20]M.A.Lutz,R.M.Feenstra,F.K.LeGoues,P.M.Mooney,and J.O.Chu,Appl.Phys.Lett.66,724(1995)
    [21]S.M.Hu,J.Appl.Phys.70,R53(1991)
    [22]S.M.Hu and D.Chidambarrao,Appl.Phys.Lett.61,783(1992)
    [23]E.A.Fitzgerald,G.P.Watson,R.E.Proano and D.G.Ast,J.Appl.Phys.65,2220(1989)
    [24]S.Wickenh(a|¨)user,L.Vescan,K.Schmidt,and H.Lüth,Appl.Phys.Lett.70,324(1997)
    [25]Tetsuya Akasaka,Seigo Ando,Toshio Nishida,Hisao Saito,and Naoki Kobayashi,Appl.Phys.Lett.79,1261(2001)
    [26]X.G.Zhang.A.Rodriguez,X.Wang,P.Li,F.C.Jain,and J.E.Ayers,Appl.Phys.Lett.77,2524(2000)
    [1]盛篪,蒋最敏,陆叻,黄大鸣,上海科学技术出版社,ISBN 7-5323-7540-4,8(2004)
    [2]J.C.Tsang,P.M.Mooney,F.Dacol,and J.O.Chu,J.Appl.Phys.75,8098(1994)
    [3]J.Groenen,R.Caries,S.Christiansen,M.Albrecht,W.Dorsch,and H.P.Strunk,et al,Appl.Phys.Lett.71,3856(1997)
    [4]P.H.Tan,K.Brunner,D.Bougeard and G.Abstreiter,Phys.Rew.B 68,125302(2003)
    [5]W.Kern,D.A.Puotinen,RCA Rev.31,187(1970)
    [6]H.K.Shin,D.J.Lockwood,J.-M.Baribeau,Solid State Communications.114,505(2000)
    [7]J.Werner,K.Lyutovich and C.P.Parry,Eur.Phys.J.Appl.Phys.27,367(2004)
    [1] S. C. Jain, Semicond. Sci. Technol. 16, R51 (2001)
    [2] R. People, IEEE J. Quantum Elec. QE22, 1696 (1986)
    
    [3] A. G. Cullis, D. J. Robbins, A. J. Pidduck, P. W. Smith, J. Cryst. Growth 123, 333 (1992)
    
    [4] I. Berbezier, A. Ronda, F. Volpi, A. Portavoce, Surf. Sci 231, 531 (2003)
    [5] M. Bouville, J. M. Millunchick, M. L. Falk, Phys. Rev. B 70, 235312 (2004)
    [6] S. M. Hu, J. Appl. Phys. 70, R53 (1991)
    [7] M. Yamaguchi, M. Tachikawa, M. Sugo, S. Kondo, and Y. Itoh, Appl. Phys. Lett. 56,27(1990)
    [8] J. C. Bean, L. C. Feldman, Fiory A T, Nakahara S and Robinson I K, J. Vac. Sci. Technol. A2, 2436 (1984)
    
    [9] Yue Liang, William D. Nix, J. Appl. Phys. 97, 043519 (2005)
    [10] S. C. Jain, H. Maes, K. Pinardi and De Wolf I, J. Appl. Phys. 79, 8145 (1996)
    
    [11] E. A. Fitzgerald, G. P. Watson, R. E. Proano and D. G. Ast, J. Appl. Phys. 65, 2220 (1989)
    
    [12] A. Fischer and H. Richter, Appl. Phys. Lett. 61,2656 (1992)
    
    [13] D. B. Noble, J. L. Hoyt, C. A. King and J. F. Gibbons, Appl. Phys. Lett. 56, 51 (1990)
    
    [14] W. Hagen, H. Strunk, Appl. Phys. 17, 85 (1978)
    [15] www.accuratus.com/silinit.html.
    [1] D. J. Shu, Feng Liu, and X. G.Gong, Phys. Rew. B 64, 245410 (2001)
    
    [2] M. Schroeder, D. E. Wolf, Surf. Sci 375, 129 (1997)
    
    [3] Evgeni Penev, Peter Kratzer, and Matthias Scheffler, Phys. Rew. B 64, 085401 (2001)
    
    [4] L. Huang, Feng Liu, and X. G.Gong, Phys. Rew. B 70, 155320 (2004)
    [5] A. van de Walle, M. Asta, and P. W. Voorhees, Phys. Rev. B 67, 041308 (2003).
    [6] E. Zoethout, O. Gu¨rlü, H. J. W. Zandvliet, Bene Poelsema, Surf. Sci 452, 247 (2000)
    
    [7] Yonenaga and Koji Sumino, Appl. Phys. Lett. 69, 1264 (1996)
    [8] D. C. Houghton, Appl. Phys. Lett. 57, 2124 (1990)
    [1]崔健,锗硅量子环生长机制的研究[D],复旦大学(2004)
    
    [2] X. Deng, M. Krishnamurthy, Phys. Rev. Lett. 81, 1473 (1998)
    
    [3] J. L. Gray, R. Hull, C.-H. Lam, P. Sutter, J. Means, J.A. Floro, Phys. Rev. B72,155323(2005)
    [4] J. Cui, Q. He, and X. M. Jiang, Y. L. Fan, X. J. Yang, F. Xue, and Z. M. Jiang,Appl. Phys. Lett. 83, 2907 (2003)
    
    [5] M. Bouville, J. M. Millunchick, M. L. Falk, Phys. Rev. B 70, 235312 (2004)
    [6] T. E. Vandervelde, R. M. Kalas, P. Kumar, T. Kobayashi, T. L. Pernell, J. C. Bean,J. Appl. Phys. 97, 043513 (2005).
    
    [7] A. Ishizaka, Y. Shiraki, J. Electrochem. Soc. 133, 666 (1986)
    [8] N. Singh and D.M. Elzey, Mat. Res. Soc. Symp. Proc. 778, U.3.6.1 (2003)
    [9] H. J. Gao, W. D. Nix, Annu. Rev. Mater. Sci. 29,173 (1999)
    [10] M. Albrecht, S. Christiansen, J. Michler, W. Dorsch, H. P. Strunk, P. O. Hansson,and E. Bauser, Appl. Phys. Lett. 67, 1232 (1995)
    [11] J. Tersoff, F. K. LeGoues, Phys. Rev. Lett. 72, 3570 (1994)
    [12] A. Nishida, K. Nakagawa, E. Murakami, M. Miyao, J. Appl. Phys. 71, 5913(1990)
    
    [13] P. Sutter and M. G. Lagally, Phys. Rev. Lett. 84, 4637 (2000)
    [14] R. M. Tromp, F. M. Ross, and M. C. Reuter, Phys. Rev. Lett. 84, 4641 (2000)
    [15] J. Tersoff, B. J. Spencer, A. Rastelli, and H. von Kanel, Phys. Rev. Lett. 89,196104(2002)
    
    [16] R. J. Asaro and W. A. Tiller, Metall. Trans. 3, 1789 (1972)
    [17] M. A. Grinfeld, Sov. Phys. Dokl. 31, 831 (1986)
    [18] D. J.Srolovitz, Acta Metall. 37, 621 (1989).
    
    [19] B. J. Spencer, P.W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 3696 (1991)
    [20] B. J. Spencer, P. W. Voorhees, J. Tersoff, Appl. Phys. Lett. 76, 3023 (2000)
    [21] J. Tersoff, Phys. Rev. Lett. 85, 2843 (2000)
    [22] D. Keller. Surf. Sci 253, 353 (1991)
    [1] K. Sawano, S. Koh, and Y. Shiraki, Appl. Phys. Lett. 82, 412 (2003)
    [2] K. Ismail, B. S. Meyerson, Phys. Rev. Lett. 73, 3447 (1994)
    
    [3] M. V. Fischetti and S.E.Laux, J. Appl. Phys. 80,4 (1996)
    
    [4] Meikei Ieong, Bruce Doris, Jakub Kedzierski, Ken Rim, Min Yang, Science 306, 2517(2004)
    
    [5] Lochtefeld a. IEEE Electron Device Letters. 12, 591 (2001)
    [6] Yee-Chia Yeo, Jisong Sun, Appl. Phys. Lett. 86, 023103 (2005)
    [7] C. W. Leitz, M. T. Currie, A. Y. Kim, J. Lai, E. Robbins, and E. A. Fitzgerald, J. Appl. Phys. 90, 2730 (2001)
    
    [8] A. R. Powell, S. S. Iyer, and F. K. LeGoues, Appl. Phys. Lett. 64, 1856 (1994)
    [9] S. I. Romanov, V. I. Mashanov, L. V. Sokolov, A. Gutakovskii, and O. P. Pchelyakov, Appl. Phys. Lett. 75,4118 (1999)
    [10] A. R. Powell, S. S. Iyer, and F. K. LeGoues, Appl. Phys. Lett. 64, 1856 (1994)
    
    [11] S. W. Lee, H. C. Chen, and L. J. Chen, J. Appl. Phys. 92, 6880 (2002)
    
    [12] H. Chen, L. W. Guo, Q. Cui, Q. Hu, Q. Huang, and J. M. Zhou, J. Appl. Phys. 79, 1167(1995)
    
    [13] D. B. Noble, J. L. Hoyt, C. A. King, et al. Appl Phys Lett, 56, 51 (1990).
    [14] T. Rupp, F. Kasen, W. Hansch, et al. Thin Solid Films 294, 27 (1997)
    [15] R. Hammond, P. J. Phillips, T. E. Whall, and E. H. C. Parker, Appl. Phys. Lett. 71,2517(1997)
    
    [16] Welser J J, [D], Stanford University, (1994)
    [17] N. Sugii, K. Nakagawa, S. Yamaguchi, and M. Miyao, Appl. Phys. Lett. 75, 2948 (1999)
    [18] A. C. Curchill, D. J. Robbins, D. J. Wallis, N. Griffin, D. J. Paul, A. J. Pidduck, W. Y. Leong, and G. M. Williams, J. Vac, Sci. Technol. B 16,1634(1998)
    [19] A. D. Capewell, T. J. Grasby, T. E. Whall, and E. H. C. Parker, Appl. Phys. Lett. 81,4775(2002)
    [20] J. C. Tsang, P. M. Mooney, F. Dacol, and J. O. Chu, J. Appl. Phys. 75, 8098 (1994)
    [21] T. A. Langdo, M. T. Currie, A. Lochtefeld, R. Hammond, J. A. Carlin, M. Erdtmann, G. Braithwaite, V. K. Yang, C. J. Vineis, H. Badawi, and M. T. Bulsara, Appl. Phys. Lett. 82,4256 (2003)
    [22] E. M. Rehder, T. S. Kuan1, and T. F. Kuech, Mat. Res. Soc. Symp. Proc. 673, 5.3.1 (2001)
    [23] M. A. Lutz, R. M. Feenstra, F. K. LeGoues, P. M. Mooney, and J. O. Chu, Appl. Phys. Lett. 66, 724 (1995)
    
    [24] R. Beanland, D. J. Dunstan, and P. J. Goodhew, Adv. Phys. 45, 87 (1996)
    [25] X. G. Zhang, P. Li, G. Zhao, D. W. Parent, F. C. Jain, and J. E. Ayers, J. Electron. Mater. 27, 1248(1998)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700